
A Parallel Shared-Memory Architecture for OWL
Ontology Classification

Zixi Quan and Volker Haarslev
Department of Computer Science and Software Engineering,

Concordia University,
Montréal, Canada

Email: z qua@encs.concordia.ca, haarslev@encs.concordia.ca

Abstract—The Web Ontology Language (OWL) plays an im-
portant role in the semantic web to represent domain knowledge
using classes, properties, and individuals. OWL reasoners analyze
ontologies and offer inference services such as class satisfiability
and subsumption. Ontology classification is an important and
widely used service that computes a taxonomy of all classes
occurring in an ontology. It can require significant amounts
of runtime but most OWL reasoners do not support any kind
of parallel processing. We present a novel thread-level parallel
architecture for ontology classification that is ideally suited
for shared-memory SMP servers, where each thread can be
mapped to a core on a one-to-one basis. We evaluated our
prototype implementation with a set of real-world ontologies.
Our experiments demonstrate a very good scalability resulting
in a speedup that is linear to the number of available cores.

Index Terms—OWL; ontologies; classification; parallelism;

I. INTRODUCTION

The Web Ontology Language (OWL) as part of the semantic
web [1] is a widely used knowledge representation language
for describing knowledge in application domains. Description
logics (DLs) [2] are a family of logic-based knowledge rep-
resentation formalisms, which describe a domain in terms of
concepts (classes), roles (properties), and individuals. OWL
can be considered as a syntactic variant of a very expressive
DL. Typically supported DL inference services are concept
satisfiability, concept subsumption, instance checking, query
answering etc [3]. The first two services deal only with concept
expressions and form the basis of ontology classification.

Tableau-based methods (see Section II) are widely used
in ontology reasoners for implementing the above-mentioned
inference services. In order to speed up reasoning and improve
the effectiveness of reasoners, it is necessary to develop
efficient and optimized reasoning techniques to implement
inference services. OWL ontology reasoning is known to be
N2EXPTIME-complete (NEXPTIME-complete if the property
hierarchy can be translated into a polynomially-sized nondeter-
ministic finite automaton) [4]. Although most OWL reasoners
are highly optimized quite a few real-world ontologies exist
that cannot be classified within a reasonable amount of time.

High performance computing (HPC) methods can offer
a scalable solution to speed up OWL reasoning. Our HPC
approach is based on parallel reasoning techniques for OWL
classification. Compared with sequential OWL reasoners, such
as Racer [5], FaCT++ [6], and HermiT [7], parallel OWL

reasoners work concurrently and distribute the whole task
into smaller subparts to speed up the process. A few OWL
reasoners integrated parallelization techniques; Konclude [8]
is highly performant but its TBox classification is sequential;
ELK [9] supports parallel TBox classification but is restricted
to the very small EL fragment of OWL. Moreover, some
other parallel DL reasoning methods have shown promising
results in the past few years such as the first parallel ap-
proach for TBox classification [10] using a shared-tree data
structure, merge classification [11]–[13] implementing parallel
divide-and-conquer approaches, and [14] proposing a parallel
framework for handling non-determinism caused by qualified
cardinality.

Our work is motivated by previous parallel approaches and
also expand ideas presented in [15] to parallel processing.
Our HPC approach is implemented with a shared-memory
architecture, atomic global data structures, and new strategies
for parallel subsumption testing. In order to keep our architec-
ture universal we use OWL reasoners as plug-ins for deciding
satisfiability and subsumption. Currently we use HermiT but it
could be replaced by any other OWL reasoner. Our evaluation
demonstrates a promising speedup for ontologies of different
sizes and complexities that is linear to the numbers of cores.

II. DESCRIPTION LOGICS

We briefly introduce the core DL ALC, which is a subset of
OWL. We describe its syntax and semantics, selected inference
services, and a tableau reasoning algorithm.

A. Syntax and Semantics

The Description Logic Attributive Concept Description Lan-
guage (ALC) proposed by Schmidt-Schauß and Smolka [16]
was the first DL where a complete reasoning algorithm was
provided. To formally define an ALC knowledge base, we de-
note with NC a set of concept names of domain elements with
common characteristics, NR a set of role names representing
a binary relationship between domain elements, and NO a set
of individual names within the represented domain.

The formal definition of the semantics of ALC is given
by an interpretation I = (∆I , .I), consisting of a non-
empty set ∆I called domain and an interpretation function .I .
The interpretation function .I maps every individual a to an
element aI ∈ ∆I , every concept A to a subset AI of ∆I and

TABLE I
SYNTAX AND SEMANTICS OF DESCRIPTIONS IN ALC

Syntax Semantics
> ∆I

⊥ ∅
C tD CI ∪DI

C uD CI ∩DI

¬C ∆I \ CI

∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
∀R.C {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI ⇒ y ∈ CI}

every role R to a subset RI of ∆I ×∆I . The description of
syntax and semantics of ALC concept expressions is shown in
Table I, where C,D ∈ NC are arbitrary concepts and R ∈ NR

is a role.
Satisfiability: A concept C is satisfiable if there exists

an interpretation I such that CI 6= ∅, i.e., there exists an
individual x ∈ ∆I which is an instance of C, x ∈ CI .
Otherwise, the concept C is unsatisfiable.

