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Abstract

Optimization techniques play a significant role in improv-
ing description logic reasoners covering the Web Ontology
Language (OWL). These techniques are essential to speed
up these reasoners. Many of the optimization techniques are
based on heuristic choices. Optimal heuristic selection makes
these techniques more effective. The FaCT++ OWL reasoner
and its Java version JFact implement an optimization tech-
nique called ToDo list which is a substitute for a traditional
top-down approach in tableau-based reasoners. The ToDo list
mechanism allows one to arrange the order of applying differ-
ent rules by giving each a priority. Compared to a top-down
approach, the ToDo list technique has a better control over the
application of expansion rules. Learning the proper heuristic
order for applying rules in ToDo list will have a great im-
pact on reasoning speed. We use a binary SVM technique
to build our learning model. The model can help to choose
ontology-specific order sets to speed up OWL reasoning. On
average, our learning approach tested with 40 selected on-
tologies achieves a speedup of two orders of magnitude when
compared to the worst rule ordering choice.

Introduction and Related Work

Description logic (DL) reasoners are employed to infer
implicit information from ontologies by performing dif-
ferent reasoning tasks such as ontology consistency, class
satisfiability, hierarchical classification of named classes,
query related tasks, etc. Followed by FaCT (Horrocks 1998),
FaCT++ (Tsarkov and Horrocks 2006) was developed to
provide more portability as well as new algorithms in-
cluding a novel optimization technique called ToDo List
(Tsarkov, Horrocks, and Patel-Schneider 2007).

While former tableau reasoners apply a depth-first
top-down approach (also called trace technique), FaCT++
uses a set of queues in order to determine the set of cur-
rently applicable rules (Schmidt-Schaul and Smolka 1991;
Baader et al. 2007; Tsarkov, Schmidt, and Li 2015). The
trace technique makes it difficult to implement inverse
roles since they cause both up and down propagation
in tableau models; while the queue mechanism used by
FaCT++ is more flexible and better suited for more expres-
sive OWL languages that offer inverse roles. Moreover,
more heuristic optimizations are possible with ToDo list
compared to the top-down approach, where heuristics
are only applicable at a local and not at the global level

because only the current branch is stored in a trace tree
(Tsarkov and Horrocks 2005).

Learning to select the best heuristics in a reasoner is es-
sential for the reasoning performance. The heuristic selec-
tion options also vary depending on the optimization tech-
niques and their implementation in reasoners. For example,
due to the JFact’s configuration setting, the change of rule
ordering in the ToDo List approach is done globally instead
of locally (during the reasoning process); this may not be
very applicable, and thus not useful for learning purposes
due to the overhead runtime of the learning process in each
tableau level.

Several research efforts have been conducted on
learning different factors that have an impact on
improving reasoning speed for reasoners. First,
(Kang, Li, and Krishnaswamy 2012) applied super-
vised machine learning to learn the feature behavior
for predicting the performance of OWL reasoners. Later,
(Sazonau, Sattler, and Brown 2014) came up with more
relevant features for the reasoning performance of on-
tologies. The results show the hardness of predicting
OWL reasoners’ performance due to the complexity of
ontologies. However, it confirms that considering the
correlation of ontologies’ features or metrics thereof
improves the predictions. Another study investigates the
usefulness of different features by categorizing them while
expanding the works of the previously mentioned papers
(Alaya, Yahia, and Lamolle 2015b).

E-MaLeS is an automatic tuning framework for
Automated Theorem Provers (ATP) that applies ma-
chine learning to improve ATP’s performance by
scheduling the suitable strategies for feature selection
(Kühlwein, Schulz, and Urban 2013).

When improving an optimization technique in reasoning
process, the focus is the effect of specific factors such as
changing the order of operations on reasoning tasks; there-
fore, the exact features and their tuning for the above sys-
tems cannot be generalized to our case. Features such as the
number of operations and their correlated features may be
more effective for our specific prediction problem, although
this may need its own investigation.

In a related work, (Mehri and Haarslev 2017) focused on
improving semantic branching for disjunctions and its ef-
fect on backjumping, which is an optimization technique for
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backtracking. Even though semantic branching is guaran-
teed to avoid redundant search space occurring in traditional
syntactic branching, machine learning techniques also help
to further decrease redundant search space exploration. The
task is possible by learning new orders for applying vari-
ables at each branching level. As a first step, they focused on
propositional SAT testing. Their results show that machine
learning speeds up JFact by one to two orders of magnitude
(Mehri and Haarslev 2017). Compared to their approach, in
this paper, we improve the ToDo list optimization technique
in JFact using machine learning and apply it to a complex
description logic that is a syntactic variant of OWL and con-
tains propositional logic as a very small subset. To the best
of our knowledge this is a first machine learning approach
for improving such a rule based optimization technique for
OWL reasoners. Our approach is based on an independent
systematic analysis of rule orderings to uncover ontology
patterns and their associated features that are relevant for
this specific optimization technique.

