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Abstract. Web Ontology Language (OWL) reasoners are used to in-
fer new logical relations from ontologies. While inferring new facts, these
reasoners can be further optimized, e.g., by properly ordering disjuncts in
disjunction expressions of ontologies for satisfiability testing of concepts.
Different expansion-ordering heuristics have been developed for this pur-
pose. The built-in heuristics in these reasoners determine the order for
branches in search trees while each heuristic choice causes different ef-
fects for various ontologies depending on the ontologies’ syntactic struc-
ture and probably other features as well. A learning-based approach that
takes into account the features aims to select an appropriate expansion-
ordering heuristic for each ontology. The proper choice is expected to
accelerate the reasoning process for the reasoners. In this paper, the ef-
fect of our methodology is investigated on a well-known reasoner that is
JFact. Our experiments show the average speedup by a factor of one to
two orders of magnitude for satisfiability testing after applying learning
methodology for selecting the right expansion-ordering heuristics.

1 Introduction

Satisfiability testing is an integral part of many reasoning tasks in Descrip-
tion Logic (DL) reasoners. Satisfiability tests generally contain non-deterministic
choices. Different orders of choosing disjuncts in non-deterministic expansions
have resulted in different speed values for reasoning tasks; hence, learning the
right order for disjuncts in each expansion level is an open issue.
A well-known decision-based method that is applied by SAT solvers involves the
application of different branching heuristics in order to determine which concept
(or branch) must be chosen when dealing with disjunctions [16]. Unlike SAT
solvers, DL reasoners are designed to handle more than propositional satisfiabil-
ity. Since search strategies and branching heuristics are shown to be very effective
for SAT and Satisfiability Modulo Theory (SMT) based problems [4], encoding
DL expressions to SMT might yield a potential solution. However, the encoded
results might become very large and thus intractable for real-world ontologies
[8].
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While in propositional logic every concept is considered an atomic concept, in
DL expressions, concepts are rather rich and may have complicated structures.
In this case, applying branching heuristics such as MOMS similar to SAT solver
(for DL reasoners, in every tree level) are not equivalently effective. The reason,
given in Chapter 9 of the Description Logic Handbook, is that these methods
do not take into account the dependencies from other branches and they could
even reduce the reasoner performance [2]. However, to enhance the effects of
backjumping that is an optimized form of backtracking [3], one could select the
branches that contain concepts with old dependencies, as suggested in Chapter
7 of Horrocks’s Ph.D. thesis [11]. Nonetheless, this approach could not boost up
the performance as much either. Further, a learning-based heuristic technique
was proposed in order to reduce the expansion of the disjuncts with a clash. It
uses the characteristics of the already expanded clash-free disjuncts for detecting
and prioritizing the not yet expanded clash-free disjuncts [25]. The technique is
mainly effective for ontologies with a large number of nominals.

Since optimizing the expansion of each disjunction can dramatically speed up
the reasoner performance, designing similar heuristic strategies that can benefit
satisfiability testing for DL reasoners is both required and attainable. Hence, a
new heuristic strategy for ordering branches (sub-concepts) is introduced in [26].
The suggested heuristics take into account the metrics of the concepts (or sub-
concepts) such as frequency of the concepts in the ontology, size of the concepts
and depth of their quantifiers. These metrics presumably play a major role for
heuristic decisions in satisfiability tests of the reasoner. Therefore, in this paper,
we learn to choose among these built-in heuristics that are developed for the
inputs with more than just propositional logic that is SHOIQ. The aim is to
at least avoid the timeout termination of the reasoning process for ontologies by
learning to choose the right heuristics.

The remainder of this paper is organized in the following order: In the next
section related work is discussed. Later, preliminaries are given for the back-
ground knowledge on DL. The details of the customizable expansion-ordering
heuristics that are suggested for reasoners (specifically FaCT++) are explained
in Section 4. In Section 5, our learning methodology for selecting among those
heuristics is presented. In Section 6, we discuss the experiments and finally in
Section 7, we conclude and present future work.

