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1 IntroductionCellular data and communication networks can be modeled as graphs with each ver-tex representing a base station (sometimes called a cell) in the network. Cells cancommunicate with their neighbors in the graph via directional radio transceivers. Atany given time, a certain number of active connections (or calls in cellular networkterminology) are serviced by their nearest base station. This service consists mainlyof assigning a frequency to each client call in a manner that minimizes or avoids radiointerference between two distinct calls in the network. However, cellular networks usea �xed spectrum of radio frequencies and the e�cient shared utilization of the lim-ited available bandwidth is critical to the viability and e�ciency of the network. Thestatic frequency assignment problem, therefore, consists of designing an interference-free frequency allocation protocol for a network where the number of calls per cell isknown a priori. This forms the motivation for the problems studied in this paper.In particular, cellular networks are usually modeled as �nite portions of the in-�nite triangular grid embedded in the plane. Vertices representing cells are placedat the apexes of similar triangles, and each vertex has at most six other neighborssurrounding it in the grid. The reason for adopting this particular geometry stemsfrom the fact that cells are uniformly distributed in the geographic area of the net-work, and an individual cell generally has six directional transceivers. Hence, theVoronoi region around a cell (or equivalently, that cell's calling area) can be idealizedas a regular hexagon. The triangular tiling representing the network is simply theplanar dual of the resulting Voronoi diagram. We shall refer to the resulting graphsas hexagon graphs 1.The frequency assignment problem incorporating interference constraints can beabstracted as follows. Let G = (V;E) denote an hexagon graph. Each vertex v 2 Vhas an associated integer weight, w(v) � 0. A w-coloring (or multicoloring) of Gis an assignment of sets of colors to the vertices such that each vertex v is assignedw(v) distinct colors whereby for every edge (u; v) 2 E, the set of colors assigned tothe endpoints u and v are disjoint. In particular, we are interested in a minimummulticoloring or a w-coloring of G that uses the least number of colors.1We note here that this is the most commonly used model for frequency assignment problems inthe cellular network literature. However, in practice, cellular systems tend to be more complicatedand there have been recent studies that attempt to model more general interference patterns and costfunctions; see for example Bornd�orfer et. al. [1]. Nevertheless, the hexagon graph model continuesto be of signi�cance from the historical standpoint and as an abstraction that is su�ciently close toreality to provide useful insights. 2



In the context of frequency assignment, a multicoloring as de�ned above, providesa useful abstraction of the essential interference constraints: each color represents adistinct frequency and it is assumed that two calls may use the same frequency if andonly if they originate in distinct cells that are not neighbors. It should be noted thatin practice, the available cellular frequency spectrum is a contiguous linear subintervalof the radio spectrum, and frequency reuse is controlled by a sequence of non-negativeintegers, c0 � c1 : : :, with c0 � 1, called distance reuse constraints. Two distinct callsin cells that are a distance i apart in the underlying graph must be assigned frequenciesthat di�er by ci in the frequency spectrum. Hale [3] discusses many generalizationsand versions of the frequency assignment problem. We formulate our problem underthe simplest constraints, viz. when c0 = c1 = 1 and ci = 0, i � 2. Under thisformulation, the problem reduces to being able to compute a minimum multicoloringto a given hexagon graph.In the sequel, we assume that G = (V;E; w) denotes a hexagon graph, i.e. it isa (vertex) weighted graph that is a �nite, induced subgraph of the in�nite triangulargrid. Thus, the graph is planar, and every vertex v 2 V has degree at most sixand an associated integer weight, w(v) � 0. The weighted chromatic number of G,denoted �(G), is