The remainder of the paper is as follows. In the back-
ground section, some description logic notation is intro-
duced. Also, the ToDo list architecture is explained in de-
tail. In the section on order labeling, the prerequisite steps
for designing our learning model are presented. Our evalua-
tion results are presented in the section on experiments and
in the last section a discussion and conclusion are given.

Background

Description Logic

Description logic is a logic-based knowledge representation
language which is used to describe the knowledge of a do-
main and derive implicit knowledge from that is entailed. To
build a knowledge base, description logic uses the following
terminologies:

• Concept describes a class of objects which share similar
characteristics, e.g., the conceptMan contains all individ-
uals who are a man.

• Role is a binary relationship between individuals or data
values, e.g., role hasChild could be a relationship be-
tween two individuals where one is an instance of the
concept Parent and the other is an instance of the con-
cept Child .

• Individual stands for an object or an instance of a class,
e.g., Josh could be an instance of the concept Parent
meaning Josh is a parent.

Syntax and semantics of SHOIQ, which is a syntactic
variant of OWL, are given in Table 1, using an interpretation
I = (∆I , ·I) where ∆I is the non-empty domain and ·I

the interpretation function. The axiom tr(R) declares a role
R as transitive. The concept ⊤ (⊥) is an abbreviation for
¬A ⊔ A (¬A ⊓ A), where A is a concept. A concept C is
satisfiable if CI 6= ∅.

A SHOIQ knowledge base consists of a TBox and
ABox. A TBox is a finite set of concept (C ⊑ D) and pos-
sibly role inclusion (R ⊑ S) axioms to represent general
knowledge about a domain (C,D concept expressions and
R,S are roles). A concept (role) inclusion axiom is satisfied

Table 1: Syntax and semantics of SHOIQ

Operator Syntax Semantics

Concept A AI ⊆ ∆I , A is atomic

Negation ¬C ∆I \ CI

Conjunct. C ⊓D CI ∩DI

Disjunct. C ⊔D C
I
∪D

I

Universal ∀R.C {x | ∀y : (x, y)∈RI ⇒ y∈CI}
Existential ∃R.C {x | ∃y : (x, y)∈RI ∧ y∈CI}
At Least ≥ nR.C ♯Q(x,R,C) ≥ n
At Most ≤ nR.C ♯Q(x,R,C) ≤ n

nominal {o} ♯{o}I = 1
Role R RI ⊆ ∆I ×∆I

Inverse R− (R−)I={(y, x) | (x, y) ∈RI}
Transitive tr(R) RI = (RI)+

Q(x,R,C) = {y | (x, y) ∈ RI ∧ y∈CI}

by I if CI ⊆ DI (RI ⊆ SI). A Tbox T is satisfiable if
there exists an interpretation (or model) I that satisfies all
inclusion axioms.

An ABox represents assertional knowledge for individu-
als of that domain. It is a finite set of instance (a :C) and role
assertions ((a, b) :R). An instance (role) assertion is satisfied
if aI ∈ CI ((aI , bI) ∈ RI). An Abox A is satisfiable w.r.t
T if there exists an interpretation I that satisfies T and all
assertions in A.

For example, consider the concept expression:
Female ⊓ ≥ 2 hasChild ⊓ ∀hasChild .Female

that describes females which have at least two children
and all of their children are females. Three parts are related
through the conjunction operator. The first part includes in-
dividuals who belong to the conceptFemale , the second part
describes individuals connected to at least two individuals
via the hasChild role and the third part describes individuals
(∀) that are connected via the hasChild role to individuals
of the Female class.

Concept Inference Services

• Satisfiability: A concept C is said to be satisfiable consid-
ering the TBox T if and only if there is a model I in T
where CI is not empty or T 6|= C ≡ ⊥

• Subsumption: The concept C is subsumed by concept D
considering the TBox T if and only if T |= C ⊑ D or
CI ⊆ DI holds for every model I of T .

• Equivalence: Two concepts C and D are equivalent con-
sidering the TBox T if and only if T |= C ≡ D or
CI ≡ DI holds for every model I of T or C ⊑ D and
D ⊑ C.

• Disjointness: Two concepts C and D are disjoint consid-
ering the TBox T if and only if T |= C ⊓ D ≡ ⊥ or
CI ∩DI = ∅ holds for every model I of T .

It is worth to mention that the above tasks can also be trans-
lated to each other:

• Unsatisfiability/Subsumption: C is unsatisfiable if and
only if C is subsumed by ⊥.