2 Related Work

Machine learning aids with effective and successful decision-making in different
non-deterministic states related to reasoning about ontologies, e.g., assigning the
most optimal DL reasoner to a specific ontology based on the ontology’s features
[19]. Ontology features play a pivotal role in predicting reasoner performance.
Many works have revealed the impact of Ontology features on machine learn-
ing solutions for reasoners [12,1]. Ontologies are very complex and variant, i.e.,
choosing relevant features are critical when it comes to increasing the prediction
accuracy for different ontology learning applications [22]. Additionally, Auto-
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mated Theorem Prover (ATP) frameworks such as E-MaLeS proposed machine
learning-based feature tuning [14]; however, depending on the specification of
ontology learning problems, these frameworks may or may not be generalized.

Selecting suitable heuristics by utilizing machine learning algorithms in sat-
isfiability testing or similar tasks has substantially enhanced the runtime for
variants of SAT, SMT and QBF solvers [15,21,13]. For resolution-based theorem
provers, different statistical machine learning methods are used to predict the
plausibility of search branches for faster query results [24].

In another work, inspired by the above-mentioned developments, branching
heuristic selection has been applied for satisfiability testing for DL domain where
a great improvement has been reported. However, the optimization solution is
very limited and only applicable to propositional logic [17]. Moreover, in related
work, we applied machine learning for the heuristic-based ToDo list optimiza-
tion in DL reasoners. The learning-based approach identifies the best order of
applying different rules during the reasoning process [18].

3 Preliminaries

DL is a formal logic-based language that represents knowledge in the form of
ontologies [2]. DL is composed of two levels: TBox and ABox. A TBox contains
concepts that are related to object properties (roles) with restrictions over those
object properties. An ABox contains assertions about concept instances. By
reasoning over TBox and ABox, OWL reasoners reveal new information that is
not explicitly observed in the ontology. Further, DL introduces various languages
that each permits specific operators in their syntax. In the following, one of the
languages called SHOIQ is introduced briefly.

3.1 Brief Intro to Semantics and Syntax of SHOIQ

SHOIQ [10] is a well-known expressive DL language that extends SHIQ by
allowing nominals in its syntax. S allows the occurrence of transitive roles, H
allows for role inclusion axioms, O for nominals, I for inverse roles, and Q for
qualified cardinality restrictions.

The formal semantics of a concept language is defined by an interpretation
I = (∆I , ·I) in which ∆I is a domain and ·I is an interpretation function. The
domain is a non-empty set and the interpretation function maps: every instance
name a to an element (aI ∈ ∆I); every atomic concept A to a subset (AI ⊆ ∆I)
and every atomic role R to a binary relation (RI ⊆ ∆I ×∆I). A concept C is
satisfiable if there exists an I with CI 6= ∅.

DL axioms belong to one of the three types: TBox, RBox, and ABox.

– TBox is the terminological part of an ontology that is a finite set of General
Concept Inclusion (GCI) axioms. A GCI axiom is of the form of C v D
where C and D are concepts. It is satisfiable if there exists an I such that
CI ⊆ DI . Then C is called a subsumee of D and D a subsumer of C. An
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Table 1. Syntax and semantics of ALC

Operators, etc.SyntaxSemantics

Top > >I = ∆I

Bottom ⊥ ⊥I = ∅
Concept A AI ⊆ ∆I , A is atomic
Negation ¬C ∆I \ CI
Conjunct. C uD CI ∩DI
Disjunct. C tD CI ∪DI
Universal ∀R.C {x | ∀y : (x, y)∈RI ⇒ y∈CI}
Existential ∃R.C {x | ∃y : (x, y)∈RI ∧ y∈CI}
Role R RI ⊆ ∆I ×∆I

equivalence axiom can be written as two GCI axioms. Therefore, C ≡ D
also called definitional GCI can be written as C v D and D v C. C v D
is called a primitive GCI when C is an atomic concept and D is a concept
description.

– RBox is a finite set of rule inclusion axioms R v S and transitivity axioms
(Tra(R)) where R and S are roles. An axiom R v S is satisfiable if there
exists an I such that RI ⊆ SI . If R v S holds, then Inv(R) v Inv(S) also
holds. The reflexive transitive closure over v is denoted by v∗. R is a simple
role if no transitive role S exists where S v∗ R.

– ABox is the assertional part of an ontology that consists of a finite set of
assertions about individuals (or instances of concepts) C(a) where a is an
instance of C, i.e., aI ∈ CI , and roles where R(a, b) states that a and b are
individuals in the relationship R, i.e., (aI , bI) ∈ RI .