the minimum number of colors required in a w-coloring of G. Evenfor graphs with a regular structure such as those considered in the paper, the problemof determining �(G) is non-trivial. In fact, it has been established only recently thatthe corresponding decision problem is NP-complete [7], and hence it is unlikely thata polynomial time algorithm for computing �(G) can be devised. Naturally, it is ofinterest to study approximation algorithms for the problem.It is easy to see that �(G) must be greater than the total number of colors requiredat any set of mutually adjacent vertices. Thus the maximum over the sum of weightsat vertices in any maximal clique in the graph is a trivial lower bound on �(G). Notethat for hexagon graphs, edges and triangles are maximal cliques. In the direction ofupper bounds, while there is a vast literature on algorithms for frequency assignmenton graphs (especially hexagon graphs) that claim to use few colors, generally thereare no proven bounds on the performance of the proposed algorithms, in terms of thenumber of colors used in relation to the weighted chromatic number [2, 5, 6, 8, 9]. Wenote here two exceptions. A well-known algorithm, sometimes referred to as FixedAllocation, uses the fact that the underlying graph can be 3-colored. The algorithmuses three �xed sets of colors, one for each base color. A vertex that has base color 1uses colors from the �rst set, and a vertex that base color 2 or 3 uses colors from thesecond or third sets respectively. It is easy to show that this algorithm could use asmany as 3 times the number of required colors. Janssen et. al. [4] propose a di�erent3



algorithm called Fixed Preference Allocation that is guaranteed to use no more than3=2 times the minimum number of colors required.In the next section, we formally de�ne some basic terminology and problems. InSection 3, we present optimal algorithms for multicoloring cycles and outerplanargraphs. In Section 4, we address the question of multicoloring an arbitrary hexagongraph. Our main result is an e�cient approximation algorithm with a performanceguarantee of within 4=3 of the optimal. Finally, in Section 5, we show how to imple-ment the above algorithm in a distributed manner 2. We conclude with a discussionof future directions in Section 6.2 PreliminariesLet G = (V;E; w) be a hexagon graph with a non-negative integer weight vector wde�ned on the vertices of the graph, where w(v) represents the number of calls tobe served at vertex v. We assume hereafter that G has a �xed planar embeddingwith vertices and edges contained in the in�nite triangular lattice (tessellation) of theplane. Thus any vertex v can be connected to at most 6 neighbors, and for a �xededge incident on v, any other edge incident on v is at an angle of �=3; 2�=3; �; 4�=3 or5�=3 from that edge. Since the triangular lattice is 3-colorable in the ordinary sense(i.e. when each vertex has unit weight), the underlying graph corresponding to unitweights at vertices of G is also 3-colorable.A w-coloring or multicoloring of the graph G = (V;E; w) consists of a set of colorsC (the color palette) and a function f that assigns to each v 2 V a subset f(v) ofthe palette C such that� 8v; jf(v)j = w(v): each vertex gets w(v) distinct colors, and� 8(u; v) 2 E; f(u)\f(v) = �: two neighboring vertices get disjoint sets of colors.The span of a multicoloring is the cardinality of the set C. The weighted chro-matic number of G, denoted �(G), is the smallest number m such that there existsa multicoloring of G of span m. Thus given a hexagon graph G, our objective is to�nd a multicoloring for G whose span is as close to �(G) as possible.2We note that in addition to showing the NP-hardness of this problem, McDiarmid and Reed [7]have also described a di�erent 4=3-approximate algorithm for the problem. Our result was indepen-dently derived, and unlike the McDiarmid-Reed algorithm, has the advantage of being implementablein a distributed setting. 4



