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1 IntroductionCellular data and communication networks are usually modeled as graphs with each noderepresenting a base station (sometimes called a cell) in the network. At any given time, acertain number of active connections (or calls) are serviced by their nearest base station. Inmost cases (especially in FDMA technology), service involves the assignment of a frequencyto each client call in a manner that minimizes or avoids radio interference between di�erentcalls in the network. A similar problem also arises in cellular networks employing CDMAtechnology. A common abstraction is the assumption that if two calls are assigned the samefrequency, they would interfere with one another if and only if they originate in the samecell or in physically adjacent cells. For this reason, we refer to the graphs that model thesenetworks as interference graphs. However, cellular networks have a limited spectrum of radiofrequencies available to handle calls and the e�cient shared utilization of the bandwidth iscritical to the smooth operation of the network. In this paper we study the distributed onlinefrequency assignment problem which consists of designing a distributed online interference-free frequency allocation protocol for a network where the number of calls per cell changesover time.The graphs most often used to model cellular networks are �nite portions of the in�nitetriangular lattice. The reason for adopting this particular geometry stems from the fact thatcells are uniformly distributed in the geographic area of the network. The attenuation ofradio signals occurs in a circular manner, and hence, the cell's calling area can be idealized asa regular hexagon. The triangular lattice representing the network is simply the planar dualof the resulting Voronoi diagram. We refer to a �nite induced subgraph of the triangularlattice as a hexagon graph (see Figure 1 for an example). Unless otherwise speci�ed, in therest of this paper, the interference graphs we consider are always hexagon graphs.The static frequency assignment problem incorporating interference constraints can beabstracted as follows. Let G = (V;E;w) denote an interference graph where each nodev 2 V has an associated nonnegative integer weight, w(v) � 0. The graph G models astatic snapshot of the network at some instant in time, with the nodes representing cellsand the weights representing the number of calls that require service in the cell. Our problemis to properly multicolor the graph G, i.e. we are required to assign w(v) distinct colorsto each v such that for every edge, (u; v) 2 E, the set of colors assigned to the endpointsu and v are disjoint. The span of a multicoloring is the total number of colors used in thecoloring. In particular, we are interested in a proper multicoloring of G whose span is equalto the minimum number of colors required to multicolor G, denoted by �(G). In the contextof frequency assignment, a multicoloring as de�ned above, provides a useful abstraction ofthe essential interference constraints: each color represents a distinct frequency and it isassumed that two calls may use the same frequency if and only if they originate in distinctcells that are not neighbors. It is convenient to treat the color palette of available colorsas the set of natural numbers; we further assume without loss of generality that any suchpalette can be suitably reordered or partitioned.The complexity of the static version of the problem has received considerable recentattention. Let the weight of a maximal clique in G be de�ned as the sum of the weights ofthe nodes belonging to the clique; note that G being a subgraph of the triangular lattice,the only maximal cliques are isolated nodes, edges or triangles. It is easy to see that �(G)1
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b b bFigure 1: A hexagon graph and a 3-coloring of the nodes of the graph. The hexagonal areaaround each node represents the calling area it serves.must be at least the weight of any maximal clique in the graph. It has been shown recentlythat the problem of multicoloring hexagon graphs optimally is NP-hard [9]. In terms ofupper bounds, there is a vast literature on algorithms for frequency assignment on graphs(especially hexagon graphs) which claim to use few colors in practice, but have no provenbounds on their performance [1, 5, 7, 11, 13]. A well-known algorithm often referred toas Fixed Allocation (FA), uses the fact that the underlying graph can be 3-colored. Thealgorithm uses three �xed sets of colors, one for each base color. A node that has basecolor 1 uses colors from the �rst set, and a node with base color 2 or 3 uses colors from thesecond or third sets respectively. It is easy to see that this algorithm is an approximationalgorithm with performance ratio 3. Janssen et. al. [4] propose a di�erent algorithm calledFixed Preference Allocation (FPA) that is guaranteed to use no more than 32 times theminimum number of colors required. Approximation algorithms with performance ratio 43have recently been shown in [9] and [10].In the online case, the interference graph to be multicolored changes over time. We modelthese changes as an ordered sequence of interference graphs, fGt = (V;E;wt) : t � 0g,where wt represents the set of calls to be serviced at time t. At time instant t, an onlinealgorithm must arrange to color the graph Gt before moving on to the graph Gt+1 at thenext time instant t+1. It must perform this coloring with no knowledge of the later graphsin the sequence. Very little is known about the online version of the problem. There hasbeen a lot of work on online graph coloring (see for example, [12, 8, 2]), where the graph tobe colored is revealed one node at a time in every time step, and the algorithm must assigna color to the newly revealed node. However, we are interested in the multicoloring problem,where the entire graph is known in advance, and it is the weights on each node that changein every time step. The results of [3] imply that for general k-colorable graphs, no onlinemulticoloring algorithm can have a competitive ratio smaller than k=2, a bound which ismet by an online version of FPA. They also show that every algorithm which is not allowedto recolor has a competitive ratio at least k on such graphs, a bound which is met by FA.However, the lower bounds involve constructions of non-planar graphs; there are no knownlower bounds on the competitive ratio of algorithms on hexagon graphs. Furthermore, theonline algorithms that have proven upper bounds on the competitive ratio use information2



about the changing state of the entire graph and are therefore not distributed.In this paper we develop a reasonable operational model in which the problem of dis-tributed online frequency assignment in cellular networks can be studied. In particular, thisinvolves a number of considerations: a precise delineation of the various kinds of admissibleonline algorithms for the problem (Section 1.1), the framework and e�ciency measures un-der which the performance of any such algorithm can be meaningfully evaluated (Section1.2), and models in which lower bounds can be shown (Section 1.3). A brief summary of ourresults is given in Section 1.4. We present our upper bounds in Section 2 and lower boundsin Section 3. Conclusions and future directions for research are discussed in Section 4.1.1 Admissible distributed online algorithmsSince most practical frequency assignment algorithms are required to be distributed innature, it is convenient to describe the algorithm as though it were running simultaneouslyon servers, one server per active node in the network. In fact, the scope of our paper islimited to distributed and deterministic algorithms: each server running the algorithm isindependently responsible for the color assignment at its resident node at any given timeinstant. Furthermore, this local assignment is computed deterministically based upon alimited amount of information. The time-indexed sequence of interference graphs is theonline input to the algorithm - but presented in a manner that is completely distributed,i.e. as though each node v is presented synchronously with weight wt(v) at time t � 0indicating the number of calls that need color assignment. Additionally, v may get requeststo drop certain calls, which can be identi�ed by the colors assigned to them in the previousstep. For example, if wt(v) < wt�1(v), then at least wt�1(v)�wt(v) calls to be dropped arespeci�ed as part of the input at time t. In response, v may gather some local informationand use it to provide service at time t by allocating wt(v) distinct colors to its local callswithout conicting with assignments at neighboring nodes. Overall, between successivetime steps only a constant amount of communication and computation is permissible.Various subtle issues arise in this framework. For instance, what kind of informationought to be reasonably admitted? While it is di�cult to answer this question in its fullgenerality, we propose the following restrictions motivated by practical considerations typ-ical in most cellular networks. We insist that no global knowledge of the current state ofthe network be available at any node or small set of nodes in the network. However, it isassumed that nodes may be permitted to gather some limited amount of information fromtheir local neighborhood between successive time instants. In particular, for integers k � 1,we de�ne the k-locality of a node v to be the induced subgraph consisting of those nodes inG whose graph distance from v is less than or equal to k. The maximum weight taken overall the maximal cliques in the k-locality of v, is denoted by Dk(v). It is easy to see thatthe maximum of Dk(v) over all nodes v in the graph, is a lower bound on �(G). For somesmall constant k � 0 independent of the input weight sequence, we say that an algorithmis k-local if between successive time instants, the values of the weights at time t at everynode in v's k-locality, and only those weights, are available at v to decide its allocation fortime t. Furthermore, it can be assumed that at the very beginning (at time t = 0), some\hard-wired" or pre-computed information, independent of the input weight sequence, isavailable to each node for free. In general, this pre-computed information may be an ar-3