A TBox T and its associated RBox R are satisfiable if there exists an I that
satisfies all axioms in T and R. An ABox A is satisfiable if there exists an I
that satisfies all axioms in T and R, and all assertions in A.

Standard DL inference services that are relevant to our paper are concept
satisfiability, TBox satisfiability (or consistency), i.e., >I 6= ∅, and concept clas-
sification, which computes a taxonomy or subsumption hierarchy over all atomic
concepts in a TBox T .

For the sake of clarity, we only focus on the ALC subset of SHOIQ. The
DL ALC [23] is an essential core of OWL and the basic expressive DL that
covers disjunction, existential and universal quantifiers, etc. Hence, the syntax
and semantics of operators, etc. of ALC are presented in Table 1.

4 Expansion-ordering Heuristics

Like other DL reasoners, FaCT reasoner successors such as FaCT++3 and JFact4,
are accompanied by various configuration settings that help to integrate opti-
mization techniques for different reasoning tasks. One of the parameters (setting

3 https://bitbucket.org/dtsarkov/factplusplus/src
4 https://github.com/owlcs/jfact/

https://bitbucket.org/dtsarkov/factplusplus/src
https://github.com/owlcs/jfact/
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Table 2. Configuration labels

Config# 1 2 3 4 5 6 7 8 9 10 11 12

Labels Sap Sdp Fap Fdp Dap Ddp San Sdn Fan Fdn Dan Ddn

fields) in their configuration provides customizable expansion-ordering heuristics
that determine the sorting order for concepts in disjunctions. These expansion-
ordering heuristics are set for both satisfiability and subsumption tests. Since
the focus of the current research is only satisfiability testing, for the rest of this
paper, expansion-ordering heuristics are only referring to heuristics for satisfia-
bility testing; however, both tasks are provided with the same heuristic options
and definitions in the configuration setting.

The configuration setting’s field for satisfiability testing is called orSortSat

and as highlighted in the JFact source code, it is set to specify the sort ordering
of non-deterministic vertices in DAG structure for satisfiability tests. The DAG

structure, which represents an input ontology, will be explained later in detail.

The configuration setting options for expansion-ordering heuristics are in
form of a string “Mop” that is defined as follows: “M” is a sorting name character
field, which has the options5: S (stands for size), D (stands for depth), and F

(stands for frequency). “o” is an ordering type character field, which has the
options: d for descending and a for ascending. Finally, “p” is a preference char-
acter field, which is either p for preferring generating rules or n for not preferring
generating rules. Rules such as ∃ and > that add new nodes to a tableau are
called generating rules. This leads to 12 heuristics for satisfiability testing as
identified in Table 2. If “Mop” is 0 then there is no sorting order imposed.

Before any reasoning process begins, JFact computes all of the necessary
statistics about each concept (such as size, frequency, depth, etc) and stores
them for later use that involves imposing orders for concepts in DAG vertices.
If no sorting order is provided (“Mop” is 0), the reasoner uses the default order
based on the ontology’s structure. The part of the reasoner’s source code that
determines the default sorting order in JFact looks like the following:

orSortSat_Default= isLikeGALEN ? "Fdn" : isLikeWINE ? "Sdp" : "Sap";

In the above code, isLikeGALEN are the ontologies with a GALEN [20] structure
look alike and isLikeWINE are the ones with a structure similar to the Wine and
Food ontology6. The above code indicates that the default orSortSat (sorting
configuration for satisfiability testing) for isLikeGALEN ontologies is Fdn and for
isLikeWINE ontologies is Sdp and for other ontologies is Sap.

5 For the sorting name character field, two other statistics such as the number of
branches and generating rules in concepts have been recognized. However, they have
not been suggested as options to be chosen from in the configuration setting of the
source codes for neither JFact nor FaCT++ [26]. For the sake of simplicity, we do
not use them here.

6 https://www.w3.org/TR/owl-guide/

https://www.w3.org/TR/owl-guide/
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The default orSortSat in the source code are determined based on some
experiments on few ontologies from [26] (and likely further unpublished experi-
ments by the developers). The experiments in [26] contain a few ontologies from
DL’98 and three specific ontologies with different ontology structures that are
defined in the following:

GALEN (Generalized Architecture for Languages, Encyclopaedias, and Nomen-
clatures in medicine) is an ontology with medical terminologies and it contains
2749 classes with no instances and more than 400 CGIs.