The only maximal cliques in G being edges and triangles, we de�ne the weight ofan edge (triangle) in G to be the sum of the weights of its endpoints (apexes). Notethat the weight of any maximal clique of G is a lower bound on �(G). Let D[2]G andD[3]G denote the respective maxima over the weights of edges and triangles in G, andde�ne DG = maxfD[2]G ; D[3]G g. Then, if there exists a multicoloring of G with span �,it follows that: � � �(G) � DG:We will assume without loss of generality that any palette of available colors canbe suitably ordered or partitioned; in particular, we will often assume that verticesare assigned colors from the circularly ordered interval [1;M ] = f1; 2; : : : ;Mg, whereM � 1 is a positive integer that depends on the particular graph under consideration.For instance, when a vertex is assigned the subinterval of colors [i; j] from the palette,it means that the vertex is colored with the set fi; i + 1; : : : ; jg in a cyclic mannerwhere color 1 is assumed to follow the color M .3 Optimal Multicoloring of CyclesConsider a hexagon graph G = (V;E; w) with n vertices in the form of a simplecycle, labeled u1; u2; : : : ; un in clockwise order. For simplicity, let wi; 1 � i � n,denote the weight, w(ui), of vertex ui. We show that any such hexagon graph can beoptimally colored with exactly �(G) colors. There are two cases to consider dependingon whether n, the number of vertices on the cycle, is even or odd.Suppose that n = 2m, i.e. the graph consists of an even length cycle. Then allmaximal cliques of G being edges, DG = D[2]G is the maximum weight of an edge in thecycle. We observe that a very simple greedy strategy su�ces to multicolor G with thecolor palette [1; DG]. The idea is to assign for 1 � i � m, the colors [1; w2i�1] to theodd-numbered vertex u2i�1 and the colors [DG � w2i + 1; DG] to the even-numberedvertex u2i. Noting that for 1 � i � m,DG � w2i�1 + w2i; andDG � w2i + w2i+1with subscripts interpreted cyclically, it follows that the given multicoloring is proper.By construction, �(G) = DG and the simple parity-based algorithm thus provides anoptimal multicoloring of G.We note that a very similar idea was already used in the cellular network literature[8, 4], but it was only applied to networks consisting of simple paths (it is easy to5



see that this strategy works in general for any bipartite graph). Unfortunately, theparity argument fails to multicolor odd-length cycles, precisely because the underlyingunweighted odd-length cycle needs at least three colors in any ordinary coloring. Forinstance, if G is a 9-cycle with weight 2 on each vertex, it is easy to see that G cannotbe multicolored with DG = 4 colors, but needs 5 colors instead.De�nition 3.1 Let G = (V;E; w) be an odd-length simple cycle, with vertices labeledu1, u2, : : :, u2m+1, m � 1, in clockwise order. We de�neD0G = maxfD[2]G ; dP2m+1i=1 wim egTheorem 3.2 Let G = (V;E; w) be a cycle of odd length n = 2m + 1 � 3. Then�(G) = D0G and G can be optimally multicolored with exactly D0G colors. Further, themulticoloring can be obtained in time O(n).Proof. It is clear that D[2]G is a lower bound on �(G); we establish that d�2m+1i=1 wim e,and hence D0G, is a lower bound on �(G). Since the size of an independent set in Gis at most m, any single color can be used only at m vertices or fewer in the cycle.The total number of colors needed at all vertices being �2m+1i=1 wi, we conclude that�(G) � d�2m+1i=1 wim e. Thus, D0G is indeed a lower bound on �(G).Next we show that G can be colored with D0G colors using a linear time algorithm;this completes the proof of the theorem. We �rst observe that there must be a smallestindex k, 1 � k � m, which satis�es the inequality�2k+1i=1 wi � kD0G:Note that this property holds true for the index m from De�nition 3.1, and hence kis well-de�ned and can be found easily in linear time.The vertices of the cycle are now colored as follows:1. Vertices u1 through u2k are assigned contiguous colors in a cyclic manner fromthe palette [1; D0G]. Speci�cally, for 1 � j � 2k, vertex uj is assigned the colors[(1 + j�1Xi=1wi); jXi=1wi];cyclically. By construction, this ensures that the path u1; u2; : : : ; u2k is properlymulticolored since D0G � D[2]G . 6