TBox: Terminological axioms include role inclusion
axioms, which have the form R v S where R,S ∈ NR,
and general concept inclusion axioms (GCI), which have the
form B v A where A,B ∈ NC . A TBox consists of a
finite set of terminological axioms. A TBox T is satisfiable
if there exists an interpretation I that satisfies all the axioms
in T . The interpretation I is called a model of T and T
is called consistent. For example, if the interpretation of a
concept BI is necessarily a subset of the interpretation of a
concept AI in all models of O, then O entails B v A (abbr.
O |= B v A). A concept equality definition of the form
C ≡ D is an abbreviation for the axioms C v D and D v C.

Subsumption: A concept D subsumes a concept C (C v
D) iff CI ⊆ DI for all models I of T , i.e., every instance
of C must be an instance of D. Subsumption can be reduced
to satisfiability, i.e. subsumes(D,C) ⇔ ¬sat(¬D u C) and
C v ⊥ ⇔ ¬sat(C).

Classification: The classification of a TBox results is in
a subsumption hierarchy (or taxonomy) of all named concepts,
with > as the root. If two named concepts A,B have a
subsumption relationship, e.g., A v B, then B is called an
ancestor of A and A is a descendant of B. In case there exist
no concepts A′, B′ such that A v B′ and B′ < B or A < A′

and A′ v B, then B (A) is called a predecessor (successor)
of A (B).

Additional Description Logic Constructors: ALC can
be extended by various constructors that are denoted in the
logic’s name: H for role hierarchies, + for transitive roles
(S stands for ALC+), I for inverse roles, R for role chain
axioms (R includes H+), O for nominals, Q for qualified
number restrictions, N for number restrictions, and (D) for
using datatypes. For instance, OWL is a syntactic variant of
the DL SROIQ(D) and EL is a subset of ALC supporting
only u and ∃.

B. Tableau Algorithm
A tableau algorithm decides the satisfiability of a given

concept C by constructing a completion graph for C. A

TABLE II
THE COMPLETION RULES FOR ALC

t-Rule If C tD ∈ L(v), for some v ∈ V and {C,D}∩L(v) = ∅,
then choose X ∈ {C,D} and X is added to L(v)

u-Rule If C uD ∈ L(v), for some v ∈ V and {C,D} * L(v),
then C and D are added to L(v)

∀-Rule If v, v′ ∈ V , v′ is R-successor of v, ∀R.C ∈ L(v) and
C /∈ L(v′), then C is added to L(v′)

∃-Rule If ∃R.C ∈ L(v), for some v ∈ V , and no R-successor v′

of v such that C ∈ L(v), then v′ ∈ V , L(〈v, v′〉) = {R},
C is added to L(v′)

complete and clash-free completion graph for C is interpreted
as C being satisfiable. A model is represented by a tableau
completion graph where concept descriptions are built using
boolean operators (t, u, ¬), universal restriction (∀), and
existential (∃) value restriction on concepts. The tableau
completion graph for ALC is a labeled graph G = 〈V,E,L〉,
where each node x ∈ V is labeled with a set L(x) of
concepts, and each edge 〈x, y〉 ∈ E is labeled with a set
L(〈x, y〉) of roles. A completion graph G contains a clash,
if {A,¬A} ⊆ L(x) for some atomic concept A, or ⊥ ∈ L(x).
The completion rules for ALC are shown in Table II. If no
completion rule can be applied to the graph G, then it is
complete. Example 2.1 illustrates how the tableau algorithm
determines the satisfiability of C = (A u ¬A) tB.

Example 2.1:
First we apply the tableau algorithm to:
L(x) = {C, (A u ¬A) tB}

The applicable rule is t-Rule. We apply it and obtain
L(x) = {A u ¬A,C, (A u ¬A) tB}

Then we can apply u-Rule and obtain
L(x) = {A,¬A,A u ¬A,C, (A u ¬A) tB}

Finally, there is a clash between A and ¬A. Then we try the
other disjunct and get
L(x) = {C,B, (A u ¬A) tB}

There are no more applicable rules and there is no clash.
Therefore C is satisfiable and there exists a model I that
satisfies ∆I = {x}, AI = ∅, BI = {x}, CI = {x}.

III. PARALLEL TBOX CLASSIFICATION

Our goal is to parallelize the computation of subsumption
taxonomies consisting of a large number of concepts and
speed up the process of TBox classification. In order to
reuse information from (non-)subsumption tests, our method
implements a parallel framework and a shared-memory global
data structure to record all binary subsumption relationships
occurring in an ontology (or TBox) O. A set P contains all
possible subsumees that every concept could have and a set K
represents all subsumees found from known subsumption rela-
tionships or subsumption tests. For example, if O |= B v A,
then we insert B into KA and delete B from PA. Since the
classification of O tests all pairs of concept subsumptions, we
use the concepts remaining in possible subsumee sets to reflect
the scale of work that still needs to be done until P becomes
empty.

Shared-
Memory

Start Reasoner

Load
an Ontology T1

T2

Tw

T1

T2

Tw

RandomDivisionSubsTest
T1T2... ...Tw

GroupDivisionSubsTest

KX 6= ∅

BuildPartialHierarchy

HX 6= ∅

Output
Ontology Taxonomy

Fig. 1. The Architecture of Parallel TBox Classification Approach

After loading an ontology O, a set NO contains all concepts
occurring in O. For each concept X ∈ NO, our method
initializes PX , which contains all possible subsumees of X
and an initially empty KX to contain all the known subsumees
derived from subsumption tests. For instance, let us assume
three concepts {A,B,C} ⊆ NO. After having initialized P
and K we get PA = {B,C}, PB = {A,C}, PC = {A,B}
and KA = KB = KC = ∅. Since NO contains all concepts
from O, in the following phases we use NO as a global
parameter for classifying O in parallel. We use the predicate
subs?() to test subsumption relationships for each pair of
concepts in P . The call of subs?(B ,A) returns true if A
is subsumed by B and false otherwise. Before testing, it is
necessary to know the satisfiability of each concept. A concept
X is satisfiable if a model of O exists such that XI is
an non-empty set. Otherwise, the concept X is unsatisfiable.
For example, if two concepts A, B are satisfiable, then the
subsumption relationships of the pair 〈A,B〉 are tested using
subs?():

{〈⊥, B〉, 〈B,A〉, 〈A,>〉}

In addition, we use the set of RO containing each concept
X ∈ NO where PX 6= ∅.