Wine and Food is an ontology for wine classification with fewer classes
compared to GALEN but more than 100 nominals and a more complex structure
to reason about.

DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering) is
an ontology with medium complexity and size [7].

In the source code of the reasoners FaCT++ and JFact, GALEN look alike
ontologies (isLikeGALEN) are the ones with the number of CGIs beyond a specific
threshold but few or zero ABox assertions and the Wine look alike ontologies
(isLikeWINE) are the ones with more than 100 nominals but fewer CGIs.

Direct Acyclic Graph (DAG) structure for ontologies JFact uses a DAG

structure for representing ontologies. It transforms each ontology to a DAG struc-
ture in which the vertices of a graph are operators including: “and”(u), “all”(∀),
“at-most”(≤) and the edges are operands. The DAG structure representation of
ontologies helps with fast search and reasoning [9].

For example, for the TBox containing:
C v ∃R.D , C v F and A ≡ C tD
Its equivalent DAG structure is shown in Fig 1.

Fig. 1. Direct Acyclic Graph (DAG) for TBox: C v ∃R.D , C v F and A ≡ C t D
(edges determined by dash line will be negated before entering the next vertex)
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JFact initially builds a DAG structure and before any satisfiability test happens
it changes the orders of concepts in non-deterministic vertices of the graph based
on the orSortSat field’s value.

To cover all possible non-determinism conditions of an ontology, the order of
concepts in all of the vertices that starts with “and” are changing but considering
that the most of satisfiability tests in ontologies are true, the disjunctions are
mainly affected by this ordering modification as this is the main purpose of
orSortSat heuristics [26].

5 Learning-based Approach to Select the Right
Expansion-Ordering Heuristic

Learning to make effective decisions in non-deterministic expansions are highly
promising in satisfiability testing of reasoners. These decisions are particularly
required for sorting of either atomic or non-atomic concepts in disjunctions.

As already noted, the default sorting order for expansion-ordering heuristics
in the configuration setting of JFact is based on some initial assumptions that
are obtained from past experiments that have analyzed a few syntactic features
from a handful of ontologies, whereas other —possibly more important —features
were disregarded. Moreover, as concluded in [26], there is no general single sorting
strategy that works best for all ontology types. Therefore, it is optimal to come
up with a learning methodology that chooses the right sorting heuristic for each
ontology based on its features such as both syntactic structure characteristics of
the ontology as well as statistics from the DAG structure itself.

Building a multi-classification learning model that chooses from all 12 heuris-
tics is not practical since the number of classes (heuristics) is too high and often
leads to a low accuracy model. Instead, a more sensible solution is suggested
in which for each heuristic a separate binary classification model is built that
determines if that heuristic is the right choice. More details on the learning
methodology are given in Section 6.

Support Vector Machine (SVM) is among one of the machine learning tech-
niques that handles binary classification with a highly dimensional feature space
effectively; therefore, it is used to build our highly dimensional model.

Support Vector Machine (SVM) is a supervised classifier technique that
is best used for binary classification. SVM creates a decision boundary called
hyperplane in order to separate data points (training data) into two different
classes. Each data point belongs to one of the classes 1 or 2. As an example, Fig
2 shows data points from two different classes 1 and 2 represented as and ;
respectively. There is an infinite number of hyperplanes that separate two classes;
however, the objective is to find an optimal hyperplane that creates a maximum
distance between the two closest data points from two classes. The optimal
hyperplane in Fig 2 is shown in bold. The margin is the location between the
hyperplane and each data point shown in Fig 3. If the margin is small enough to
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separate the data points perfectly, it is called hard margin (Fig 3). However, there
is a possibility that a model with 100% accurate prediction cannot be generalized
for unseen data. This issue is called overfitting of the model. To avoid overfitting,
the margin should be softened (widened) to allow some misclassification as shown
in Fig 4. This helps to create a more generalizable model.

SVM can handle the data points that are not linearly separable by using a
non-linear hyperplane. In this case, the non-linear kernel functions are used to
transform the original data point to a higher dimensional feature space to make
them linearly separable in the new space as shown in Fig 5. Possible kernels are
RBF (Radial Basis Function) and Polynomial [5].