bitrary �nite function of a node's label in a �xed labeling of the triangular lattice. Thealgorithms discussed below use only the fact that the nodes of the lattice can be partitionedinto a small constant number of stable sets depending on their distance from a �xed origin.For example, the Fixed Allocation Local (FA-Local) and Fixed Preference Allocation Local(FPA-Local) algorithms discussed below depend only on the existence of a 3-coloring of thelattice. On the other hand, the remaining two algorithms additionally use a 2-coloring ofevery directional axis in the graph.A second important issue concerns whether or not a node, when allocating colors for thenext time step, can change the colors it has already assigned to its local calls on previoussteps. Recall that in practice, this means changing the frequency previously assigned toan ongoing call. We say an algorithm is non-recoloring if once having assigned a color inresponse to a particular new call it never changes that assignment (i.e., recolors the call).The algorithm FA-Local is an example of a non-recoloring algorithm. Recent technicaldevelopments, however, allow for a limited rearrangement of frequencies. All the otheralgorithms discussed below are recoloring algorithms, i.e. a node may change the assignedcolor of a call. For the k-local algorithms that we discuss in this paper, such color changesoccur only in response to changes in demand within the node's k-locality.1.2 Performance measuresWe adapt a standard yardstick for measuring the e�cacy of online algorithms: that ofcompetitive ratios [6]. Given an online algorithm P that processes a sequence of N inter-ference graphs Gt, t = 0; : : : ; N , let S(Pt) denote the span of the multicoloring computedby P after step t, i.e. after graph Gt has been processed. Let SN (P ) = maxtfS(Pt)g and�N (G) = maxtf�(Gt)g. We say that P is a c-competitive algorithm if and only if there is aconstant b independent of N such that for any input sequence,SN (P ) � c � �N (G) + b:In other words, a c-competitive algorithm uses at most c times as many colors (frequencies)overall as the optimal o�ine algorithm would. We note that all of the algorithms discussedin this paper (with the exception of FA-Local) in fact satisfy the stricter requirementS(Pt) � c � �(Gt) + bfor all t � 0, i.e. they approximate the optimal span within a factor of c at all timeswhile still processing the input sequence online. All of our lower bounds hold for the abovede�nition of c-competitive (and therefore imply lower bounds on algorithms satisfying thestricter requirement).1.3 Lower bound modelsWe provide lower bounds on the competitive ratio of algorithms in a number of models.Notice that if the online algorithm is provided at each step with a complete description ofthe weights at every node in G, then the problem reduces to that of solving a series of staticfrequency assignment or multi-coloring problems. To capture the distributed nature of theproblem we must restrict the possible actions taken by a node during the execution of a4



k-local algorithm. In particular, nodes are only permitted to access information about thecurrent state of their respective k-localities. By constraining the algorithms in very naturalways, we are able to provide lower bounds in models that capture the properties of mostreasonable distributed algorithms including the algorithms discussed in this paper. In somecases the algorithms we provide are optimal for their class.The �rst restriction we consider is that of the recoloring ability of the online algorithms.We show lower bounds for both recoloring and non-recoloring algorithms. In the recoloringcase we add the constraint that recoloring can only occur in response to a change in demandwithin a node's immediate neighborhood. We say a recoloring algorithm has recoloringdistance ` if a node recolors its calls during a time step only if a change of demand hasoccurred within its `-locality.We further make a distinction between models based upon the kind of information thenodes can use in making their assignments. In particular we consider a class of algorithmsin which the pre-computed information is limited to a �xed 3-coloring of the lattice andfor which nodes with similar localities act the same. This class includes the algorithmsFA-Local and FPA-Local discussed below. More precisely, assume a �xed 3-coloring of thetriangular lattice. Call two nodes k-view-equivalent if they are in the same color class andthere is an isomorphism which maps one node's k-locality to the other's preserving thecolors assigned to calls. An algorithm is said to be k-view and color class determined if oneach step, k-view-equivalent nodes make precisely the same color assignments.1.4 Our resultsIn this paper we present the �rst distributed online algorithms for frequency assignment onhexagon graphs with proven bounds on their competitive ratio along with lower bounds onthe performance of online algorithms falling in naturally constrained classes.All of our upper bounds are obtained by modifying known (global) approximation al-gorithms for the static frequency assignment problem. The required modi�cations havethe e�ect of making the coloring decisions depend only on local information. The resultsindicate that the larger the locality taken into account, the better the competitive ratio thealgorithm attains. The algorithm FA-Local is a straightforward modi�cation of FA whichperforms no recoloring, is 0-local and has a competitive ratio of 3. In contrast, FPA-Local (amodi�cation of FPA) is a recoloring 1-local algorithm with competitive ratio bounded by 32 .Two further algorithms are presented which are modi�cations of the global static algorithm�rst described by Narayanan and Shende [10]. The �rst of these is a 2-local recoloringalgorithm with a competitive ratio of 1712 . By expanding the locality under considerationto radius 4, we give a 4-local recoloring algorithm which achieves a competitive ratio of 43 .It should be noted that all the recoloring k-local algorithms described in the paper haverecoloring distance at most k.We present lower bounds for recoloring distance bounded algorithms and for view andcolor class determined recoloring and non-recoloring algorithms. For recoloring algorithmslimited to recoloring distance k, we show a lower bound of 1 + 14(k+1) . (For the special caseof k = 0 this can be improved to 97 .) This implies that any algorithm that depends only oninformation from a constant radius neighborhood around each node in making recoloringdecisions for that node, can never achieve competitive ratio 1. Note that all the local5