The TBox classification process is implemented in three
parallel phases. In each phase we use different parallelization
strategies. As a global parameter w we specify the maximum
number of parallel threads (or workers) available for classifi-
cation. The architecture of our approach is shown in Figure 1.
In the first phase, we randomly partition the set of all named
concepts into disjoint sequences having almost identical sizes
obtained by dividing the total number of named concepts by
w. In the second phase, we find all concepts X with PX 6= ∅
using a group division strategy with round-robin scheduling
for the worker thread pool in order to finish the classification
process. In the final phase, we implement a parallel divide-
and-conquer framework. Partial hierarchies are generated in
the divide part for all concepts X with KX 6= ∅. In the
conquer part the whole ontology is constructed based on the
existing partial hierarchies where HX 6= ∅. The algorithm
parallelTBoxClassification(P,K) is shown in Algorithm 1.

Algorithm 1: parallelTBoxClassification(P ,K)

Input: P,K - sets of possible and known subsumees
Output: H - the whole ontology taxonomy
NO ← generateNodeSet(O)
T ← createWorkerPool()
LO ← getRandomOrder(NO)
G← randomDivision(LO)
for each group Gi ∈ G do

Ti ← getAvailableThread(T)
Ti → randomDivisionSubsTest(Gi)

RO ← generateRemainingPossibleSet()
G← groupDivision(RO)
while RO 6= ∅ do

for each group GX ∈ G do
Ti ← getAvailableThread(T)
Ti → groupDivisionSubsTest(GX)

X ← getTopConcept()
while KX 6= ∅ do

Ti ← getAvailableThread(T)
HX ← (Ti → buildPartialHierarchy(KX))
if HX 6= ∅ then
H ← buildOntologyTaxonomy(HX)

X ← getKnownSubsumees(KX)
return H

A. Ontology Classification

In the classification phase, we use two strategies, the random
and the group division strategy. In our algorithm, we use for
each concept global sets containing possible (P) and known
subsumees (K). In that way we keep track of the changes
caused by the pool of worker threads during classification.
Each thread tests subsumption relationships and removes as
many concepts from P as possible. TBox classification termi-
nates once P has become empty for all concepts in NO.

Definition 1: With reference to NO, the set RO contains
all remaining possible subsumees of each concept and is
defined in (1).

RO =
⋃

X∈NO

PX (1)

Algorithm 2: randomDivisionSubsTest(Gi)
Input: Gi - random division group
Output: K - sets of known subsumees

P - sets of remaining possible subsumees
for each concept pair 〈X,Y 〉 ∈ Gi do

if ¬tested(X,Y) then
satX ← sat?(X)
satY ← sat?(Y)
if ¬satX then

PX ← ∅
delete X from PY

else if ¬satY then
PY ← ∅
delete Y from PX

else
if subs?(X,Y) then

insert Y into KX

delete Y from PX

1) Random Division Strategy: According to the number
of threads and total number of concepts occurring in O,
we divide all concepts into different groups with almost the
same size. In order to make the best use of all idle threads,
the number of threads is identical to the number of divided
groups for testing subsumption relationships for all concepts
in NO. Our method first generates an unordered sequence
LO which includes all concepts. Then we partition LO into
w different groups, where w is the number of available
threads. Then we test subsumption relationships between all
the pairs 〈Y,X〉 with Y,X ∈ NO for each group Gi by
calling randomDivisionSubsTest(Gi) (see Algorithm 2). We
use sat?() to test concept satisfiability and tested() to check
whether the subsumption between two concepts has already
been tested.

Example 3.1: Assume there are three threads available
to perform subsumption tests. The algorithm first shuffles all
concepts in NO = {A,B,C,D,E, F} and returns the first
cycle sequence L1

O = (A,C,E,D,B, F). Then each group
Gi contains two possible subsumees, such as G1 = {A,C},
G2 = {E,D}, and G3 = {B,F} for subsumption testing. For
each thread Ti the results are

T1 : C v A, T2 : D 6v E, T3 : F 6v B

The second cycle sequence is L2
O = (D,C,A, F,B,E).

The divisions of each group are G1 = {D,C}, G2 = {A,F}
and G3 = {B,E}. For each thread, the results are

T1 : D v C, T2 : F v A, T3 : E v B

Since our process to generate random divisions currently
ignores already discovered subsumptions, there is a possibility
that a pair of concepts occurs in a division more than once in
different cycles. Therefore, we use tested() to avoid redundant
tests. We consider the runtime for each thread as almost
the same and the waiting time can be neglected right now.
Currently, our results also show that the runtime differences

Algorithm 3: groupDivisionSubsTest(GX)
Input: GX - group division of concept X
Output: K - sets of known subsumees

P - sets of remaining possible subsumees
for each concept Y ∈ GX do

if sat?(Y) and ¬tested(X,Y) then
if subs?(X,Y) then

insert Y into KX

delete Y from PX

⊥

F
sat?(F)

D
sat?(D)

C
sat?(C)

A
sat?(A)

(a) Test satisfiability of the possible subsumees of B

B

A
subs?(B,A)

C D
subs?(B,D)

F
subs?(B,F)

(b) Test subsumptions for the possible subsumees of B

Fig. 2. Subsumption tests for group GB

for each thread can be neglected when compared with the total
execution time.