Table 2: Tableau completion rules for ALC

⊓-Rule If (C ⊓D) ∈ L(x) and {C,D} 6⊆ L(x)
then set L(x) = L(x) ∪ {C,D}

⊔-Rule If (C ⊔D) ∈ L(x) and {C,D} ∩ L(x) = ∅
then
set L(x) = L(x) ∪ {E} with E ∈ {C,D}

∀-Rule If ∀R.C ∈ L(x) and there is a node y
with R ∈ L(x, y) and C 6∈ L(y)
then set L(y) = L(y) ∪ {C}

∃-Rule If ∃R.C ∈ L(x) and there is not any node x
with R ∈ L(x, y) and C ∈ L(y)
then
set L(x, y) = L(x, y) ∪ {R} and
L(y) = L(y) ∪ {C} where y is a new node

• Subsumption/Disjointness: D subsumes C if and only if
¬D and C are disjoint.

• Disjointness/Equivalence: Two concepts C and D are dis-
joint if and only if C ⊓D is equivalent to ⊥.

• Equivalence/Unsatisfiability: C and D are equivalent if
and only if (C ⊓ ¬D) ⊔ (D ⊓ ¬C) is not satisfiable.

Completion Graph A Completion Graph G = 〈V,E,L〉
is a directed graph. Each node x ∈ V is labeled with a set of
conceptsL(x). Each edge (x, y) ∈ E is labelled with a set of
roles L(x, y). A graph has a clash if a node label L(x) con-
tains {¬A,A} for a concept A. A Graph is complete when
no more expansion rules can be applied.

Tableau-based Reasoning Tableau-based reasoning was
first introduced for the ALC language but then extended for
many concept languages. The algorithm’s structure is based
on completion graphs. We assume that all concept expres-
sions are in negation normal form.
The completion graph for ALC, which is a core subset
of SHOIQ, is expanded using tableau completion rules
shown in Table 2, until no rule can be applied, i.e., the re-
sult is a complete graph and it might contains a clash if
{¬A,A} ⊆ L(x) for some node x.

ToDo List Architecture

Performing reasoning tasks can be costly in tableau-based
systems due to non-deterministic expansions. To reduce
space and time cost, optimization techniques such as order-
ing of expansion rules are used to decide what rules to ex-
pand first.

In the traditional top-down approach using the trace tech-
nique, the ∃-rule has the lowest priority; therefore, no unnec-
essary graph expansion happens until there are no more rules
to apply except the ∃-rule. Additionally, the trace technique
only considers the local trace and not a fully expanded tree
since it removes the already traced branches in order to save
space. Therefore, it is difficult to apply the trace technique
in the presence of inverse roles. The reason is that not only
the successors but also the predecessors will be involved and
must be expanded recursively if needed while the approach
only keeps hold of local expansions. Moreover, traditional

tableau-based systems apply non-deterministic rules such as
⊔ earlier than any other rules which increases the potential
search space.

To overcome the above restrictions, ToDo list does not
only store the entries in a particular order but also cre-
ates different queues based on the priority of different rule.
Therefore, every time an entry is selected from the ToDo
list, it is chosen from the queue with the highest prior-
ity. The process ends when all queues are empty or a
clash is detected. If all queues have the same priority and
only ∃ has the lowest priority; then the ToDo list works
the same way as the traditional top-down trace technique
(Tsarkov and Horrocks 2005; Knublauch et al. 2004).

Order Labeling

The default order for rules in FaCT++ is based on
the exposure to a limited number of test ontologies
(Tsarkov and Horrocks 2005). Yet, the effect of different or-
derings varies case to case depending on the features of on-
tologies and cannot be generalized for all ontologies in these
reasoners. Moreover, (Tsarkov and Horrocks 2005) already
concluded that there is no universal strategy to ensure the
best ordering heuristics of rules in ToDo list for all types of
ontologies. Hence, the best scenario could be an application
of a learning strategy that considers the features of an ontol-
ogy in order to predict its best order.

To tackle this as a supervised machine learning problem,
the labels (classes) need to be identified. Here, each label is
considered as an order set that defines the priority of rules
in ToDo list. Having more than one order set, this is a multi-
class classification problem with the number of classes equal
to the number of possible order sets. Hence, for each in-
put ontology (OWL file), its label is an assigned order set
that gives the highest speed solution to the reasoner for that
ontology. For the rest of this paper, the words “label” and
“class” are used interchangeably.