Fig. 2. Optimal hyperplane
for separating data points

Fig. 3. Hard margin Fig. 4. Soft margin

Fig. 5. Mapping original data to a higher dimensional feature space

5.1 Features

Ontology features play a significant role in reasoning tasks that involve decision
makings. Therefore, to implement a robust learning strategy, features are defined
to cover the structural characteristics from ontology knowledge bases as well
as the statistics from the DAG structure that are computed by JFact. Overall
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Table 3. Main features of ontologies for the built model

Ontology Type Metrics

Number of nominals
Number of instances
Number of classes
Average population
Number of GCI
Number of generating rules (∃ and >)
TBox ratio
RBox ratio
ABox ratio
Number of Object Properties
Number of Inverse Object Properties
Number of Subclasses
Number of Equivalent Classes
Number of Disjoint Classes

Non-deterministic Vertices’ Metrics

Number of vertices
Average of the size of vertices’ sub-concepts’ averages
Average of the depth of vertices’ sub-concepts’ averages
Average of the frequency of vertices’ sub-concepts’ averages
Maximum number of children in vertices
Average number of children in vertices
Number of positive concepts is vertices
Number of negative concepts is vertices
Ratio of positive concepts to all concepts in vertices
Ratio of negative concepts to all concepts in vertices

39 features were used to build our model. A selection of the features that are
believed to be the key ones in increasing the accuracy of our model is shown in
Table 3.

As mentioned previously, rules such as ∃ and > that add a new node to
tableau are called generating rules, which are considered as one of the features
in Table 3.

The average population feature is defined as the ratio of instances to classes
in an ontology. This and some other features such as GCI consider the synthetic
structure of ontologies that determine the ontology types or their similarity to
GALEN and Wine or other types of ontologies.

5.2 Feature Transformation

Feature transformation techniques increase the accuracy of the learning model
by creating new features based on the original features. These techniques may
include standardization as well as dimensional reduction techniques.
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Standardization helps to scale the data point, i.e., forcing them to have the
same scale by assigning their mean to zero and standard deviation to one.

Dimensional reduction techniques are used to reduce the high dimension of
feature spaces. One of the well-known feature reduction techniques is called PCA
that transforms features to a set of new features that are non-linearly correlated
[27].

Principal component analysis (PCA) When data is complex with too many
correlated features, in order to reduce the difficulties of data, one may consider
analyzing the data and its features. However, it is nearly impossible to interpret
all the patterns that result from analyzing each feature against other features.
PCA is a statistical technique used to reduce the dimensionality of features in
order to reduce data complexity while keeping as much information as possible
of the original data. In most cases, PCA increases the accuracy of models by cre-
ating a new combination of features. In this case, PCA uses a linear combination
of features with different weights. Each principal component is a linear combi-
nation of features with maximum variance but uncorrelated with other principal
components. Interpreting these principal components against each other is less
expensive. Standardization as described above is usually an important pre-step
for PCA that helps to highlight useful features.

5.3 Feature Selection

For our purpose of learning the right heuristic for satisfiability testing in reason-
ers, it is not easy to predict what features, among the 39 features, contribute
more to the accuracy of the built model unless a feature selection technique is
used. Feature selection techniques give scores to features based on their impor-
tance and finally select the most important features to build a model. The more
a feature is correlated to the class (heuristics) prediction the more influence it
has. One of the well-known feature selection techniques is Mutual Information.

Mutual Information (MI) Mutual information measures the association be-
tween features and classes and scores the features accordingly.
Mutual information formula is as follows:

MI(F,C) = H(F ) +H(C)−H(F,C) = H(F ) +H(F |C) =∑
f∈F

∑
c∈C

p(f, c) log
p(f, c)

p(f)p(c)
(1)

where F is a set of features and C is a set of classes. H(X) is a marginal
entropy for discrete random variable X, which calculates the amount of not
known knowledge about X. H(X|Y ) and H(X,Y ) are the conditional entropy
for variable Y and joint entropy between X and Y ; respectively [6].
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6 Experimental Evaluation

This section reports on the impact of using the right expansion ordering heuris-
tics on the performance of JFact. The reasoning task to be evaluated is satisfi-
ability testing. Satisfiability testing for concepts of ontologies is preceded by a
task that is consistency checking of ontologies. For some ontologies, consistency
checking time is also affected by the expansion orderings.