If RO is not empty after random division phase testing,
possible subsumees are left in P . We use a group division
strategy to divide all remaining possible subsumees in RO into
different groups to continue testing subsumption relationships
until P becomes empty.

2) Group Division Strategy: For each concept X in NO a
group GX = PX is generated according to the remaining set
RO which is defined in Definition 1. The groups GX define
the input to groupDivisionSubsTest(GX) (see Algorithm 3),
which determines what elements of GX are subsumed by X .
Each group is assigned to a different idle thread until all groups
have been classified. During the process, we apply round-robin
scheduling to ensure a good use of all threads.

Example 3.2: According to the results from random
division phase, let us assume the following six groups are
generated:

GA = {B,D,E} GB = {A,C,D, F}
GC = {B,E, F} GD = {A,B, F}
GE = {A,C, F} GF = {B,C,D,E}

We further assume that three threads are available for
subsumption testing. In Figure 2, we use GB as an example.
First the satisfiability of all concepts Y ∈ GB is tested using
sat?(Y). For example, we assume that C is unsatisfiable then
this is shown in Figure 2(a) by a dashed line. For all satisfiable
concepts Y ∈ GB , we use subs?(B, Y) to test subsumptions
as shown in Figure 2(b).

TABLE III
SCHEDULING RESULTS OF EXAMPLE 3.2

Timeline−−−−−−−−−−−−− →
T1 GA GE

T2 GB GF

T3 GC GD

In the following we now assume all concepts in all groups
are satisfiable, the group scheduling is shown in Table III and
the testing results of each thread are shown as follows.

T1(GA) :B v A,D v A,E v A

T2(GB) :A 6v B,C 6v B,D 6v B,F 6v B,A ≡ >
T3(GC) :B 6v C,E 6v C,F v C

T ′3(GD) :A 6v D,B 6v D,F 6v D

T ′1(GE) :A 6v E,C 6v E,F 6v E

T ′2(GF) :B 6v F,C 6v F,D 6v F,E 6v F

Since P becomes empty and RO = ∅, all subsumption
relationships between all concepts occurring in O have been
tested. The classification of O terminates.

B. Ontology Taxonomy
In order to find the direct subsumees of each concept and

build the whole subsumption hierarchy, we use a concept
hierarchy strategy which is implemented by a parallel divide-
and-conquer method to construct the taxonomy of O. When
RO becomes empty, all known subsumees of a concept X are
members of KX . First we find the concept which is equal
to > and traverse all the concepts X ∈ K>. Then we build
the partial hierarchy HX for each concept X by computing
the transitive closure to reduce the known set KX . For each
concept in KX , we compute all the direct subsumees of X
and insert them into HX . Finally, the whole taxonomy of the
ontology O is constructed based on the partial hierarchy of
each concept.

1) Concept Hierarchy Strategy: In the divide phase, the
algorithm begins with KX where X is initially equal to >.
For each concept Yi ∈ KX and i = 1, 2...n, if KYi 6= ∅
and X ∈ KYi

, then Yi ≡ X; if X 6∈ KYi
, Zi ∈ KYi

and
Zi ∈ KX , then Zi is deleted from KX . The method continues
with the next concept Yi+1 ∈ KX until all the concepts in
KX have been traversed. The remaining concepts in KX are
the direct subsumees of X which are inserted into HX . The
algorithm buildPartialHierarchy(KX) is shown in Algorithm 4.
For each concept X with KX 6= ∅ its partial hierarchy is built
in parallel. The process terminates once all partial hierarchies
have been built.

Example 3.3: According to the results from Example
3.2, when P becomes empty, the known sets for each concept
are:

KA = {B,C,D,E, F}
KB = {E}, KC = {D,F}
KD = ∅, KE = ∅, KF = ∅

Algorithm 4: buildPartialHierarchy(KX)
Input: KX – set of known subsumees of concept X
Output: HX – the partial hierarchy of concept X
if KX 6= ∅ then

for each concept Y ∈ KX do
if KY 6= ∅ then

if X ∈ KY then
delete X from KY

setEquivalentConcept(X,Y)
else

for each concept Z ∈ KY do
if Z ∈ KX then

delete Z from KX
HX ← KX

return HX

A

B C

(a) HA

E

B

(b) HB

C

D F

(c) HC

Fig. 3. Partial Hierarchy for the concepts in different threads

Since A ≡ >, the hierarchy construction starts with the first
concept B ∈ KA and E is the first concept in KB which is
also in KA, then E is deleted from KA. The second concept is
C ∈ KA and there are two concepts D and F in KC , then D
and F are deleted from KA. Therefore KA = {B,C} and the
partial hierarchy of A is HA = {B,C}. Since KB = {E} and
KE = ∅, the partial hierarchy of B is HB = {E}. Because
of KC = {D,F}, KD = ∅ and KF = ∅, the partial hierarchy
of C is HC = {D,F}. The final partial hierarchy H of the
concepts in each thread is as follows:

T1 : HA = {B,C} in Figure 3(a)
T2 : HB = {E} in Figure 3(b)
T3 : HC = {D,F} in Figure 3(c)

In the conquer phase, after the partial hierarchy of each
concept has been built, we merge all the partial hierarchies
into the whole taxonomy from top to bottom. The final concept
hierarchy of O is shown in Figure 4.