recoloring algorithms described above have recoloring distance limited to the locality thatthey have knowledge of. In the setting of arbitrary non-recoloring algorithms we show alower bound of 2 on the competitive ratio. We show that for any k and any � > 0, a k-viewand color class determined non-recoloring algorithm must have competitive ratio at least3� �. This implies that the algorithm FA-Local is optimal for this class. We also show thatfor any k, a k-view and color class determined recoloring algorithm (with any recoloringdistance `) must have competitive ratio at least 3/2, showing that FPA-local is optimalfor this class. Our results imply that both the ability to recolor and the restriction to thek-view and color class determined algorithms have provable e�ects on the performance ofan algorithm for multicoloring on hexagon graphs.2 Online multicoloring of the triangular gridIn this section, we give online algorithms for frequency assignment on an induced subgraphof the triangular lattice. We describe k-local online algorithms for k = 0; 1; 2; and 4 andshow upper bounds on the competitive ratio of these algorithms. We begin with a keytechnical de�nition. A static k-local distributed algorithm for multicoloring gets as input agraph G corresponding to a snapshot of the network at some time step; it has the furtherproperty that the color assignment at any node depends only on the weights in the k-localityof the node and some pre-computed information about the lattice. The following generallemma enables us to derive online algorithms with performance guarantees:Lemma 1 Let A be a k-local static approximation algorithm for multicoloring with perfor-mance ratio �. Then A can be converted to a k-local �-competitive online algorithm formulticoloring.Proof: For the online case, each node runs the k-local static algorithm independentlyat every step. If the color spectrum obtained by node v is the same as the one used by itin the previous step, then v does not have to recolor. Otherwise, if some colors previouslyassigned to currently active calls do not appear in the newly computed set of colors, thenthe algorithm has to recolor those calls. Since the number of colors used by the static al-gorithm (and therefore, the online algorithm) at any step is at most � times the minimumnumber of colors required at that step, the online algorithm is �-competitive. 2To paraphrase Lemma 1, we only need describe a correct static algorithm which thentranslates to a corresponding online algorithm with the same competitive ratio. We note,however, that the conversion is only guaranteed if the algorithm has the ability to recolor.The fact that FA-Local (the local version of FA) is a 0-local algorithm with performanceratio 3 is a folklore result; to color new calls at time t, red, blue, and green nodes simplyuse the smallest available colors from the sets 0, 1 and 2 mod 3 respectively. Note thatpreviously existing calls are never recolored: FA-Local is a non-recoloring algorithm. In thesequel, we describe three static algorithms for multicoloring, and prove bounds on theirperformance ratio.
6



2.1 A 1-local static algorithm with performance ratio 3=2In this section, we show that a 1-local version of FPA described below has a performanceratio of 3=2.The FPA-Local AlgorithmLocal Information: The colors are divided into three palettes: the red colors are thecolors 0 (mod 3), the blue colors are 1 (mod 3) and the green colors are 2 (mod 3). Eachnode v knows its base color (red, blue or green), its weight and its neighbors' weights.(1) Let D1(v) be the 1-local maximal clique weight as computed by v.(2) v constructs a local spectrum of size 3dD1(v)=2e equally split into red, blue and greencolors as described above.(3) If v's base color isred: v uses the �rst dw(v)=2e colors from its red spectrum and the last bw(v)=2c colorsfrom its blue spectrum.blue: v uses the �rst dw(v)=2e colors from its blue spectrum and the last bw(v)=2c colorsfrom its green spectrum.green: v uses the �rst dw(v)=2e colors from its green spectrum and the last bw(v)=2c colorsfrom its red spectrum.Theorem 1 FPA-Local is a 1-local approximation algorithm with a performance ratio of3=2.Proof: It is straightforward to see that FPA-Local is a 1-local algorithm and uses at most3=2 maxvD1(v) � 3=2 �(G) colors. We next argue that two adjacent nodes can never assigncommon colors to their local demands. Without loss of generality, consider two such nodes,a red node v and a blue node u both of whom assign blue colors to their demands. Fromthe protocol described above, it is clear that the nodes assign their blue colors from oppositedirections of their respective local blue spectra. Since w(v)+w(u) � minfD1(v);D1(u)g, itfollows that the total number of blue colors used between u and v, (bw(v)=2c+ dw(u)=2e),is at most minfdD1(v)=2e; dD1(u)=2eg; the latter quantity is the minimum among the sizesof local blue spectra at u and v. 22.2 A 2-local static algorithm with performance ratio 17=12In this section and in Section 2.3, we modify an o�ine algorithm discovered by Narayananand Shende [10] (with a performance ratio of 43) to obtain k-local algorithms (for valuesk = 2 and k = 4 respectively). Intuitively, the idea behind these algorithms is to exploit theregular geometry of the grid so that a node can either satisfy its local demand completelyusing a pre-allocated subset of colors, or can �nd su�ciently many colors by borrowingcolors from neighboring nodes or using by colors from among a pre-allocated subset ofauxiliary colors. There are two critical points that are worth re-emphasizing. First, the7



color spectrum that is \seen" at a node can change over time as the weights of nodes inits locality change. Second, in our algorithms, neighboring nodes may have di�erent localclique bounds and therefore, may see di�erent color spectra. Yet, any sharing of colors mustbe accomplished without conict in a distributed manner: once the weights in the localityare known, there is no need for critical sections for exclusive sequential access to the colorspectra.We start by assuming that each node is assigned a base color (red, green or blue). Fortechnical reasons that will become clear later, we arbitrarily impose a priority scheme overthe nodes: red nodes have priority over blue nodes which in turn have priority over greennodes. Consider an arbitrary system of three directional axes centered at some �xed originnode in the grid. With respect to one of the axial directions - say the horizontal axis - weassume that every node is pre-assigned a �xed parity in that direction so that in any straightline of nodes oriented parallel to the axis, nodes have alternating parities. A similar parityassignment can be �xed for each of the other two axial directions, i.e. at each node, threeadditional directional parity bits of information are pre-computed and stored in order.The algorithm uses a color spectrum that is partitioned into red, blue, green, purple,and yellow palettes. The yellow colors are the colors (natural numbers) 16 mod 17. Fromthe remaining colors, we assign the following palettes:� Red colors are 0; 1; 2; 3 mod 17.� Blue colors are 4; 5; 6; 7 mod 17.� Green colors are 8; 9; 10; 11 mod 17.� Purple colors are 12; 13; 14; 15 mod 17.To avoid cumbersome notation, we use the term \neighbor" to denote a node in the1-locality. At the beginning of each time step, appropriate messages are exchanged amongthe nodes so that every node v gets to know the current weights (number of calls) at each ofthe nodes in its 2-locality. Recall that D1(v) � D2(v) are the respective maximum weightsof cliques (triangles) in v's 1- and 2-localities; these two values can be locally computed byv knowing all the weights in its 2-locality.Next, v categorizes nodes from its local vantage point according to the following criteria:De�nition 11. Consider a node u in v's 1-locality. Then u is said to be v-light if w(u) is at mostdD1(v)=3e, v-heavy if dD1(v)=3e < w(u) � 2dD1(v)=3e and v-superheavy otherwise.In particular, v is light (resp. heavy, superheavy) if it is v-light (resp. v-heavy, v-superheavy).2. A node v is persistent if w(v) > dD2(v)=3e.3. v is a borrower if it is heavy and at least two of its neighbors, both of the same basecolor, are v-heavy. 8



4. v is a priority borrower if it is a borrower, and either has no neighboring borrower orhas priority (with respect to its base color) over its neighboring borrowers.5. v is a secondary borrower if it is a borrower such that (a) it has exactly three neighborsall of whom are v-heavy and heavy, (b) exactly one of those neighbors is a priorityborrower.It should be noted that v's categories for nodes in its 2-locality are purely local ones;its self-identi�cation as being light, heavy or super-heavy may be di�erent from what othernodes in its 2-locality may consider it to be. Moreover, v can categorize its neighbors(and itself) based only upon knowledge of weights in its 2-locality. For example, v's self-identi�cation as a borrower depends only weights in its 1-locality. Since v has knowledge ofthe weights in its 2-locality, it can also identify its neighbors that are borrowers. Likewise,if v is a borrower, it can also determine which of its neighbors are priority borrowers. Thenext lemma describes some useful properties implied by De�nition 1:Lemma 21. If v is superheavy, then all its neighbors are light.2. Consider a triangle formed by three mutually adjacent nodes in the grid. Then at leastone among these three nodes is light.3. If v is heavy, then it has at most three mutually non-adjacent v-heavy neighbors.4. The set of priority borrowers (and likewise, secondary borrowers) is an independentset in the graph. Furthermore, every borrower node is either a priority borrower or isadjacent to a priority borrower.Proof: We verify each assertion in the lemma in turn.1. Suppose that v is superheavy but has a neighbor u that is not light. Then,w(u) > dD1(u)=3e� d(w(u) + w(v))=3e; andw(v) > 2dD1(v)=3e� 2d(w(u) +w(v))=3e:This implies that w(u) + w(v) > w(u) + w(v), an obvious contradiction.2. Consider a triangle containing nodes s, t, and u with D = w(s) + w(t) + w(u) beingthe weight of the triangle. By the pigeonhole principle, at least one node, say t, hasweight less than or equal to D=3. Since D is a lower bound on D1(t), it follows thatt is a light node.3. Suppose instead that there is a triangle v, t, u, such that all three nodes are v-heavy.Then w(v) + w(t) +w(u) > D1(v) which contradicts the de�nition of D1(v).9