2. Vertices u2k+1 through u2m+1 are colored based on their parity (as in the even-cycle algorithm). In particular, for 2k+1 � i � 2m+1, the vertex ui is assignedthe colors [1; wi] if i is even, or the colors [D0G �wi + 1; D0G] if i is odd. Again,this ensures that the path u2k+1; u2k+2; : : : ; u2m+1 is properly multicolored.Since vertex u1 has the colors [1; w1] and vertex u2m+1 the colors [D0G�w2m+1+1; D0G],the edge (u1; u2m+1) is also properly multicolored. All that remains is to verify thatthe edge (u2k; u2k+1) is properly multicolored: this is a consequence of the minimalityof k, for we know that �2k�1i=1 wi > (k � 1)D0G. Hence, no color assigned to u2k can beamong the colors [D0G � w2k+1 + 1; D0G] assigned to vertex u2k+1.We illustrate the labeling scheme using a 9-cycle with weight 2 on each vertex asan example. As D0G = maxf4; 5g = 5, we use the palette [1 : : : 5]. Since �5i=1wi =10 � 2D0G but �3i=1wi = 6 > D0G, we color the �rst four vertices in a cyclic manner,always taking the next four available colors in the palette. For the last �ve vertices, weassign colors as in a bipartite graph, from the two ends of the interval [1; 5]. Finally,we note that our algorithm can actually multicolor any cycle, and not just cycles thatare hexagon graphs (i.e. embedded in the triangular lattice).Theorem 3.2 can be used to derive an optimal multicoloring of any outerplanargraph. A graph is said to be outerplanar if it can be embedded in the plane so thatevery vertex of G lies on the boundary of the exterior face. It is straightforward tosee that the weighted chromatic number of any graph is the maximum taken over theweighted chromatic numbers of its biconnected components. Thus it su�ces to con-sider a biconnected outerplanar graph: any such graph is a cycle with non-intersectingchords. A biconnected outerplanar graph G without chords is a simple cycle and canbe multicolored optimally using the construction in the proof of Theorem 3.2. Oth-erwise, let (u; v) be a chord and let G1 and G2 be the two parts of G on the sides ofthis chord, each one including the edge (u; v). Recursively color G1 and G2. Relabelthe color assignment of G2 so that the colors assigned to u and v in G2 agree withthose assigned in G1. The following corollary is immediate:Corollary 3.3 Let G = (V;E; w) be an arbitrary outerplanar graph. Then G can becolored optimally using �(G) colors.A careful implementation of the algorithm sketched above, results in a linear timemulticoloring. We remark that Corollary 3.3 applies to any outerplanar graph, andnot just outerplanar hexagon graphs.
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4 Approximate multicoloring of hexagon graphsIn this section, we consider the problem of computing an approximate multicoloringof an arbitrary hexagon graph. Since a hexagon graph may contain an odd cycle as aninduced subgraph, it follows as a consequence of Theorem 3.2 that D[3]G , the maximumweight taken over all triangles, is not always a tight bound. For example, considera 9-cycle where every vertex is given the weight k, for some integer k � 2. WhileD[3]G = D[2]G = 2k for the graph, we know from Theorem 3.2 that �(G) = d9k=4e. Wechoose a 9-cycle because it is the smallest odd cycle that can be an induced subgraphof the triangular lattice. This shows that any algorithm to color hexagon graphs mustuse at least d9D[3]G =8e colors on some graphs G with triangle bound D[3]G . In fact, wedemonstrate an e�cient approximation algorithm that can multicolor any hexagongraph using at most 4dD[3]G =3e colors (and hence, at most 4d�(G)=3e colors).Without loss of generality, we assume thatG is connected, since disconnected com-ponents of G can be independently colored without any color con
icts. For simplicity,we letM = dD[3]G =3e and we choose the following color palette in our algorithm. Startwith a base coloring of G so that every vertex gets base color red, blue or green. Witheach base color, we associate a class of M hues identi�ed with the interval [1;M ].In addition, we have at our disposal a class of auxiliary purple hues, again identi�edwith the interval [1;M ]. The entire collection of 4M distinct hues forms our colorpalette.The idea is to let each vertex v use as many hues from its base color class aspossible before trying to use hues either from the remaining two base classes or fromthe auxiliary purple class. We describe the algorithm as proceeding in �ve phases;we maintain the invariant that at the end of each phase, the graph is partially butcorrectly colored. To facilitate reasoning about the correctness of the algorithm, welet Gi = (Vi; Ei; wi) denote the remaining graph after phase i (1 � i � 4) has beencompleted. We also assign an arti�cial priority to vertices: red vertices dominate overblue ones which in turn dominate over green ones. This priority scheme is used inphases 2 and 3 to select, in each case, a suitable subset of vertices for partial coloring.We illustrate our algorithm with a running example shown in Figure 1, a graph Gfor which 3M = D[3]G can easily be veri�ed to be 18. Hence, the color palette consistsof 24 colors equally divided among the red, blue, green and purple hues.A vertex v 2 G is de�ned to be light if w(v) � M and to be heavy otherwise. Thisdistinction is critical to each of the the �ve phases below:Phase 1: Every vertex v is assigned the �rst w(v) hues from its base color class, inparticular, the hues [1;minfw(v); Mg]. All the light vertices thus get completely8
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Figure 1: A hexagon graph with initial weightscolored and are deleted from the graph. The weight of every remaining heavyvertex v is decreased by M , resulting in the graph G1.It is easy to see that G1 has no maximal cliques of size greater than 2, becauseevery triangle in G must contain at least one light vertex that is eliminated in the�rst phase. Let H denote the subgraph of G1 induced by the degree 3 vertices in G1.Note that if a vertex v 2 G1 has three neighbors (say, in clockwise order in the �xedembedding) in G1, then the incident edges to the neighbors form successive angles of2�=3 radians in order; furthermore the geometry implies that all three neighbors havethe same base color. It follows that each connected component in H contains verticesthat belong to at most two base color classes. Thus, every connected component of Hconsists of either an isolated vertex, or contains only red and blue, or red and green,or blue and green vertices.Call a vertex v 2 H a priority vertex if and only if it has the highest priorityamong its neighbors (if any) in H (recall that red dominates blue which dominatesgreen). Clearly, the priority vertices form an independent set (in fact, a dominatingset) in H.Phase 2: Without loss of generality, let v be a red priority vertex in H with threeblue neighbors in H. Let g(v) be the maximum among the weights of thethree green neighbors of v; these vertices must have been light vertices in G.Then v can borrow from among the last M � g(v) green hues; these su�ce tocolor the remaining weight on v since all three blue neighbors of v are heavyvertices and hence, w1(v) � M � g(v). Accordingly, v is assigned the green9
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Figure 2: Color assignment during (a) Phase 1 and (b) Phase 2hues, [M � g(v)+ 1; M ], and eliminated from further consideration. Note thatthe partial color assignment at the end of phase 2 has no color con
icts amongneighbors, and the remaining graph is designated G2.Figure 2 details the partial color assignment at the end of phase 1 and phase 2respectively. Note that the six red hues are denoted as r1-6 and so forth in the�gure. Since the subset of priority vertices eliminated in phase 2 is a dominating setof H (the degree 3 vertices of G1), every remaining vertex in G2 now has degree atmost 2. Equivalently, the connected components of G2 consist of isolated vertices,cycles and paths in the triangular grid. Note also that any edge of G2 has a residualweight of at most M , a consequence of the de�nition of heavy vertices. If the graphG2 contains only even cycles or paths, then we can color all the vertices using the Mpurple colors. However G2 may contain isolated vertices and odd cycles. In the nextphase, we essentially eliminate all potential cycles in G2.Call a vertex v 2 G2 a corner vertex if and only if it has two neighbors x; y of thesame base color class in G2 such that the angle subtended at v by the incident edges(v; x) and (v; y) is exactly 2�=3 radians. Further, a corner vertex v is a priority vertexin G2 if and only if v has the highest priority among all its neighbors, if any, that arealso corner vertices. It is not di�cult to see that the subset of priority vertices in G2forms an independent set in G2. Also, every corner vertex is either itself a priorityvertex or is adjacent to a priority vertex; hence, the subset of priority vertices isa dominating set of the subgraph induced by the corner vertices in G2. Finally, byde�nition every cycle inG2 contains at least one corner vertex. Thus, coloring priorityvertices and eliminating them also breaks all cycles. For example, in Figure 2-(b),10