IV. OPTIMIZATION

In order to minimize the potential non-possible or known
subsumees from the Possible list, we first generates a unique
index I for each concept occurring in O. Each concept A
with a smaller index IA contains the possible relationships
with concept B with a bigger index in PA. Therefore the
set P contains all possible relationships which could be
possible subsumers or subsumees. In order to shrink the set
P using less subsumption tests, we find that known results
from subsumption tests can be used to prune untested possible
concepts in P without subsumption testing. By using the
results from Example 3.3, assume concept B ∈ PA will be
tested for a subsumption relationship with A. The following

A

B

E

C

D F

Fig. 4. The whole concept hierarchy of O

A

B

E

C F

Fig. 5. An Example for Situation 2.3.1 and Situation 2.3.2

steps perform changes to P and K before new divisions are
created for an idle thread.

Situation 1: If both concepts are unsatisfiable, their set
P is empty; The changes to P and K are PA = ∅, PB = ∅,
KA = ∅ and KB = ∅.

Situation 2: If both concepts are satisfiable, test the
subsumption relationships between them.

Definition 2: Since IA < IB , the position of concept B
in PA is defined in (2).

B.position = PA.position[IB − IA − 1] (2)

Situation 2.1: If concept B ∈ PA and tested(A,B) is
true, which means B has been tested, then we continue with
the next concept C ∈ PA to test its subsumption relationships
with A; otherwise continue with Situation 2.2.

Situation 2.2: The subsumption relationships are tested
in a symmetrical way by subs?(B,A) and subs?(A,B). If
both results are true, then the two concepts are equivalent to
each other; otherwise continue with Situation 2.3.

Situation 2.3: If only one of the results is true, i.e.,
O |= B v A but O |= A 6v B, the changes to both sets
P and K are PA = {B, C, D, E, F}, KA = {B,C, F}
and we continue with Situation 2.3.1; otherwise continue with
Situation 2.4.

Situation 2.3.1: Delete all concepts Y ∈ KB from
PA and KA. Due to O |= B v A and KB = {E}, all
the subsumees of B are subsumees of A but not the direct
subsumee of A as shown in Figure 5. Therefore, all concept
Y ∈ KB are deleted from PA without subsumption tests. In
the example, concept E ∈ KB but E /∈ KA is deleted from
PA. The changes of P are PA = {B, C, D, E, F} and we
continue with Situation 2.3.2.

Situation 2.3.2: For all concepts Y ∈ KB delete A from
PY . Due to O |= B v A and KB = {E}, all the subsumees of
B are subsumees of A and concept A is not a subsumee of all
concepts Y ∈ KB as shown in Figure 5. Therefore, concept A
is deleted from PY with Y ∈ KB . Since only concept E ∈ Y
and IE > IA in our example, there are no changes to both P
and K.

A

B

E C

F

(a)

A

B

E C F

(b)

Fig. 6. Counter examples of ‘delete all concepts X ∈ KA from PB’

>

A

F

B

C E

Fig. 7. First Counter Example for Situation 2.4

We also consider situations such as ‘delete all concepts
X ∈ KA from PB’. Since KA = {B,C, F}, we know that
concepts C and F are in KA and the two concepts could not
have subsumption relationships with B. However, there are
some counter examples which indicate possible relationships
between B and C, F such that O |= C v B in Figure 6(a)
and O |= F v B in Figure 6(b). Therefore, we cannot assume
subsumption relationships between 〈B,C〉 and 〈F,B〉 without
performing subsumption tests.

Situation 2.4: If both concepts are not subsumed by each
other such that O |= A 6v B and O |= B 6v A, then both sets
P and K remain unchanged.

According to this condition, we try to find some situations
which allow us to shrink P in an efficient way without
performing subsumption tests. However, we identified some
counter examples as shown in Figures 7+8 where the dashed
lines indicate possible relationships between pairs of concepts.
Below we describe two scenarios.

• Delete all concepts X ∈ KA from PB and Y ∈ KB from
PA. For example as shown in Figure 7, there is a concept
C ∈ KA, C ∈ PB , O |= A 6v B and O |= B 6v A , but
A and B are both known subsumers of C. The possible
relationship between C and B could exist before C is
deleted from PB ; there is a concept E ∈ KB , E ∈ PA,
O |= A 6v B and O |= B 6v A, but concept E is a
subsumee of both A and B. Therefore, the relationships
of the pairs 〈B,C〉 and 〈A,E〉 need to be tested before
deleting C from PB and E from PA.

• For all concepts X ∈ KA delete B from PX and all
concepts Y ∈ KB delete A from PY . In the example
shown in Figure 8(a), there is a concept F ∈ KA,
F ∈ PB (IF > IB), O |= A 6v B and O |= B 6v A, but
concept B is a known subsumee of F . In Figure 8(b),
there is concept E ∈ KB , E ∈ PB , O |= A 6v B
and O |= B 6v A, but concept A is a subsumee of
E. Therefore, relationships between the pairs of 〈B,F 〉
and 〈A,E〉 need to be tested before deleting F from PB

E

B

F

A

D

(a)

F

A

E

B

D

(b)

Fig. 8. More Counter Examples for Situation 2.4

(IB < IF) and E from PA (IA < IE).