4. Let u and v be two borrower nodes that are adjacent. Then exactly one of themis a priority borrower node, based on their base colors. This proves that the set ofpriority borrower nodes is an independent set, and also that each borrower node iseither a priority borrower, or is adjacent to one. Finally, let u and v be blue and green(respectively) secondary borrower nodes that are adjacent. Then by assertion 2, andby the de�nition of secondary borrower nodes, u has three green neighbors whichare all u-heavy, and of which one is a priority borrower. However, since blue nodeshave priority over green ones, we obtain a contradiction. Thus the set of secondaryborrowers is an independent set. 2During the current time step as seen from v's vantage point, the local spectrum availablefor its use consists of the �rst 4dD2(v)12 e red, blue, green and purple colors, and the �rstdD2(v)12 e yellow colors; in all, v \sees" 17dD2(v)12 e distinct colors divided as above into the�ve palettes. For simplicity, we hereafter omit any mention of oors and ceilings from ourcalculations: this only a�ects the additive constant in our de�nition of competitiveness andhas no signi�cant bearing on our results. In particular, we assume that v has D2(v)=3colors in its local blue, green, red and purple palettes and D2(v)=12 colors in its local yellowpalette.We describe the algorithm as proceeding in �ve sequential phases during each time step:note that this is just a technical device to make the proof of correctness of the algorithmclear. No communication with neighbors is required in between the phases, which aredescribed below:Phase 1: Each node uses as many initial colors as possible from the local palette corre-sponding to its color class, i.e. a blue node v uses the �rst minfw(v);D2(v)=3g blue colorsfrom its palette. Notice that the base-color palette of a non-persistent node (with weightat most D2(�)=3) su�ces to color it completely since there are D2(v)=3 base color palettecolors available at each node v. No conicts can have occurred since the colors used byneighbors are from di�erent palettes.Phase 2: Each persistent node v has a remaining demand after the assignment of colorsin the previous paragraph. We defer the coloring of heavy nodes to subsequent phases, but�nish coloring superheavy nodes in this phase as detailed below. Without loss of generalityconsider a blue superheavy node v. We assign as many purple colors to v from the initial partof its local purple palette as needed. If w(v) � 2D2(v)=3, then the �rst w(v)�D2(v)=3 purplecolors su�ce to completely color v. If not, then v has used D2(v)=3 blue colors and D2(v)=3purple colors, and has a remaining demand of a(v) = w(v)�2D2(v)=3. However, by assertion1 of Lemma 2, all of v's neighbors are light nodes. Without loss of generality, let u be redneighbor of v of maximum weight over all the neighbors of v. Clearly, w(v)+w(u) � D1(v)and w(u) � D1(u)=3 since u is a light node. Thus,a(v) = w(v)� 2D2(v)=3� w(v)� 2D1(v)=310
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Figure 2: The vicinity of a secondary borrower v. The nodes u; x; y are all v-heavy as wellas heavy, and one of them is a priority borrower.� D1(v)=3 � w(u)� D2(v)=3 � w(u)This implies that the last a(v) colors from the red palette at v can be safely borrowed byv without causing color conicts at any of its red neighbors. Thus, at the end of phase2, we have a conict-free assignment of colors to the non-persistent as well as persistentsuperheavy nodes, and a partial conict-free assignment to the persistent heavy ones.Phase 3: Among the persistent nodes, every priority borrower node v now borrowscolors from a v-light neighbor's color class to �nish coloring its calls; this is accomplishedin a manner similar to that used for the superheavy nodes in Phase 2. Speci�cally, ifw(v) = D2(v)=3 + a(v), then v borrows the last a(v) colors from its v-light neighbors' basecolor palette. To see the validity of this step, let v be a red priority borrower. Since ithas at least 2 blue v-heavy neighbors, assertion 3 of Lemma 2 implies that all three of v'sgreen neighbors are v-light. Moreover, the color priority ensures that no blue neighbor of vcan simultaneously be a priority borrower. Let s be a green neighbor of v with the largestweight among all its green neighbors. Then, there must exist a triangle � = fs; t; vg suchthat t is a v-heavy blue neighbor of v. Using the relations w(�) � D1(v), w(t) � D1(v)=3and w(s) � D1(v)=3, we obtain:a(v) = w(v) �D2(v)=3� w(v) �D1(v)=3= w(�)� w(t)� w(s)�D1(v)=3� D1(v)=3 � w(s)� D2(v)=3 � w(s):We conclude that if v colors its additional a(v) demands using the last a green colors fromits local palette, then the resulting color assignment will not conict on the green colorswith the assignment at node s (and hence, at all other green neighbors of v).Phase 4: We color all the persistent secondary borrower nodes in this phase. For ease ofexplanation, let v be a blue persistent secondary borrower that is adjacent to a red priority11



borrower u. Figure 2 provides a snapshot of the nodes in the vicinity of v. By De�nition 1.5,the other two red neighbors of v, namely x and y are v-heavy and heavy, and by assertions2 and 3 of Lemma 2, the three green neighbors of v must be light as well as v-light. We alsonote that the red neighbors x and y are not borrower nodes. Let w(v) = D2(v)=3 + a(v).Then v assigns the �rst minfa(v);D2(v)=12g colors from its yellow palette. By assertion4 of Lemma 2, v cannot be adjacent to another secondary borrower node, and thus thiscannot cause any color conict. If v's demand is satis�ed at this stage, then v exits Phase4. Otherwise, there is some integer b(v) > 0 de�ned byb(v) = a(v) �D2(v)=12= w(v) � 5D2(v)=12 (1)that denotes the remaining demand of node v. Using Figure 2 to locate the red neighborsx, y and u of v, we summarize the situation at this stage. The node u has been completelycolored using its local red palette and some borrowed green colors. In particular, thenumber of green colors borrowed by u is exactly w(u) � D2(u)=3, and hence is at mostw(u) �D1(v)=3. All three green neighbors of v, including the node t, are light and hence,have been completely colored in Phase 1 after using an initial portion of their respectivegreen palettes. For simplicity, letd = maxfw(x); w(y)g �D1(v)=3 (2)be an upper bound on the maximum remaining weight on x and y after Phase 1. Thefollowing case analysis is exhaustive and yields, in each case, a conict-free coloring of v'sremaining demand of b(v):Case 1: b(v) � D1(v)=3 � (w(t) + w(u)�D1(v)=3).Let wuv be the maximum weight among the two common green neighbors of u and vshown in Figure 2. Then v assigns the colors [maxfwuv; w(t)g+1; maxfwuv; w(t)g+b(v)] from its green spectrum. Clearly v cannot conict have a color conict with anyof its green neighbors. Further, since u has used at most w(u)�D1(v)=3 green colorsfrom the end of its green spectrum, it can be veri�ed that there is no color conictbetween u and v.Case 2: b(v) � D1(v)=3 � 2d, where d is de�ned by Equation 2.In this case, v becomes the �rst node in its 1-locality to use purple colors by assigningto itself the colors [d + 1; d + b(v)] from its local purple palette. Further, we notethat the �rst d and the last d colors from the local purple palettes of nodes x and yare disjoint from the colors assigned by v in this phase. Hence, if x and y use purplecolors in Phase 5 in future from either the beginning or the end of their respectivepurple palettes, no color conict will occur over the purple colors.Case 3: The inequalitiesb(v) > D1(v)=3 � (w(t) +w(u) �D1(v)=3) (3)b(v) > D1(v)=3 � 2d (4)12