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v can still borrow � colors from either the blue or the green palettes withoutcon
icting with any neighboring assignment.From the description of phases 1 and 3, observe that the light neighbors of v maybe using colors from either end of their base color palettes. Let b3 � b2 � b1 �Mand g3 � g2 � g1 � M be the weights of v's blue and green neighbors in Grespectively. Clearly, regardless of the manner in which the blue neighbors areassigned blue hues, v has at least M � (b1 + b2) hues available for its use fromthe blue palette. Likewise, there are at least M � (g1+ g2) green hues availableto g. Since the green vertex with weight g1 forms a triangle in G with v andeither one of the blue vertices with weight b1 or with weight b2. In any event,� � M � (b2+ g1). A similar argument shows that � �M � (g2+ b1). It followsthat � � maxfM � (b1 + b2); M � (g1 + g2)g;or in other words, that v can obtain the remaining � colors by borrowing eitheronly blue hues or only green hues without any color con
icts with assignmentsprior to the phase.Figure 4-(b) demonstrates the colors assigned in Phase 4 to the remaining isolatedvertices in our running example. At the end of phase 4, the remaining graph consistsonly of straight-line paths, i.e. paths in which any two consecutive edges subtend anangle of � degrees at the common vertex. Further, as noted above, every remainingedge has a residual weight of at most M .Phase 5: Since every remaining connected component is a straight-line path with aweighted chromatic number of at most M , it su�ces to use the greedy parity-based strategy described in Section 3 to �nish coloring the graph using the Mpurple hues. This cannot cause any con
ict with previously colored verticessince the purple hues were used only in Phase 4 to color isolated vertices in P ;the latter are disconnected from any remaining vertex in the current phase.Figure 5 shows the entire color assignment constructed by our algorithm for therunning example. The following result is immediate:Theorem 4.1 An approximate multicoloring that uses no more than 4dD[3]G =3e colorsfor any hexagon graph G = (V;E; w) can be e�ciently computed in linear time.
13
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Figure 5: Complete color assignment in the example graph5 A distributed implementationThe algorithm given in the previous section has the additional property that it can beimplemented in a completely distributed manner. We consider the hexagon graph asmodeling a network of processors (base stations), with each processor responsible fora single vertex in the hexagon graph. The network has the same spatial embedding asthe graph, and processors at neighboring base stations in the network can exchangelocal information e�ciently. For ease of description, we will sometimes identify thevertices of the hexagon graph with their processors.In the �xed planar embedding of the in�nite triangular grid, we can select anarbitrary vertex to be the origin, and three directional axes that intersect the origin:one designated the horizontal axis, and the remaining two at angles �=3 and 2�=3from the horizontal axis. It is easy to see that any path in the graph, where the anglessubtended by all intermediate edges in the path are exactly �, is oriented along oneof the three directional axes. For every vertex, we wish to assign a parity with respectto each directional axis. This can easily be done as follows. The parity of a vertex valong the horizontal axis is de�ned to be the parity of the length of the path orientedalong the horizontal axis from v to a vertex on the �=3 axis that intersects the origin.14