Algorithm 5 correctly deals with all the situations illustrated
above.

Example 4.1: For random division tests, we apply the
random division strategy and use the same random division
results from Example 3.1. The first random division cycle
result in:

T1 : C v A, A 6v C

T2 : E 6v D, D 6v E

T3 : F 6v B, B 6v F

The results of the second random division cycle are:

T1 : D v C,C 6v D

T2 : F v A,A 6v F

T3 : E v B,B 6v E

The remaining possible sets P are:

PA ={B,D,E}, PB = {C,D},
PC ={E,F}, PD = {F}, PE = {F}

For each random division cycle, we apply the above-mentioned
optimized techniques. Since O |= C v A and concept D ∈
KC , concept D is deleted from PA and the remaining sets P
become:

PA ={B,E}, PB = {C,D},
PC ={E,F}, PD = {F}, PE = {F}

Now let us assume there are three threads available for
subsumption testing and all concepts in RO are divided into
groups using the group division strategy. The divisions for the
groups GX are:

GA ={B,E}, GB = {C,D},
GC ={E,F}, GD = {F}, GE = {F}

Algorithm 5: pruneNonPossible(A,B)
Input: A,B - two concepts from NO
Output: K - sets of known subsumees

P - sets of possible subsumees
if sat?(A) then

if sat?(B) then
if ¬tested(B,A) and ¬tested(A,B) then

result1 ← subs?(A,B)
result2 ← subs?(B,A)
if result1 and result2 then

return A ≡ B
else if result1 then

for each concept Y ∈ KB do
delete Y from PA and KA

delete A from PY
else if result2 then

for each concept X ∈ KA do
delete X from PB and KB

delete B from PX
else

PB ← ∅
else

PA ← ∅

After applying the optimized techniques and round-robin
scheduling for each thread Ti, all the pairs in brackets have
not been tested and the results are:

T1 : B v A, A 6v B (E v A, A 6v E);

T2 : B 6v C, C 6v B (B 6v D, D 6v B);

T3 : (E 6v C, C 6v E) F v C, C 6v F ;

T ′1 : D 6v F, F 6v D;

T ′2 : (E 6v F, F 6v E)

For T1, the subsumption relationship between concepts A and
B is that O |= B v A, then concept E ∈ KB can deleted
from PA without further testing by applying Situation 2.3.1.
For T2, the concepts B and C are not subsumed by each
other and D ∈ KC , then concept D can be deleted from
PB without further tests. For T3, since the concepts B and
C are not subsumed by each other and E ∈ KB , concept E
can be deleted from PC without further tests. Since we use
a global atomic data structure when testing the relationships
between B and C, there will be no conflict between T2 and
T3. The subsumption tests between C and E can be executed
only after concepts B and C have been tested. For T ′2, since
concept E ∈ KB , F ∈ KC and concepts B and C are not
subsumed by each other, F can be deleted from PE without
further tests.

Therefore, all the subsumptions listed in brackets can be
inferred without testing. The remaining possible set RO will
be pruned significantly due to the many relationships found
among the concepts. The classification terminates when P has
been emptied.

TABLE IV
METRICS OF USED OWL TEST ONTOLOGIES

Ontology Concept Axiom SubClassOf Expressivity
WBbt.obo 6785 19138 12347 EL
EHDA#EHDA 8341 33367 8339 EL
obo.PREVIOUS 1663 4099 1377 ELH+
actpathway.obo 7911 25314 17402 EL
EHDAA2 2726 16818 13458 ELH+
lanogaster.obo 10925 16567 5641 EL
MIRO#MIRO 4366 21274 4454 EL+
CLEMAPA 5946 16864 10916 EL
EMAP#EMAP 13735 27467 13732 EL

V. A FIRST EVALUATION

Our parallel classification architecture is implemented as a
Java shared-memory program using HermiT 1.3.8 as OWL
reasoner plug-in. We performed our experiments on a HP
DL580 Scientific Linux1 SMP server with four 15-core proces-
sors (Gen8 Intel Xeon E7-4890v2 2.8GHz) and 1 TB RAM.
For this first evaluation of our classification architecture we
selected a set of 9 real-world ontologies from the ORE 2015
[17] repository that contain up to 13,000 concepts and 33,000
axioms to test scalability and 5 ontologies from the ORE
2014 [18] repository that contain up to 7,000 axioms and
967 qualified cardinality restrictions (QCRs), which are used
to constrain the number of values of a particular property
and type and are considered to be an important parameter in
testing the complexity factors of our approach. Their metrics
are shown in Tables IV+V (see Section II-A about naming
DLs). For benchmarking we ensured exclusive access to the
server in order to avoid that other jobs affect the elapsed time
of our tests. For tests with a smaller set of threads we ran
several jobs in parallel but jobs exceeding 60 threads were
run exclusively. Currently, since our method is implemented
using an independent parallel synchronized architecture for all
the processing threads and the overhead factors mainly focus
on the scalability and complexity of the ontologies we chose.

A. Ontology Scalability

In order to assess the scalability of our architecture we
conducted a series of experiments where the number of
workers/threads available for classification varied between 1
(sequential case) to 140. Due to the limitations of our test
environment we restricted the maximum number of threads
to 140. We computed the speedup as the ratio of the runtime
(sum of runtimes of all threads) divided by the elapsed time.
Each individual experiment was repeated three times and
the resulting average was used to determine its runtime and
elapsed time. The 9 ontologies can be roughly divided into
three groups of similar sizes measured by their number of
contained concepts (n).