hold simultaneously.From Equation 1 and the fact that w(u) + w(v) � D1(v), we get:w(u) + b(v) � 7D1(v)=12 (5)Combining Equations 3 with 5 yieldsw(t) > D1(v)=12: (6)which in turn can be combined with Equation 4 to conclude thatw(t) + (d+D1(v)=3) + b(v) + 5D1(v)=12 > D1(v) + b(v)=2:Replacing d with its right hand side from Equation 2 and simplifying, we arrive atw(t) +maxfw(x); w(y)g + w(v) > D1(v);which contradicts the de�nition of D1(v).We conclude, hence, that case 3 is impossible and that v can complete its color as-signment by using b(v) additional colors either from its green or purple spectra. Thus allsecondary borrowers �nish in this phase, and do not participate any further.Phase 5: The only remaining nodes that do not yet have a complete color assignment arepersistent nodes v which were neither priority nor secondary borrowers. We claim that anysuch node v can have at most two neighbors that could possibly participate in this phase,and if v has two such neighbors, then they must all be along the same directional axis.Furthermore, v can identify these potential participants using local information.Let v be a node that has an incomplete color assignment after Phase 4. Observe thatany neighbor u of v that is v-light cannot be persistent , and therefore received a completeassignment in Phase 1. If v was not a borrower, by assertion 3 of Lemma 2, v has at most2 v-heavy neighbors along the same directional axis. Thus v identi�es these as potentialparticipants in this phase. If instead v was a borrower, it identi�es all of its neighbors thatwere v-heavy and heavy but were not priority borrowers as potentially participating in thisphase. Suppose that v has two neighbors u and w of the same base color class that are bothv-heavy and heavy, and that were not priority borrowers. Since by assumption, v was nota priority borrower, it follows from assertion 4 of Lemma 2 that v is adjacent to a priorityborrower. Since u and w are not priority borrowers, it must be that the remaining neighborof v of the same color class as u and w was a priority borrower. This means that v was asecondary borrower, a contradiction.This establishes that any node v with an incomplete color assignment may have at mosttwo neighbors that may have incomplete assignments. Further, if v has two such neighbors,they must all be along the same directional axis, which v can compute locally based onits knowledge of weights in its 2-locality. Depending on the parity of v along this axis, vuses either the �rst or the last w(v) �D2(v)=3 colors from its purple spectrum. Since anyneighbor u of v along this axis has the opposite parity, there can be no color conict in thisphase. Finally, v cannot have conicts with either secondary borrowers using purple colorsin Phase 4, or superheavy nodes using purple colors, as explained earlier.This completes the description of the NSA-Local algorithm. The discussion accompany-ing the algorithm description leads to the following theorem:13
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Figure 3: The number next to a node is its weight. The colors assigned to a node are givenwithin brackets, assuming that D1(:) = D2(:) = 12 for v and its neighbors. The secondaryborrower v cannot borrow either purple or green colors.Theorem 2 NSA-Local is a 2-local approximation algorithm with performance ratio 17=12.Remarks: The only nodes that use the yellow palette are the secondary borrower nodes inPhase 4. Before the phase, such nodes have already exhausted their base color palette, andmay also borrow from green or purple neighbors during the phase. To increase the compet-itiveness of the algorithm, it is natural to examine if the borrowed green and purple colorswould su�ce to completely color the secondary borrower nodes. However, the example inFig 3 shows that a blue secondary borrower node v with weight 5D2(v)=12 may have accessto no purple or green colors and may still require D2(v)=12 colors. Let u be the red priorityborrower neighbor of v, and x and y the remaining heavy as well as v-heavy neighbors ofv. It is easy to see from the �gure that D1(v) = 12, and it is possible to extend the graphso that the D2(:) clique bounds of all nodes in v's 1-locality are also at most 12, so thatbase color and purple palettes of all nodes in v's 1-locality are of size 4 or less. Thus, ubeing a priority borrower would borrow the last three green colors, and t would use the �rstgreen color, so that v cannot borrow any green colors without conict. Furthermore, x andy would borrow 2 colors each from the purple spectrum but since they may use colors fromdi�erent ends of the spectrum, as shown, v cannot borrow any purple colors either. Yet, vhas a remaining demand of 1. Furthermore, the situation can be ampli�ed by multiplyingthe demands on every vertex by any constant c.2.3 A 4-local static algorithm with performance ratio 4=3A further modi�cation allows us to convert the o�ine algorithm that formed the basis ofNSA-Local to a 4-local algorithm with an even better competitive ratio. In essence, weeliminate the local yellow palette used at a node in the algorithm NSA-Local by allowingeach node to access its 4-locality. In particular, in the example shown in Figure 3, ifthe light node t had used the last green colors instead of the �rst ones, then the numberof green colors available for v to borrow would su�ce to completely color v. As in [10],we will show that this will not a�ect any of the neighbors of such a light node t, exceptperhaps a super-heavy node, which may then have to follow a di�erent strategy from theone in the NSA-Local algorithm. Our argument di�ers from the proof of the algorithm in[10] in that nodes must identify themselves as light, borrowers and so on, based on local14
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yFigure 4: The vicinity of a special light node t. The node v is a persistent secondaryborrower and u is a priority borrower. The nodes x and y are persistent but not priorityborrowers.information, and not on global knowledge of weights in the entire graph. We will show thatit is possible for a light node to determine when to use colors from the end of the spectrum,with knowledge of only its 3-locality. Correspondingly, a super-heavy node needs knowledgeof its 4-locality to anticipate such a choice made by one or more of its light neighbors. Weproceed to show how such a correct (conict-free) protocol can be derived.As in the NSA-Local algorithm, each node determines if it is heavy, a borrower, a priorityor a secondary borrower. Recall that we call a node v persistent if w(v) > D2(v)=3. It iseasy to see that a node v may determine if v itself is persistent based on its 2-locality, and ifa neighbor of v is persistent based on v's 3-locality. Before proceeding to determine its colorassignment, each node makes the following additional identi�cation based on knowledge ofits 3-locality. Figure 4 may be helpful in understanding the following de�nition, and willbe used as a reference throughout this section.De�nition 2 A node t is a special light node if it is a light node adjacent to a persistentsecondary borrower node v with the following properties:1. t is not adjacent to the priority borrower neighbor u of v.2. t is adjacent to the two remaining v-heavy neighbors of v, and these two neighbors arepersistent nodes.3. w(u) + w(v) + w(t) > D1(v)It is easy to verify that a node may identify itself as being a special light node usingonly its knowledge of its 3-locality. We prove the following properties of special light nodesfor later use:Lemma 3 A special light node t can be adjacent to at most one persistent secondary bor-rower node. Furthermore, if t is adjacent to a persistent priority borrower node with twopersistent neighbors, then they are of the same color class as t.Proof: Let t be a special light node adjacent to a persistent secondary borrower node vwith properties listed in De�nition 2. For ease of explanation, we refer to Figure 4. From15