JFact (Palmisano 2015), a Java port of the FaCT++ has a
configuration setting that allows the modification of rules’
ordering in ToDo list (Tsarkov and Horrocks 2006). To do
this, a string of characters is defined where each character
specifies a rule. This string is identified as “IAOEFLG” in
which “I” stands for a concept Id number, “A” for conjunc-
tion (⊓), “O” for disjunction (⊔), “E” for existential quan-
tifier (∃), “F” for universal quantifier (∀), “L” for less than
or equal (6) and “G” for greater than or equal (>) rules, re-
spectively. Each of these characters is assigned to a number
(with 0 being the highest priority) indicating the associated
rule priority, e.g., 0612354 specifies that Id has the highest
priority over other operations, then ⊔ is the second priority,
and so on.

JFact, was indented to have the same functional-
ity as FaCT++ but it is believed to not have the ex-
act same implementation and performance as FaCT++
(Gonçalves et al. 2013). However, the JFact default con-
figuration, which was set to 1263005 by its devel-
opers, is deemed to be based on the FaCT++ code
(Tsarkov and Horrocks 2006) but such a configuration
might not be adequate for currently available ontologies.



Table 3: Labels for order sets

Label Order
Priority

1 2 3 4

1 012312 ⊓ 6,⊔ >,∃ ∀
2 013213 ⊓ 6,⊔ ∀ >,∃
3 000000 ⊓,6,⊔,>,∃,∀ NA NA NA

4 032132 ⊓ >,∃ ∀ 6,⊔
5 031231 ⊓ ∀ >,∃ 6,⊔
6 021321 ⊓ >,∃ 6,⊔ ∀
7 023123 ⊓ ∀ 6,⊔ >,∃

The number of all possible order sets obtained from as-
signing numbers to the characters is 77 (considering that
some rules can have the same priorities as well). In order to
make the problem practical and applicable to the reasoner,
the number of order sets needs to be reduced to only a few
reasonable and effective order sets. Therefore, before prior-
itizing, some of the rules are combined based on how they
affect the reasoning process. Id is combined with ⊓, > is
combined with ∃, and finally 6 with ⊔. This leads us to de-
fine only 7 order sets as shown in Table 3 (rules in the same
cells have the same priority). Id and ⊓ are ignored and given
the first priority because they do not cause non-determinism
or expansion, i.e., it is believed that their priority seldom has
any effect on the reasoning time.

Earlier, a multi-classification learner was suggested as a
solution to learn the best order among the 7 order sets for
each input ontology. With the small number of training data
available for this task, the number of labels (7) is pretty high
and leads to only 50% accuracy; therefore, the alternative
solution is to consider each order set as a separate binary
classification problem and predict if for an input ontology,
that is a proper order set or not. More details on this ap-
proach are given in the Experiment Section.

Feature Engineering and Selection

The importance of using good features is an essential topic
among machine learning researchers and it directly has an
effect on the performance of the built model. Feature engi-
neering is a process of creating proper features from the cur-
rent features. These feature extractions make a significant
impact on the accuracy of the machine learning model.

One feature engineering technique is to consider com-
bining the features, e.g., adding the number of disjunctions
and conjunctions together and consider them as one feature
instead of having them as two separate features. However,
based on the domain and the importance of features, com-
bining features can have a positive or negative effect. An-
other feature engineering technique which has been used for
data slicing in topics such as data mining tasks is bucketi-
zation. This can be used for converting features with range
values into buckets (Shekhar 2018). Moreover, feature se-
lection is used to reduce the dimensionality of feature space
and thus increase the accuracy of the model.

Feature selection techniques that is used in our case is
mutual information that calculates a score measure for how

much a feature can contribute to a correct predicted class
(Cover and Thomas 1991).

MI(X,Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

X stand for features and Y stand for classes. With mutual
information, one can choose the k top useful features for
their model.

Principal component analysis (PCA) is another feature re-
duction technique that considers the co-relation between the
features and their variance. PCA is used to reduce the feature
size of the selected features while minimizing the informa-
tion or variance loss.

Ontology Features Ontology features are categorized into
four categories (Alaya, Yahia, and Lamolle 2015a):

1. Ontology size which contains the basic measures of an
ontology’s signature and axioms, e.g., number of named
classes, object properties, logical axioms, etc.

2. Ontology expressively which describes the DL family
name of an ontology.

3. Structural feature of an ontology which contains the fea-
tures related to hierarchy, richness and cohesion of the
ontology, e.g., maximum depth of the ontology, number
of subclasses, subproperties, ratio of classes having at-
tributes, etc.

4. Syntactical feature of an ontology which contains differ-
ent ratios and frequencies related to classes (and their
different types), properties, individuals, axioms and con-
structors.