Figure 9(a) shows a set of smaller ontologies. For the two
smallest ontologies the peak speedup is reached with 20-32
workers. A higher number of workers indicates a performance
degradation that is due to our current partitioning scheme

1GNU/Linux Version 2.6.32-642.15.1.el6.x86 64

0

5

10

15

20

25

1 2 4 8 12 18 20 24 32 48 60 80 100

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

n=1663
n=2726
n=4366

(a) n ∈ {1663, 2726, 4366}

0

10

20

30

40

50

60

1 4 8 16 24 32 48 56 66 80 100 110 125 140

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

n=5946
n=6785
n=7911

(b) n ∈ {5946, 6785, 7911}

0

10

20

30

40

50

60

70

80

1 4 8 16 24 32 48 56 66 80 100 110 125 140

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

n=8342
n=10925
n=13735

(c) n ∈ {8341, 10925, 13735}

Fig. 9. Speedup factors for ontologies from Table IV with an increasing
number of concepts (n = number of concepts)

where the size of the partition allocated to of each worker
is roughly n

w (n is the number of concepts in an ontology and
w the number of workers). When the partition size becomes
too small, overhead affects the performance adversely.

Figure 9(b) shows medium-sized and Figure 9(c) large
ontologies. With the exception of the smallest ontology in
Figure 9(b) both figures show a similar speedup increase. This
is due to bigger partition sizes and reduced overhead. The
peak is currently reached with 140 workers. It is necessary to
make partition sizes reasonably big. Therefore, for our future

TABLE V
METRICS OF USED OWL TEST ONTOLOGIES WITH QCRS

Ontology Concept Axiom SubClassOf #QCRs #Somes #Alls Equivalent Disjoint Expressivity
ncitations functional 2332 7304 2786 47 659 54 269 115 SROIQ(D)
nskisimple functional 1737 4775 2234 43 533 27 50 84 SRIQ(D)
rnao functional 731 2884 1235 446 774 2 385 61 SRIQ
ddiv2 functional 1469 4080 1832 48 388 27 56 75 SRIQ(D)
bridg.biomedical domain 320 6347 295 967 0 0 5 37 SROIN (D)

research we are expecting a similarly good or even better
performance for much bigger ontologies (number of concepts
up to 300,000).

B. Ontology Complexity

There are other factors that can affect our experiments such
as the complexity of an ontology and the efficiency of HermiT,
the selected reasoner plug-in, which is also implemented in
Java. For most of the used ontologies we observed that the
runtimes of individual subsumption tests performed by HermiT
are rather uniform but for ontologies with a higher expressivity
it is well known that just a few subsumption tests may require
a significant amount of the total runtime. Furthermore, the
plug-in reasoner might be more or less efficient depending on
the expressivity of the test ontologies.

In order to test the performance of our architecture for
complex ontologies, we used the same experimental environ-
ment and selected five smaller real-world ontologies with a
logic of high expressivity as shown in Table V. Since the
number of concepts for these ontologies is only up to 2332, we
conducted experiments where the number of available workers
range from 1 to 80. We computed the speedup as the ratio
of runtime divided by elapsed time. Each experiment was
repeated three times and used the resulting average as runtime
and elapsed time to calculate speedup. We roughly divided
the five ontologies into two groups based on their number of
QCRs.

In Figure 10(a), the number of QCRs in the first group is
around 40. Since we try to select reasonable partition sizes,
we used up to 80 threads to compute the speedup factors for
all three ontologies. As the number of threads is increased, a
better speedup is observed.

In Figure 10(b), the number of QCRs is reaching 967,
which indicates the difficulty of ontology classification. With
an increasing number of threads, the ontology with 446 QCRs
shows a good speedup factor. However, due to the complexity
and limitation of HermiT, the other one which has 967 QCRs
shows the best performance for four workers and afterwards
the speedup factor remains around 4. As we observed, this
ontology includes some difficult QCRs which causes several
subsumption tests to take longer than others, therefore its
speedup does not always increase.

As expected, in general the results show that our method
has a speedup linear to the number of threads. However,
since our algorithm currently is implemented without en-
hanced optimizations to reduce the number of subsumption
tests (besides the ones we described in Section IV), we are

0

5

10

15

20

25

30

1 4 10 18 24 32 40 52 66 80

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

nskisimple_functional,	q	=	43
ddiv2_functional,	q	=	48
ncitations_functional,	q	=	47

(a) n ∈ {1469, 1737, 2332}, q ∈ {43, 47, 48}

0

2

4

6

8

10

12

14

16

18

20

1 4 10 18 24 32 40

SP
EE
DU

P

NUMBER	OF	WORKERS	/	THREADS

rnao_functional,	q	=	446

bridg.biomedical_domain,	q	=	967

(b) n ∈ {320, 731}, q ∈ {446, 967}

Fig. 10. Speedup factors for ontologies from Table V with QCRs (n = number
of concepts, q = number of QCRs)

adding various optimizations to better compete with existing
sequential reasoners.

C. Load Balancing

From our experiments we observed that the first (random
division) phase (with randomly created groups of similar
average size) exhibits a better load balancing than the second
(group division) phase. However, the classification process can
only terminate once the second phase has been completed. To
get a better understanding of the performance for both the
random division and the group division phase and balance
the two phases to make them more efficient, we used a ratio
representing the decrease of the number of possible subsumers
in each phase.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

Ra
tio

Division	Cycle

Possible	Ratio

Runtime	Ratio

Fig. 11. Division cycle result of ncitations functional.owl (concepts = 2332,
threads = 10, random division cycle = 10, group division cycle = 1)

Definition 3: InitialPossible is defined as the initial
number of possible subsumers for an ontology and Remaining-
Possible is the number of possible subsumers after completing
each division cycle. Therefore, the possible ratio is defined in
(3) as follows.