the de�nition, x and y must be persistent , but since they cannot be borrowers, p and q mustbe x-light and y-light respectively. In other words, p and q are not persistent . Thus, noneof p, q, and r can be persistent secondary borrowers. Finally, if r is a persistent prioritynode with two persistent neighbors, they must be of the same color class as t, �nishing theproof of the lemma. 2Phase 1: Each node v that is not a special light node assigns itself the �rstminfw(v);D2(v)=3gcolors from its base color palette. Let t be a special light node adjacent to a persistent sec-ondary borrower node v. From Lemma 3, this neighbor of t is unique. Let wuv be themaximum weight on the common neighbors of v and the priority borrower u adjacent to v.Then t uses the �rst wuv colors, and the last w(t)� wuv colors from its base color palette.It is easy to see that all the computations done in this phase are 3-local. After thisphase, the only nodes that remain to be colored are the persistent nodes, and only theseparticipate further.Phase 2: In this phase, we color all the super-heavy nodes. Without loss of generality,consider a super-heavy node v with base color red. All its neighbors must be light byLemma 2, and in fact, they are v-light as well. First v assigns maxfw(v)�D2(v)=3;D2(v)=3gpurple colors to v thus disposing of the super-heavy nodes with weight � 2D2(v)=3. If theresidual weight � = w(v)� 2D2(v)=3 > 0, then we need to �nd � additional colors to �nishcoloring v. We will demonstrate that � colors can be borrowed by v from either the blueor the green palettes, keeping in mind that that some of v's light neighbors may be speciallight nodes.Let b3 � b2 � b1 � D1(v)=3 and g3 � g2 � g1 � D1(v)=3 be the weights of v's blue andgreen neighbors in G respectively. The number of colors available to v from the blue paletteis at least D1(v)=3 � (b1 + b2) and similarly there are at least D1(v)=3 � (g1 + g2) greencolors available to g. Thus a total of 2D1(v)=3� (b1+ b2+ g1+ g2) colors are available to vto borrow without conict. Notice that the node with weight g1 must be adjacent to eitherthe node with weight b1 or b2. In either case, � � D1(v)=3 � (b2 + g1). A similar argumentshows that � � D1(v)=3 � (g2 + b1). Adding the two, we obtain:2� � 2D1(v)=3 � (b1 + b2 + g1 + g2)Since v needs � colors and the right hand side is equal to the number of colors availableto v, consequently v can be colored completely by borrowing either blue or green colors.Since v has access to its 4-locality, it can determine which of its neighbors are special lightnodes, and exactly what colors they use, and thus choose a conict-free set of colors toborrow, completing its color assignment.Phase 3: Each persistent priority borrower v now determines how many of its v-heavyneighbors are persistent . If it has at least 2 persistent neighbors, then it borrows theremaining colors from the end of the light neighbors' base color palette. It follows fromLemma 3, if v is adjacent to a special-light node t, then it does not borrow from t's basecolor palette, and thus can have no conict with t. The argument that v can �nd su�cient16



colors to borrow without conict is the same as in Phase 3 of the NSA-Local algorithm, andwe do not repeat it here.It is easy to see that all computations done in this phase are 3-local. After this phase,all persistent priority borrowers with at least 2 persistent neighbors have a complete assign-ment.Phase 4: Let v be a persistent secondary borrower node with a priority borrower neighboru and two v-heavy as well as heavy neighbors x and y, as in Figure 4. If x and y are bothpersistent , then v borrows w(v)�D2(v)=3 colors from t's base color palette, starting withthe color wuv+1 where wuv is the maximum weight on the common neighbors of u and v. Asin the NSA-Local algorithm, v cannot have a conict with u or with the common neighborsof u and v. If w(t) < wuv then t cannot have a conict with v. If instead w(t) > wuv thent uses only the �rst wuv colors and the remaining colors from the end of its palette. Sincex is v-heavy, w(t) + w(v) � 2D1(v)=3which implies that w(t) + w(v) �D2(v)=3 � w(t) + w(v)�D1(v)=3� D1(v)=3Thus v and t cannot have any color conicts.It is easy to see that all computations done in this phase are 3-local. After this phase,all persistent secondary borrowers with at least 2 persistent neighbors have a completeconict-free color assignment.Phase 5: Each node that has an incomplete color assignment that is neither a prioritynor a secondary borrower performs Phase 5 exactly as in the NSA-Local algorithm. Sincethe only nodes to have previously used purple colors were super-heavy nodes, which byLemma 2 can have only light neighbors, the analysis of this phase is identical to that in theNSA-Local algorithm. It follows that all computations in this phase are 2-local.Phase 6: The only nodes that remain for this phase are solid priority or secondary bor-rowers with at most one persistent neighbor. If such a node v has no persistent neighbors,it uses w(v)�D2(v)=3 colors from the purple palette without causing conicts. If instead apersistent priority borrower v has a persistent secondary borrower neighbor u, then neitheru nor v has any other neighbors, and they can use the parity scheme to determine which endof the purple spectrum to use colors from. Finally, if v has a persistent neighbor u that isneither a priority nor a secondary borrower, then v can determine the purple colors used byu using u's 2-locality, and assign itself colors from the opposite end of its purple spectrumwithout color conict. Thus, all computations done in this phase are 3-local computations.The analysis above leads to the the following theorem:Theorem 3 NSB-Local is a 4-local approximation algorithm with performance ratio 4=3.17



2.4 From static to online algorithmsWe note that for each of the recoloring algorithms we described, the color assignment isdecided by each vertex v solely on the basis of pre-computed information like base colorclasses, and the weights of nodes in v's k-locality. For example, in the algorithm NSA-Local, if the weights in the 2-locality of a vertex v in steps t and t+1 remain the same, then thecolor assignment computed by v in these steps is identical, and v will not recolor any calls.Thus, NSA-Local has recoloring distance 2.As a corollary to Theorems 1, 2, 3, Lemma 1 and the discussion about FA-Local at thebeginning of the section, we obtain the following result:Corollary 1 There is a distributed online algorithm for multicoloring that is:1. 0-local, 3-competitive, and non-recoloring,2. 1-local and 1.5-competitive, with recoloring distance 1,3. 2-local and 1712 -competitive, with recoloring distance 2, and4. 4-local and 43 -competitive, with recoloring distance 4.3 Lower boundsIn this section, we show lower bounds on the competitive ratio of any online algorithms formulticoloring interference graphs. We consider �rst algorithms with recoloring distance k,and then algorithms that do not allow recoloring. We also show lower bounds on algorithmsthat are k-view and color class determined.3.1 Online recoloring algorithmsWe �rst prove a technical lemma that aids the proof of the lower bound.Lemma 4 Let P be a path of length `, with weight n on each of its `+ 1 nodes. Then theminimal number of colors required to color P such that the end nodes have exactly � colorsin common, is at least 2n+ 2�`�1 when ` is odd, and at least 2n+ 2(n��)` when ` is even.Proof: Let P , n and ` be as in the statement of the lemma. Let u and v be the end nodesof P , and let u0 and v0 be the neighbors of u and v, respectively (See Figure 5a). We �rstconstruct P 0 from P as follows. Node u is split into two connected nodes, u1 and u2, whichare assigned weight � and n� �, respectively. Similarly, node v is split into the connectednodes v1 and v2, with weight � and n� �, respectively (Figure 5b). Obviously, coloring Psuch that u and v have exactly � colors in common is equivalent to coloring P 0 such that u1and v1 receive the same colors, and u2 and v2 receive completely di�erent colors. Next, weconstruct graph P 00 from P 0 as follows. Nodes u1 and v1 are identi�ed into one node uv1,and nodes u2 and v2 are joined by an edge (Figure 5c). It is easy to see that any coloringof P 00 is equivalent to a coloring of P 0 in which u1 and u2 receive the same colors, and u2and v2 receive di�erent colors, which in turn is equivalent to a coloring of P as required bythe lemma. 18



u u’ v’ v

u

u
u’ v’

v

v

1

2

1

2

u’ v’
v

uv1

22u

(a)