For simplicity, in this section, the expansion ordering heuristics are referred
to as configurations. In Table 2, a unique configuration number is assigned to
each of the expansion ordering heuristics.

To perform our experiments, ontologies from the ORE 2014 competition7

dataset are used.
The ontologies collected from ORE 2014 must be eligible for building the

learning model, i.e., the ones that are affected by the expansion ordering heuris-
tics of satisfiability testing due to the existence of non-deterministic situations.

Based on that, initially, we were able to export around 3000 ontologies that
contain non-deterministic situations and they must, at least, be in the form of
a base logic (ALC). Additionally, two more eligibility criteria are considered for
collecting the training data.

First, if for a single ontology, all the 12 configurations lead to a timeout,
then that ontology is discarded because it is not clear if the ontology is affected
by those heuristics. The considered timeout, for this experiment, is 500,000 mil-
liseconds (8.33 minutes). Since it is an exhausting and non-practical process to
obtain the exact termination runtime for ontologies that lead to a timeout, no
number is assigned to them.

Second, if an ontology has very close runtimes from 12 configurations one
may doubt its eligibility. The reason is that the difference could be just a run-
time overhead from the system. To ensure this, multiple runtimes are examined
and if for all runtimes the maximum and minimum runtimes belong to the same
configurations, those ontologies are allowed in the training data because it is ob-
vious that the heuristics are effective for that ontology. Moreover, the ontologies
that are inconsistent or result in similar issues are discarded too.

Considering all the above conditions for all ontologies from ORE 2014 dataset,
only 143 from the dataset become qualified for training data collection where
25% is dedicated to the test part.

As stated previously, for each configuration (heuristic), a binary classifica-
tion model is built. For each binary model of a configuration, there are two
labels: “Good”, which indicates that a heuristic is the right choice and “Bad”,
which indicates the wrong choice. To determine a threshold for identifying the
“Good” and “Bad” labels, the average of the mean plus standard deviation of
the training data for all those configurations are considered. Table 4 shows the
mean, standard deviation and their sum for each configuration. The average of
the mean plus standard deviation for all configurations is about 127,122 (about
2 minutes) that indicates the threshold.

7 http://dl.kr.org/ore2014/ontologies.html

http://dl.kr.org/ore2014/ontologies.html
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Table 4. Standard deviation and mean values for the threshold (numbers in millisec-
onds)

Config# 1 2 3 4 5 6

std 45240 41093 44969 30237 39744 31692
mean 90670 74557 84560 70336 82350 68626

std+mean 135910 115650 129529 100573 122094 100318

Config# 7 8 9 10 11 12

std 70340 48232 45791 31736 52981 39864
mean 119611 83761 85775 71612 99992 71706

std+mean 189951 131993 131556 103348 152973 111570

Table 5. Priorities of configurations for “Good” labels based on 10-fold cross-validation
accuracy

Config# 1 2 3 4 5 6 7 8 9 10 11 12

Accuracy 95% 83% 89% 89% 97% 91% 86% 82% 87% 93% 91% 84%

Priority 2 11 6 7 1 4 9 12 8 3 5 10

Considering a third label (as “Ok”); which is assigned to the runtimes be-
tween threshold and timeout; may help with not only the right but also probably
the best heuristic selection (the heuristic with the least runtime). Since defining
more than two labels decreases the accuracy of the model, i.e., we prefer not to
define it for the present.

To build each binary classifier, a 10-fold cross-validation SVM classifier is
applied on the training data. To achieve the model with the highest accuracy,
a grid search is conducted in order to find the best parameters such as the
number of features in mutual information feature selection, number of PCA
components, SVM kernels, etc. For configurations 7 and 8, SVM with RBF
kernel outperformed linear SVM.

The accuracy of each configuration and its priority based on its accuracy
are given in Table 5. If two configurations hold an equal accuracy, then the
priorities are given from left to right, e.g. configuration 3 has a higher priority
than configuration 4. The priorities are used to determine which heuristic is a
better choice for an input test ontology.

A total of 35 ontologies have been chosen as test data (see Table 6). The
F-Score for each configuration on all 35 test data is given in Table 7.