We consider 48 features which are discussed in the fol-
lowing. The basic features from the 48 features used in this
work are mentioned in Table 4. In addition to the selected
features, we also added the number of different types of ob-
ject properties including functional, transitive, symmetric,
inverse functional object properties.
Moreover, the ratio of TBox axioms, ABox axioms and
RBox axioms to the total number logical axioms are added
as 3 different features.
To add more useful features, we also added the ratio of each
rule category to the whole number of rules. These ratio fea-
tures are:

Ratio6+∀ =
No6 +No∀

No6 +No∀ +No⊔ +No⊓ +No> +No∃
(2)

Ratio>+∃ =
No> +No∃

No6 +No∀ +No⊔ +No⊓ +No> +No∃
(3)

Ratio⊔ =
No⊔

No6 +No∀ +No⊔ +No⊓ +No> +No∃
(4)

Ratio⊓ =
No⊓

No6 +No∀ +No⊔ +No⊓ +No> +No∃
(5)



Table 4: Basic features for ontologies

Ontology Features

1 Number of Existential Value Restriction of Roles

2 Number of Universal Value Restriction of Roles

3 Number of Classes

4 Number of Conjunction Groups

5 Number of Disjunction Groups

6 Number of Disjoint Classes

7 Number of Object Properties

8 Number of Inverse Object Properties

9 Number of Nominals

10 Number of Instances

11 Number of Role Assertions

13 Number of Min Cardinalities

14 Number of Max Cardinalities

15 Number of Subclasses

16 Number of Equivalent Classes

17 Number of Sub Object Properties

18 Number of Domains

19 Number of Ranges

20 Number of Data Properties

21 Number of Data Properties Assertions

Another features that we found to be useful in our case
due to the importance of instances, is the Average Popula-
tion which indicates the ratio of instances to the number of
classes in an ontology (Tartir et al. 2005).

Obtaining some of the features such as depth of hierar-
chy is very expensive especially for big size ontologies. That
also may not be very substantial for the current task that is
the impact of changing the rule order in reasoning tasks.

The reasoning task used in this paper is the hierarchical
classification of an ontology which computes the hierarchi-
cal relation between classes of the ontology. The term classi-
fication of ontologies is different from the term classification
used for machine learning and to avoid the confusion we re-
fer to the former as hierarchical classification of ontologies
to avoid the confusion in this paper.

Since the reasoner’s task is to find the hierarchical re-
lations in ontologies, to obtain more knowledge on the
deeper level of ontologies, we also considered the num-
ber of occurrences of each rule that SubClassOf and
EquivalentClasses expressions in OWL files start with.
These patterns for ⊑ are:

C ⊑ (⊔(. . .)), C ⊑ (6 (. . .)) (6)

C ⊑ (⊓(. . .)) (7)

C ⊑ (∀(. . .)) (8)

C ⊑ (∃(. . .)), C ⊑ (> (. . .)) (9)

We apply the same patterns for ≡.

In addition to that, the number of occurrences of each
rules in the parenthesis of each of the above patterns will
also be considered as separate features. For example, for the
pattern C ⊑ (⊔(. . .)), we calculated the number of occur-
rences of all ∀s inside the parenthesis and saved it as a fea-
ture.

C ⊑ (⊔(. . . , ∀R.C1, . . . ,⊔(C2, ∀R.C3, . . .), . . .)) (10)

The same is applied for other rules for each of the patterns
in equations (6), (7), (8), and (9).

Experiments

For this experiment, we collected ontologies from the OWL
Reasoner Evaluation (ORE) 2014 (Bail et al. 2014). Al-
though the ORE 2014 corpus comprises of a large number of
ontologies, not all of them can be considered in our dataset.
The extracted ontologies from the ORE 2014 library are the
ones that contain at least one of the rules in each of the pri-
oritized categories of operands of Table 3. The reason is that
the ToDo list technique is specifically designed to determine
the order of some rules and if some of the selected ontolo-
gies do not share the same criteria for the label definitions.
Furthermore this study does not focus on any machine learn-
ing problems where required features are missing. With this
strategy, we collect around 1840 OWL files from the ORE
2014 repository.

Furthermore, another decision is required to examine if
an ontology among 1840 OWL files is an appropriate indi-
cation of the training data or not. To make this decision, the
reasoning task (hierarchical classification of ontologies) is
performed on the 1840 data and the average of three run-
times (in order to obtain reliable runtimes) is calculated for
each data on each order set of Table 3. Then two further con-
ditions are implied.