(b)
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Proof: The adversary raises the weight to n on three nodes that all lie at distance 3 fromeach other. Such nodes exist: take every three nodes of an induced 9-cycle. The algorithmuses n colors on each of these nodes. Now let �1n, �2n and �3n denote the number of colorsthat each pair of these three nodes have in common. If (�1 + �2 + �3) < 12=7, then thenumber of colors that the algorithm has used is at least 3n� (�1+�2+�3)n > 9n=7. Sincethe o�ine algorithm could have colored all three nodes with the same n colors, triangle isn, this means that the adversary has succeeded.If (�1 + �2 + �3) � 12=7, then one of the �i must be at least 4=7. Let u and v denotethose two nodes that have at least 4n=7 colors in common. Now the adversary raises theweight to n on the two nodes on the path of length 3 that connects u and v. The result isa path of length 3. The nodes u and v cannot be recolored since the recoloring distance is0. By Lemma 4, the algorithm now must use at least 2n + 2(4=7n)2 = 18n=7 colors. It iseasy to see that the o�ine algorithm could have colored the sequence with 2n colors, thusyielding a competitive ratio of at least 9=7 for the algorithm. 23.2 Online non-recoloring algorithmsIn this section, we show a lower bound on the competitive ratio for any non-recoloring onlinealgorithm. For such algorithms, the adversary can specify which colors the algorithm shoulddrop, by which it can force the remaining colors to stay. Thus we are able to obtain strongerlower bounds for non-recoloring algorithms. We create a graph and a sequence of requestssuch that the o�ine algorithm could always color the graph using n colors, but any non-recoloring online algorithm is forced to use 2n colors, yielding the following theorem:Theorem 6 Any non-recoloring online algorithm has competitive ratio at least 2.Proof: The graph we use is given in Figure 7. We assume that initially, every nodehas weight 0. The adversary proceeds in several steps which are described below. In eachstep, the adversary can increase the weight at any node, as well as drop any subset of colorsalready at a node. We use the notation C(v) to denote the set of colors currently used atnode v. It is straightforward to verify that a coloring using n colors is possible at everystep.1. First the adversary creates a situation where there are two nodes with exactly sameset of colors. To do this, the adversary raises the weight to n at nodes a; d; and k. Itis straightforward to argue that either the algorithm has used 2n colors in all at thispoint, or at least two of the three nodes have n=3 colors in common. Without loss ofgenerality, let a and d have at least n=3 colors in common. The adversary then drops2n=3 colors at a and d, keeping n=3 of the common colors at both nodes.2. The adversary raises the weight to n at nodes f and i. Since at most n=3 colors canbe re-used, the algorithm has to use at least 2n=3 new colors at both these nodes. Theadversary now drops 2n=3 colors at f and i in such a way that the remaining colorsat these nodes are disjoint sets, and additionally have no colors in common with thecolors at a and d.At this point, the online algorithm has used n colors.21
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Figure 7: Graph used to prove a lower bound for non-recoloring algorithms3. The adversary raises the weight to 2n=3 at nodes b, g, and j. Since each of thesenodes is adjacent to a node with the color set C(a) and to at least one of f and i; atmost n=3 colors can be reused, and at least n=3 new colors have to be used at eachof the three nodes. The adversary now drops 2n=9 colors at each of these nodes, insuch as a way as to keep n=3 new colors in all.At this point, the online algorithm has used n+ n=3 colors,4. The adversary raises the weight to 5n=9 at e, c, and h. Since all of the n+n=3 colorsused by the algorithm at this point are present at one of fb; i; j; d; g; fg, the algorithmmust use 5n=9 new colors to color c.Let � be the total number of new colors used by the algorithm at e and h. Then theonline algorithm has used n+ 8n=9 + � colors.5. If � � n=9, then the adversary has succeeded. This is because the online algorithm hasused at least 2n colors, while the o�ine algorithm would have needed only n colors.If instead � < n=9, then the algorithm must have reused old colors. The adversary'sstrategy now is, based on the colors used by the algorithm at the nodes e and h, todrop certain colors from some subset of the nodes fe; h; f; i; cg and raise the weight atb in such a way as to force the algorithm to use at least an additional n=9� � colors,completing the proof. The weights at all nodes in the graph at this point are given inFigure 8.Consider the set of colors used by the algorithm at e; it may have non-empty intersec-tions with C(g); C(j); C(i), and C(c). Let jC(e) \C(i)j = �1 and jC(h) \C(f)j = �2Without loss of generality, let �2 � �1. Notice that the only colors that can be reusedat b are those at g or j, which have 2n=9 colors in all. We �rst consider the followingthree cases when j(C(e) [ C(h)) \ (C(g) [ C(j))j � n=9;. that is, at least n=9 of thecolors at g and j are also present at e or h.Case 1: �1 � 2n=9.The adversary chooses the following three sets:� a set X � (C(e) [C(h)) \ (C(g) [ C(j)) of size n=9.22
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Figure 8: Weights on nodes after Step 4.� a set Y � (C(e) \ C(i)) of size 2n=9.� a set Z � (C(h) \ C(f) of size 2n=9.The adversary then� keeps the sets X and Y at e and drops everything else.� keeps the sets X and Z at h and drops everything else.� drops the set Y from i and the set Z from f .� raises the weight by 2n=9 at b.Since b's 1-locality still contains all the colors previously used at b; a; f; i; c, and exactlyn=9 of the colors from C(g)[C(j) are guaranteed to be in b's 1-locality, at most n=9colors can be reused at b. Thus the algorithm has to use at least n=9 new colors.Case 2: n=9 � �1 < 2n=9.In this case jC(e) \C(c)j � n=9� �. The adversary chooses the following sets:� a set X � (C(e) [C(h)) \ (C(g) [ C(j)) of size n=9.� a set Y � (C(e) \ C(i)) of size n=9.� a set Z � (C(h) \ C(f) of size n=9.� a set U � C(e) \ C(c) of size n=9� �.The adversary then� keeps the new colors (at most � of them), the sets X, Y , and U at e and dropseverything else. Thus e now has at most � + n=9 + n=9 + n=9� � � n=3 colors� keeps the new colors (at most � of them), the sets X and Z at h and dropseverything else.� drops the set Y from i and the set Z from f .� drops the set U from c.� raises the weight by 2n=9� � at b.23