Table 6 demonstrates the satisfiability testing runtimes of all 35 tests on all
of the heuristics. The last column shows the satisfiability testing runtimes of the
tests on JFact Standard where the default heuristics are chosen. The symbol ∗

means that a label is falsely predicted. For example, 4201∗ indicates that the
predicted label is “Bad” where the actual runtime is “Good”.

If there are multiple “Good” choices, the “Good” with the highest prior-
ity will be chosen. For example, in sample 5, the configurations 2,4,6 and 10
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Table 7. F-score of test data from ORE 2014

Config# 1 2 3 4 5 6 7 8 9 10 11 12

F-score 94% 84% 94% 92% 96% 92% 88% 92% 92% 93% 94% 91%

Table 8. Speedup factor of test data

Speedup ratio Timeout (500,000 ms) Timeout (1,800,000 ms)

Maximum 167 602
Average 11.6 39.56

Table 9. Average and sum runtime (in milliseconds) of all test data with time-
out=1,800,000 ms

JFact Learner JFact Standard

Sum 2,741,960 13,604,733

Avg 78,341 388,707

are “Good”. Since among these configurations, configuration 10 has the highest
priority from Table 5, it will be chosen as the right heuristic.

In a case where all of the labels of configurations are “Bad”, the label with
the lowest priority will be chosen with the hope for a false “Bad” prediction.

As shown from Table 6, there are 6 cases (samples 5, 11, 20, 22, 24 and 27)
in which our learning model outperformed the standard JFact by 1 or 2 orders
of magnitude.

Table 8 shows the average as well as maximum speedup of the satisfiability
testing on the learned method compared to standard JFact. If the timeout is
set to 1,800,000 milliseconds, the average speedup increases from 11.6 to 39.56
and the maximum from 167.28 to 602.208. Moreover, Table 9 shows the average
and sum of the runtimes for our learning-based JFact is 4 to 5 times smaller
compared to standard JFact; that is a significant improvement.

The runtime overhead for measuring the features varies from 5 to 15 seconds
or could exceed this amount for very large-size ontologies. Since some of these
features are related to the DAG structure obtained at the beginning of JFact, a
small part of this time is due to the interoperation or switching time between
Python (machine learning source code) and Java (reasoner source code) pro-
grams. However, this time can be reduced in future developments by optimizing
the implementation. The other part of the overhead is due to the calculation of
metric features related to the ontologies’ structure that will take only a couple
of seconds for smaller-sized ontologies (with a size less than 30 MB), but for
large-sized ontologies that require more than 30 MB, this could take somewhere
between 15 to 50 seconds. The number of very large-size ontologies makes up
only 6% of our data.
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Besides, almost all of these structural features are the same metrics that are
measured8 at the beginning of Protege9 framework after loading an ontology.
The loading time could vary in Protege depending on the size of the ontology.
For developing the built-in version of the learned based reasoner for Protege,
these features are already measured in Protege while loading ontologies, i.e.,
there is no need to calculate them again.

7 Conclusions and Future Work

OWL reasoners are provided with many heuristic-based optimization techniques
that can benefit them significantly if chosen properly. The optimization technique
that is covered in this paper is the expansion ordering heuristics for satisfiabil-
ity tests. These heuristics determine the order of concepts or sub-concepts for
satisfiability tests. Selecting the right ordering helps to speed up reasoners for
satisfiability testing and many other reasoning tasks that contain satisfiability
testing.

Our learning-based method can further be improved in a way that it becomes
closer to selecting not only the right but the best possible heuristic as well. This
can be done by defining more thresholds that lead to determining more than
“Good” and “Bad” labels. Although, as mentioned in Section 6, we attempted
to provide a solution to this by defining “Ok” labels, but maintaining a high
accuracy model that holds the prediction of more than two labels is difficult.
Therefore, building a high accuracy model that can reach this goal is highly
appealing.

Further, a learning model may estimate the feature calculation time for very
large-sized ontologies and predict whether it is worth for a reasoner to ignore
and not apply the learning technique on those ontologies.

More reasoning tasks such as classification can be sped up that considers the
combination of expansion ordering heuristics for satisfiability and subsumption
testing together.

Finally, we believe there exist other optimization techniques developed for
JFact or other DL reasoners that can be enhanced by the use of machine learning.

8 The metrics can be found in the metric section in the home display of Protege
9 http://protege.stanford.edu

http://protege.stanford.edu
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