First, if for an ontology the difference between the maxi-
mum and minimum runtimes with all the 7 order sets is less
than 2 seconds, it will be excluded. For example, if classi-
fying of an ontology takes 3347, 3357, 4537, 2851, 3066,
3408, 2951 milliseconds with the 7 order sets, respectively.
In this example, the minimum and maximum runtimes are
2851 (belongs to order set 4) and 4537 (belongs to order set
3) and the difference between them is 1686 milliseconds.
The difference of less than 2 seconds could be caused by
overhead runtime. To make sure this is the case, we run it
several times and in all runtimes the configurations with the
biggest and smallest runtimes are not the same as the previ-
ous runtimes, i.e., the difference is indeed caused overhead
runtime. For ontologies with the same condition this indi-
cates that the rule ordering does not have any effects on the
ontology (those ontologies could also be very simple and
small). To keep the homogeneity conditions for our training
data (and test data) those ontologies are excluded.

Second, the training data that leads to timeouts for all 7 or-
ders are excluded too. The timeout considered for this exper-
iment is 500,000 milliseconds (8.33 minutes). Since obtain-
ing the exact time for timeout cases are very expensive, we
do not associate them with any numbers. Therefore, again it
is not obvious whether the ontology is affected by any rule
orderings.



Table 5: Threshold (mean+std) for 7 configurations (std
stands for standard deviation)

Config std mean std + mean

1 94811 56323 151134
2 65705 30427 96132
3 86221 42644 128865
4 74743 33428 108171
5 69883 33822 103705
6 86980 45085 132065
7 69312 30930 100242

The above conditions lead to 159 OWL files for our train-
ing data where we dedicate 25% to test data.

As mentioned previously, if each order set of Table 3
is observed as one class this leads to a multi-classification
model with a high prediction error rate. This is due to the
high numbers of labels without large training data. There-
fore, we take another approach and convert the problem into
7 binary classification problems (each order set as an in-
dependent machine learning problem) with two labels for
each problem. The label “Good” for an order set indicates
that the order set solves the ontology (performs hierarchi-
cal classification) in less than a threshold value and the label
“Bad” indicates that the order set solves an ontology in more
than a threshold value (the “Bad” labels also includes time-
out cases). The threshold in this experiment is obtained by
exploiting the data distribution for all of the configurations
(order sets).

Table 5 shows the mean and standard deviation (std) for
the training data in each configuration in milliseconds. The
maximum value is 151134 which belongs to configuration 1
and the minimum value is 96132 which belongs to configu-
ration 2. The average of mean plus standard deviation from
all of the configurations is considered as the threshold value.
This value is 117,187 milliseconds (around 2 minutes). The
timeout cases are excluded while examining the data distri-
butions.

To build the binary classification models of the configura-
tions, we use SVM technique with 10-fold cross-validation.
We conducted a grid search to select the best models by
choosing the best parameters such as the numbers of PCA
components. The optimal kernel used for all configurations
except the second one is linear. Radial Basis Function (RBF)
kernel outperforms linear by 10% for configuration 2.

Table 6 shows the cross-validation accuracy of all config-
urations after applying standardization and the combination
of PCA with mutual information feature selection technique
that selects 40 features with the highest scores.

Finally, to assess the impact of the built models on JFact,
40 unseen samples from ORE 2014 competition are selected
randomly (that also follow the two earlier-mentioned condi-
tions for training data) and are evaluated by F1-score (Ta-
ble 7).

Table 8 shows the JFact runtime for 11 of 40 samples with
different order sets. The last column shows the JFact runtime
for the standard configuration. This indicates that compared
to the standard JFact configuration that leads to timeout for

Table 6: Cross-validation accuracy of the 7 configurations
after applying Standardization, PCA (combined with 40 se-
lected features from mutual information based feature selec-
tion) and SVM

Config Accuracy Priority for “Good” labels
1 77% 5
2 85% 1
3 80% 4
4 82% 3
5 76% 6
6 71% 7
7 83% 2

Table 7: F-score for all 40 tests chosen from ORE 2014

Config F-score
1 78%
2 96%
3 87%
4 89%
5 75%
6 70%
7 100%

samples 6 and 11, our learned based reasoner runs by 2 and 3
order of magnitudes faster, respectively. Even though in very
few cases standard JFact usually surpass by only less than
one order of magnitude it never outperforms our learned
based reasoner with more than an order of magnitude and
this small ratio also can easily be improved by increasing
the accuracies of some configurations in our approach in our
future work.

Moreover, Table 9 shows the speedup factor of the learned
order compared to the worst case ordering of rules, which is
by average about two orders of magnitude faster. There were
no negative speedup ratios meaning all of the 40 samples
were performed better than the worst case scenario.

Discussion

Binary classifiers built for each configuration (order set)
have two labels (classes): “Good” and “Bad” indicating if
an ontology can be classified in less than 2 minutes or more
than 2 minutes including timeouts, respectively. This is very
helpful for the samples that have timeouts or run in more
than 2 minutes in some order sets and can choose another
order set that runs in less than 2 minutes. For example, in
Table 8, since for sample 1, the configurations 1,2,3 and 7
are classified as “Bad” order sets, with the built model, JFact
will choose the configuration 4 or 5 or 6 instead, i.e., it will
run in less than 1 minute instead of more than 8 minutes.