As in Case 1, at most n=9 colors can be reused at b. Thus the algorithm has to useat least n=9� � new colors.Case 3: �1 < n=9In this case jC(e) \C(c)j � 2n=9 � �. The adversary chooses the following sets:� a set X � (C(e) [C(h)) \ (C(g) [ C(j)) of size n=9.� a set U � (C(e) [ C(h)) \ C(c) of size 2n=9� �.The adversary then� keeps the new colors (at most � of them), the sets X and U at e and dropseverything else. Thus e now has at most � + n=9 + 2n=9� � � n=3 colors� keeps the new colors (at most � of them), the and the set X at h and dropseverything else.� drops the set U from c.� raises the weight by 2n=9� � at b.As in Case 1, at most n=9 colors can be reused at b. Thus the algorithm has to useat least n=9� � new colors.The case when j(C(e) [ C(h)) \ (C(g) [C(j))j < n=9 is handled in an almost identicalmanner, concluding the proof. 23.3 k-view and color class determined algorithmsIn this section, we consider the restricted class of k-view and color class determined algo-rithms. We show lower bounds on both recoloring and non-recoloring algorithms in thisclass.Theorem 7 For all k � 0, any recoloring k-view and color class determined algorithm hascompetitive ratio at least 3/2.Proof: Fix k � 0 and a k-view and color class determined algorithm. We �rst describethe strategy used by the adversary on the in�nite lattice. The adversary simply raises theweight of all nodes along a horizontal axis to n. Since the algorithm is k-view and colorclass determined, and the k-views of all red node are the same, every red node must becolored by the same set of colors, say R, and similarly every blue node is colored by a setB and every green node by a set G. Furthermore, since every red node is adjacent to ablue and green node, and similarly, every blue node is adjacent to a green and a red node,the sets B, G, and R must be completely disjoint. Thus the algorithm has used 3n colors,where the o�-line algorithm needed only 2n colors.Now consider a �nite induced subgraph of the in�nite triangular lattice containing allnodes within distance k+2 of some arbitrary �xed origin. It is not di�cult to see that thealgorithm will color the three nodes in the 1-locality of the origin in the same way as in the24



in�nite case, thus forcing the algorithm to use 3n colors. 2For non-recoloring k-view and color class determined algorithms (for any k > 0), we areable to show much stronger lower bounds.Theorem 8 For any constant � > 0; k � 0, any non-recoloring k-view and color classdetermined algorithm has competitive ratio at least 3� �.Proof: For ease of exposition, we �rst describe the argument on an in�nite triangularlattice. Consider a base 3-coloring of the in�nite triangular lattice with all nodes coloredred, blue, or green. Further, we can divide all the red nodes into 3 di�erent classes suchthat the three red neighbors of any blue or green node belong to 3 di�erent classes. Blueand green nodes can also be divided into 3 classes in a similar way.Fix k � 0; � > 0 and a non-recoloring k-view and color class determined algorithm. Theadversary now raises weights and drops colors in such a way that the algorithm is forcedto use (3� �)n colors while it is easy to verify that the o�ine algorithm could perform thecoloring using n colors.In the �rst step, the adversary raises the weight to n at all the red nodes. Since thealgorithm is k-view and color class determined, and since for any k � 0, the k-view ofany red node is identical, the algorithm uses the same colors at all the red nodes. In thenext step the adversary drops 2n=3 colors at each red node in such a way that the n=3colors at two red nodes of two di�erent classes are completely distinct. This means thatany blue node cannot reuse any of the n colors used by the algorithm so far. In the thirdstep, the adversary raises the weight to n� n=3 = 2n=3 at each blue node. As before, thealgorithm must use the same new set of 2n=3 colors at all the blue nodes. In the next step,the adversary drops 4n=9 colors at each blue node in such a way that blue nodes belongingto di�erent classes have completely di�erent colors. In the �fth step, the adversary raisesthe weigh to 4n=9 at every green node. Once again, the algorithm must use the the samenew set of 4n=9 colors at all the green nodes. In the next step the adversary drops 8n=27colors at each green node in such a way that green nodes belonging to di�erent classes havecompletely di�erent colors.At this point the algorithm has used at least n + 2n=3 + 4n=9 colors. Every red nodehas a weight of n=3, every blue node a weight of 2n=9 and every green node a weight of4n=27, adding up to a total of weight 19n=27 on any triangle. The adversary now repeats anidentical strategy, raising the weight by n�19n=27 = 8n=27 at all red nodes and continuingon. Thus in the next six steps of raising weights and dropping colors at red, blue and greennodes, an additional 8n=27(1 + 2=3 + 4=9) colors are used. After 2j steps, the algorithmhas been forced to use n�ji=0(2=3)i colors.To force the algorithm to use more than (3 � �)n colors, the adversary uses a sequenceof m = 2dlog 32 2� e steps. This proves that in the in�nite lattice, any k-view and color classdetermined algorithm has competitive ratio at least 3� �.Now consider a �nite induced subgraph of the in�nite triangular lattice containing allnodes within distance mk + 1 of some arbitrary �xed origin. A straightforward inductiveargument implies that after i steps, all nodes within distance (m � i)k + 1 of the originbehave exactly as in the in�nite case. Thus after m steps, the algorithm has used the same25



colors in the 1-locality of the origin as in the in�nite case, proving the result. 2Theorems 7 and 8 show that FPA-Local and FA-Local are optimal for the class of viewand color class determined algorithms that are allowed to recolor and disallowed from doingso respectively.4 Conclusions and open questionsIn this paper, we developed a framework for studying distributed online frequency assign-ment in cellular networks. We exhibited the �rst distributed online algorithms for thisproblem with proven bounds on their competitive ratios. In particular, we showed 0, 1,2, and 4-local algorithms with competitive ratios of 3; 3=2; 17=12, and 4=3 respectively. Interms of lower bounds, we showed that any online algorithm with recoloring distance k hascompetitive ratio at least 14(k+1) . For non-recoloring and k-view and color class determinedalgorithms, we were able to prove better lower bounds. Our results show that FPA-Localand FA-Local are optimal for the class of k-view and color class determined algorithms thatare allowed to recolor and forbidden to recolor respectively. The algorithms we describedare distributed algorithms, and all except FA-Local, are synchronous. FA-Local is a 0-localalgorithm and requires no communication between nodes at all. All the other algorithmswe described require each node to communicate at most a constant number of messages,and O(logmaxv;twt(v)) bits, with a constant number of other nodes in the network betweensteps.While we showed tight bounds on the competitive ratio of any k-view and color classdetermined algorithm (recoloring and non-recoloring), we were unable to prove such tightresults in the absence of restrictions on the algorithm. Even in the static case, the bestknown approximation algorithms for the problem have performance ratio 4=3. While wederived a 4-local algorithm with the same competitive ratio, it would be interesting to knowif the same ratio can be achieved by a 0-local or a 1-local algorithm.Another natural requirement on online algorithms might be to restrict the amount ofrecoloring at any vertex to be proportional to the change in demand in the vertex's k-localityin every step. Among the algorithms we describe, FPA-Local meets this requirement, butthe NSA-Local and NSB-Local algorithms do not. Also, in practice, the available frequencyspectrum is a contiguous linear sub-interval of the radio spectrum, and frequency reuse iscontrolled by a sequence of non-negative integers, c0 � c1 : : : , with c0 � 1, called distancereuse constraints, where any two frequencies assigned to nodes that are distance i apart inthe graph are required to di�er by at least ci. This paper assumes c0 = c1 = 1 and ci = 0for i > 1; tight bounds for the more general case would be interesting. Finally, some of ourlower bounds are for deterministic algorithms. Investigating the use of randomization inthe design of e�cient online algorithms would be an interesting avenue of further research.AcknowledgementsWe are grateful to the anonymous referees for several comments and suggestions that im-proved the presentation of this paper. 26
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