Possible =
InitialPossible − RemainingPossible

InitialPossible
(3)

We chose the ontology ncitations functional.owl from Table
V with 2332 concepts and used 10 workers. We decided
on ten random division cycles and one group division cycle
to determine the load balance factors. We also recorded the
runtime for each phase and calculated the runtime ratio as the
accumulated cycle runtimes divided by the total runtime. The
result is shown in Figure 11.

We implemented two parallel classification phases in our
methods and the random division phase applied a completely
random division strategy to minimize the number of remaining
possible subsumers on a large scale. As expected, the random
division strategy (cycles 1-10) increased the value Possible up
to 60, i.e., the number of possible subsumees was reduced
by 60%, before the group division strategy was applied. The
runtime ratio is almost at the same level as the possible ratio
(see Figure 11). However, from our test results we noticed that
with an increasing number of threads, the ratio factor does
not necessarily increase, especially if the number of threads
is more than 60. We are still working on finding a better load
balancing between the two phases which can both shorten
the runtime and reduce the number of possible subsumees as
quickly as possible. Therefore, the ratio factor affecting load
balancing of the two parallel phases can be expected to be
improved when much larger ontologies are tested.

VI. CONCLUSION

We have presented promising results in designing and
implementing a parallel OWL ontology classification architec-
ture. We were inspired by ideas from [15] and applied parallel
techniques to create a thread pool for each sub-task working
on an independent processor. Compared to existing sequential
classification methods and the limitations of recently proposed

parallel classification approaches, our method is the first using
a random division strategy to address the large scale of
ontologies and then applying a group division strategy to finish
TBox classification. Furthermore, due to the design of our
shared atomic data structures we avoid possible race conditions
for updates of shared data. Currently, our method relies on
the existing sequential OWL reasoner HermiT. We observed
that for difficult ontologies our method can outperform the
stand-alone version of HermiT. However, due to processor and
reasoner restrictions, not all ontologies could be tested on the
current platform within a reasonable amount of time. More
thorough experiments on the speedup and ratio factors of our
parallel framework are in progress.

From our current results, we believe that we can apply our
approach to large scale ontologies to get a better performance
compared to existing sequential methods. We plan to achieve a
better load balance solution for the two parallel phases. Over-
all, our parallel TBox classification method shows promising
results that makes us believe it could be applied to ontologies
with a much larger size and complicated ontologies with a
promising runtime and a better speedup.

REFERENCES

[1] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scien-
tific American, vol. 284, no. 5, pp. 34–43, 2001.

[2] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, Eds., The Description Logic Handbook, 2nd ed. Cambridge
University Press, 2007.

[3] R. Möller and V. Haarslev, Tableau-Based Reasoning. Handbook on
Ontologies-Tableau-based reasoning, 2009, pp. 509–528.

[4] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz,
OWL 2 Web Ontology Language Profiles (Second Edition). W3C
Recommendation, 2009.

[5] V. Haarslev and R. Möller, “RACER system description,” in Interna-
tional Joint Conference on Automated Reasoning, 2001.

[6] D. Tsarkov and I. Horrocks, “Fact++ description logic reasoner: System
description,” in International Joint Conference on Automated Reasoning,
2006.

[7] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang, “HermiT:
an OWL 2 reasoner,” Journal of Automated Reasoning, vol. 53, no. 3,
pp. 245–269, 2014.

[8] A. Steigmiller, T. Liebig, and B. Glimm, “Konclude: system descrip-
tion,” Web Semantics, vol. 27, pp. 78–85, 2014.

[9] Y. Kazakov, M. Krötzsch, and F. Simančı́k, “Concurrent classification
of EL ontologies,” in Int. Semantic Web Conf. , vol. 305-320. Springer,
2011.

[10] M. Aslani and V. Haarslev, “Parallel tbox classification in description
logics - first experimental results,” in Proc. of the 19th European Conf.
on Artificial Intelligence, 2010, pp. 485–490.

[11] K. Wu and V. Haarslev, “A parallel reasoner for the description logic
ALC,” in Proc. of the 2012 Int. Workshop on Description Logics, 2012,
pp. 378–388.

[12] ——, “Exploring parallelization of conjunctive branches in tableau-
based description logic reasoning,” in Proc. of the 2013 Int. Workshop
on Description Logics (DL-2013), 2013, pp. 1011–1023.

[13] ——, “Parallel OWL reasoning: Merge classification,” in Proc. of the
3rd Joint Int. Semantic Technology Conference, 2013, pp. 211–227.

[14] J. Faddoul and W. MacCaull, “Handling non-determinism with de-
scription logics using a fork/join approach,” International Journal of
Networking and Computing, vol. 5, no. 1, pp. 61–85, 2015.

[15] B. Glimm, I. Horrocks, B. Motik, R. Shearer, and G. Stoilos, “A novel
approach to ontology classification,” Web Semantics, vol. 14, pp. 84–
101, 2012.

[16] F. Baader and U. Sattler, “An overview of tableau algorithms for
description logics,” Studia Logica, vol. 69, pp. 5–40, 2001.

[17] 4th OWL reasoner evaluation (ORE) workshop, 2015.
[18] 3rd OWL reasoner evaluation (ORE) workshop, 2014.