The main strategy is to ignore the “Bad” order sets and
choose the “Good” order sets. In this case, we end up with
three situations:

1. When there is only one “Good” label among all the 7 con-
figurations and others are “Bad”; without hesitation, one
chooses the “Good” label.



Table 8: 11 out of 40 tests chosen from ORE 2014 competition, TO indicates a timeout and the selected configurations by the
learned based reasoner are shown in bold, − and ∗ indicate false negative (falsely predicted as “Bad”) and false positive (falsely
predicted as “Good”), respectively

Sample Config 1 Config 2 Config 3 Config 4 Config 5 Config 6 Config 7 JFact Standard Config

1 TO TO TO 40146 39200 42831 TO 40246
2 TO 625 2050 903 TO TO 607 881
3 TO TO TO 15688 15253 19141− TO 15727
4 10296 9642 25926 8617 8761 8875 9451 8467
5 14272 13862 52538 15319 15508 16023 13672 11240
6 2509 2529 2471 TO TO∗ TO∗ 2498 TO
7 4212− 4050 297164∗ TO 3808 TO 3959 2701
8 TO 417 1372 412 408 414 407 382
9 167748 63112 TO∗ 88423 212917 300729 75658 85404
10 TO TO TO 192741 198465∗ 210961∗ TO∗ 188800
11 379− 373− 355 TO TO TO 325 TO

Table 9: Speedup ratio of the selected order to the worst case

Min Max Average

Speedup Ratio Improvement 1.29 1536.71 337.81

2. When there are multiple “Good” labels, the learner will
choose among the “Good”s for the one with the highest
accuracy (the priorities based on the cross-validation ac-
curacies are given in Table 6).

3. When all of the labels are predicted as “Bad”; but the clas-
sifier will not indicate which one is timeout or less than 8
minutes. In this scenario, the best strategy is to choose the
configuration with the lowest cross-validation accuracy in
Table 6; presuming that it falsely detected as a “Bad” la-
bel. However, only less than 10% of the provided data
with all “Bad” labels contain both timeout and not time-
out; thus, defining another label that is representing “Bad”
labels without timeout is not very efficient and decreases
the accuracy of the learner.

The selected configurations for the samples are shown in
bold in Table 8.

Finally, if we consider the whole process of classifying
ontologies in JFact this task is also accompanied with pre-
required reasoner tasks such as checking the consistency of
ontologies. Depending on the size of nominals (or ABox),
the consistency checking before the main hierarchical clas-
sification may take time (and even lead to a timeout). How-
ever, we believe these ontologies will also take almost the
same amount of time for classification. The reason is that
too many nominals indicate a big size ontology associated
with more classes. In order to cover all possible ontologies,
we provided both training data and samples that contain on-
tologies with a big or small number, or no nominals.

Conclusion and Future Work

Although optimization techniques were designed to speed
up the reasoning process for OWL reasoners, many of them
are heuristic-based and could be modified case by case based
on the type of ontologies. In this paper we focused on im-

proving ToDo list that is a heuristic-based optimization tech-
nique of JFact reasoner. The order of rules in ToDo list is
likely to have drastic impact on improving the performance
of JFact. Thus, we learned a model that helps the reasoner to
choose the sufficient heuristic for a given ontology and help
them to run in less than 2 minutes and avoid the time out
which is about 8 minutes.

Although ontologies are very complex infrastructures, we
believe by defining proper and correlated features, they can
be classified for these optimization techniques of the rea-
soning process. In this paper, we presented a learned model
that in several few cases outperforms and many other cases
is close to the performance of the JFact standard configura-
tion. Furthermore, the learned model outperforms the worst
case ordering selection by 1 to 3 orders of magnitude. In our
future work, we plan to improve our built model by deter-
mining better features that yield a more accurate model that
is also able to detect the best time possible. Moreover, we
yet have to discover what other heuristic optimization tech-
niques can be improved by machine learning in JFact and
other reasoners.
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Appendix A: Definitions

Support Vector Machine

Support Vector Machine (SVM) is a machine learning tech-
nique used for binary classification of data. Given data
points ((x1, y1), (x2, y2), . . . , (xn, yn) where yi is the class
(yi is either class 1 or class 2) that xi belongs to, there are
many lines that can be fitted to separate the data points based
on the class that they belong to. The optimal hyperplane is
the one that has the maximal margin or maximal distance be-
tween two data points of two classes. The closest data points
of both classes are called supporting vectors. The hyperplane
is the linear combination of supporting vectors multiplied by
LaGrange multipliers.