Similarly, the parity of v along the �=3 axis (2�=3 axis) is the parity of the length ofthe path from v oriented along the �=3 axis (2�=3 axis) to a vertex on the horizontalaxis intersecting the origin. Thus given an arbitrary �nite hexagon graph, any pathin the graph that is oriented along one of the directional axes has a 2-coloring thatcan be pre-computed according to the parities of the vertices along the path.Our algorithm assumes that each processor initially has access to the followinginformation:� A base coloring for the graph is known: each processor knows whether its vertexis red, green or blue, and also the color of each of its neighbors.� A 2-coloring along each path oriented along a directional axis is known. Thismeans each processor knows three bits corresponding to whether it has even orodd parity along each of the 3 directional axes.� The value of D[3]G is known; this also implies that the division of base colorclasses among processors is known. Additionally, this implies that every vertexhas access to a known set of M purple hues if needed.The distributed algorithm consists of each processor determining whether it shouldparticipate in one or more of the �ve phases of the approximation algorithm describedin Section 4. The algorithm starts with three rounds of information gathering, afterwhich no more communication other than informing neighbors of the current colorassignment is required; essentially, processors can continue independently to computethe hues to assign to themselves. We describe the communication rounds from theperspective of a �xed processor p.Round 1: p sends its weight to each of its six neighbors.Round 2: Having received the weights of all its neighbors, p decides if it would be adegree 3 vertex after Phase 1, and sends this information (a single bit) to eachof its neighbors. This would be the case if p is itself a heavy vertex and hasthree neighbors that are heavy vertices.Round 3: The information received in the previous two rounds su�ces for p to decideif it will be a priority vertex in Phase 2 as well as if any of its neighbors willbe priority vertices in Phase 2. For instance, p will be a priority vertex if itis a blue vertex with degree 3 after phase 1 either with no neighbors that willalso be degree 3 vertices after phase 1, or with green neighbors of degree 3 afterphase 1 (see Section 4). 15



Next, p determines if it will be a corner vertex in phase 4 and sends this in-formation (a single bit) to each of its neighbors. p is a corner vertex if all thefollowing conditions are met:� p is a heavy vertex.� p will not be a priority vertex in Phase 2.� p has exactly two neighbors of the same color class that are heavy verticesbut not priority vertices in Phase 2.Round 4: The information derived from Round 3 enables p to determine if it will bea priority vertex in Phase 3, as described in Section 4. If p would be a priorityvertex in Phase 3, and would fall into case (ii) of Phase 3, then it has a lightneighbor, say q that would need to be recolored in that phase. In this case, psends a message to q with the maximum weight of its remaining two neighborsof the same color as q, so that p can color itself appropriately.Round 5: A light vertex that got a message to recolor itself in Round 4 informsall its neighbors of how many colors it will use from the end of its base colorspectrum. This enables an isolated vertex in its neighborhood to color itselfappropriately in Phase 4.From the weights of its neighboring processors and its limited global knowledge,and the information collected in the communication rounds described above, a pro-cessor can easily compute the colors it will use in each of the �ve phases. Withoutloss of generality, consider a processor that corresponds to a blue vertex v 2 G. Theprocessor emulates the �ve phases of the sequential algorithm as follows:Phase 1: If w(v) <=M , the processor assigns (to itself) the appropriate blue hues.Otherwise, it assigns to itself all the blue hues, reduces its weight by M andcontinues.Phase 2: If the processor is a priority vertex in Phase 2, it simulates phase 2 andstops, or else continues to phase 3. Recall that the colors that a priority vertexwould borrow from one of its neighboring color class are the last colors fromthat class; thus no consultation is required with neighbors to compute the colorsat a priority vertex.Phase 3: If the processor is a priority vertex in Phase 3, it can determine the colorsit needs to borrow from the appropriate neighboring color class.16



If, however, the processor is a light vertex that would have undergone recoloringin phase 3 of the sequential algorithm, then it can emulate this behavior in thedistributed algorithm as well. To do so, it uses the information it received inits neighbor in Round 4, and recolors itself as described in Section 4 so that nocon
ict appears among the blue colors.Phase 4: If a processor is an isolated vertex in this phase, it assigns itself any purplehues that it needs. Additional colors that it may need are borrowed from oneof the neighboring color classes. Since any of its light neighbors that may haverecolored itself in the last phase sent information in Round 5 about the numberof colors it would use from the end of its base color spectrum, the processor candetermine all colors used by its light neighbors and can borrow colors withoutany possibility of con
ict.Phase 5: Any vertex with unassigned colors at this stage lies along some straight-linepath in the grid. In particular, it can detect its one or two incompletely assignedneighbors that lie along exactly one of the three directional axes. The processorcan easily compute the identity of the particular axis from the informationgathered after Round 3. Depending on whether it is an even or odd vertexalong this axis, it assigns itself the necessary hues from the beginning or end ofthe set of purple hues, as in the coloring for bipartite graphs.Theorem 5.1 An approximate multicoloring that uses no more than 4dD[3]G =3e colorsfor any hexagon graph G = (V;E; w), can be e�ciently computed in constant time in acompletely distributed manner, after an initial constant time communication protocolwhere each processor exchanges �ve messages with each of its neighbors.6 DiscussionIn this paper, we have cast the problem of frequency assignment in cellular net-works as a multicoloring problem for hexagon graphs. For some particular inducedsubgraphs of hexagon graphs, i.e. cycles and outerplanar graphs, we show e�cientalgorithms for multicoloring them using an optimal number of colors. In Section 4,we describe a multicoloring algorithm that uses at most 4dD[3]G =3e colors where D[3]G ,the maximum weight on any 3-clique in G, is a trivial lower bound on the minimumnumber of colors required. We showed also a hexagon graph that requires d9D[3]G =8ecolors. Determining an exact bound on �(G), the weighted chromatic number of anarbitrary hexagon graph is NP-hard; our results do establish that for all hexagon17



graphs G, �(G) � 4dD[3]G =3e. Whether or not there is an approximation algorithmfor hexagon graphs which always uses at most d9D[3]G =8e colors remains an intriguingopen problem. A useful feature of our algorithm is that it can be implemented in adistributed manner. In contrast, the algorithm of McDiarmid and Reed [7], whichhas the same performance ratio as ours, seems inherently centralized and cannot bemade distributed in any obvious way.An interesting avenue for future research is the generalized version of the problem,where the frequencies assigned at a particular vertex or at adjacent vertices are re-quired not merely to be di�erent, but also to be far enough apart [3]. Another recentlyproposed model [1] considers arbitrary interference graphs with pre-de�ned costs onthe edges; these costs re
ect the interference penalties when the same or adjacentfrequencies are assigned to neighboring nodes. The objective here is to minimize thetotal cost, or equivalently, the net interference of an assignment. Finally, the dynamicversion of the problem involves changing weights at vertices. It would be interestingto see if the distributed algorithm we describe in Section 5 can be adapted to workin this setting and what bounds can be proved on its performance.AcknowledgmentsWe thank Jeannette Janssen for introducing us to the problem of channel assignment,and for comments that greatly improved the presentation of Section 3. We are gratefulto the anonymous referees for their useful comments, and for suggesting the currentform of Corollary 3.3.References[1] R. Bornd�orfer, A. Eisenbl�atter, M. Gr�otschel, and A. Martin. Frequency assign-ment in cellular phone networks. Technical report, Knorad-Zuse Zentrum f�urInformationstechnik Berlin, 1997.[2] D. Dimitrijevi�c and J. Vu�ceti�c. Design and performance analysis of algorithms forchannel allocation in cellular networks. IEEE Transactions on Vehicular Technol-ogy, 42(4):526{534, 1993.[3] W. K. Hale. Frequency assignment: Theory and applications. Proceedings of theIEEE, 68(12):1497{1514, 1980. 18
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