Kernels were defined for SVM to support data that must
be separated non-linearly. Three most popular kernels in-
troduced for SVM are: Linear, Gaussian (RBF) and Poly-
nomial. Linear SVM is effective when data is larger and it
simply separates the data by a line. Compared to the linear
kernel, RBF and Poly are more effective since they are more
flexible in separating the data. Besides, SVM is designed to
handle high dimensional data that makes it a good choice for
our case.

Although SVM is designed for binary classification, due
to their efficiency, many tried to extend the SVM for more
than 2 classes. Two popular methods are: One vs All (OvA)
and One vs One (OvO). In OvA, for each label, a binary clas-
sifier will be created where that label is considered as a pos-
itive label and others are negative labels; therefore, overall
with N labels, N classifiers are built. In OvO, for each pair

of labels one classifier is created; therefore,
N(N−1)

2 number
of classifiers are built which is very expensive if N is large
(Van Den Burg and Groenen 2016).

Principal Component Analysis

PCA is an unsupervised learning technique for feature ex-
traction. It reduces the dimension of data and defines a new
set of dimensions based on the number of components. The
components project the data into a direction, i.e., it max-
imizes the variance of data; in other words, spreading out
the data. The first component has the greatest variance, the
second component has the second greatest variance and so
on. Standardization, which is an important practice before
PCA, helps PCA to increase the variance in more than one
component, i.e, makes use of important features. Standard-
ization transforms the data in order to have a mean of zero



and a standard deviation of one, i.e., the data points have the
same scale for further transformations by classifiers.

Appendix B: Complete Table of Samples

Table 10 contains all 40 samples. It is submitted as supple-
mental material.



Table 10: The 40 tests chosen from ORE 2014 competition, TO indicates a timeout and the selected configurations by the
learned based reasoner are shown in bold, − and ∗ indicate false negative (falsely predicted as “Bad”) and false positive (falsely
predicted as “Good”), respectively

Sample Config 1 Config 2 Config 3 Config 4 Config 5 Config 6 Config 7 JFact Standard Configration
1 TO TO TO 40146 39200 42831 TO 40246
2 TO 625 2050 903 TO TO 607 881
3 TO TO TO 15688 15253 19141− TO 15727
4 10296 9642 25926 8617 8761 8875 9451 8467
5 14272 13862 52538 15319 15508 16023 13672 11240
6 2509 2529 2471 TO TO∗ TO∗ 2498 TO
7 4212− 4050 297164∗ TO 3808 TO 3959 2701
8 TO 417 1372 412 408 414 407 382
9 167748 63112 TO∗ 88423 212917 300729 75658 85404
10 TO TO TO 192741 198465∗ 210961∗ TO∗ 188800
11 379− 373− 355 TO TO TO 325 TO
12 TO 557 936 598 TO TO 557 595
13 TO TO TO 39500 38936 41690 TO 40160
14 TO TO TO 36773 36602 TO TO 35125
15 TO 14007 17900 13916 TO TO 13882 13942
16 TO 6450 9905 6647 TO TO 6556 8263
17 TO TO TO 42277 41877 45745 TO 43638
18 TO 720 1171 794 867− TO 677 870
19 TO 773 2612 856 836 TO∗ 675 852
20 TO TO TO 15298 15626 17728− TO 15269
21 2462 2946 3599 1553 1536 4586 2639 1699
22 TO 518− 475 497 469 486 476 589
23 718− 678 3958 1620 1857− 1932− 664 1749
24 TO 434 671 417 413− TO 430 388
25 65579 3432 18415 2510 5156− 25909− 3494 2734
26 TO 457 471 480 TO∗ TO∗ 457 456
27 TO TO TO 324682∗ 329102∗ 350004∗ TO 298338
28 230550 16057 178259∗ 3863 3879 27882 6575 3568
29 3717 1058 3454 1187− 1497 4050 1083 1146
30 TO 16105 TO∗ 2928 TO TO 16679 2628
31 7858− 6982− 99669− 6436− 6404∗− 5748− 7048 6344
32 327919 27042 264452∗ 4357 4397 52241 8343 3597
33 TO 420 853 436 424− TO 415 443
34 TO 545 574 558− 610− TO 553 581
35 3489 919 2416 931− 1123 3602 910 848
36 TO 449 791 443 402− TO 429 440
37 TO∗ 979 6022 1714 TO∗ TO∗ 991 1753
38 574 566 23380 606 586 569 581 615
39 91032 96408 124938∗ 2296 2325 2350 93088 2405
40 17058 3523 31232 2172− 2206 17998− 2469 1925

This table contains supplemental material and lists the results for all the tested 40 ontologies.
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