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Abstract. OWL is a very expressive language, but some user obviously
struggle to formulate what they want to say. Now, some of these users
may find it easier to write down a SWRL rule instead of an OWL ax-
iom. Hence, we present a rule editor plug-in for Protégé that brings
something different to rule and OWL integration. We part from the two
usual approaches: (i) use it as is with say, Hoolet, knowing that it leads
to undecidability. (ii) Or make it DL-safe, but then it restricts the se-
mantic impact and, e.g., looses the nice “car owners are engine owners”
inference. This plug-in implements a rewriting technique that rewrites
certain forms of rules into DL axioms using OWL 1.1’s new features.
These rules rewritten as OWL 1.1 axioms do not require DL-safety, thus
allow the extra inferences, and do not cause any undecidability. In this
paper, we outline the rewriting technique, present the plug-in and give
some practical results.

1 Introduction

Ontologies are used more and more for different applications in a lot of domains,
notably the Semantic Web and the life sciences. These ontology are often written
in OWL, which uses Description Logics (DL) [1] as logical foundation. The forms
of knowledge that has to be represented across these usages are not always trivial
to encode in OWL. A notable example of such problematic type of knowledge is
rule-like knowledge. Rules are very natural and intuitive to model some domains.
The problem is that reasoning over an OWL ontology augmented with (SWRL
[2]) rules is undecidable. We can regain decidability by restricting rules to be
DL-safe [3]. DL-safety means that only individuals explicitly introduced in the
ontology can be matched against the variables of the rule. The main drawback of
this restriction is that it restricts the semantic impact of the rule, e.g., it prevents
the nice “car owners are engine owners” type of inference, where one can derive
that the owner of a car also owns the engine of that car. Another option was
recently introduced in [4]. This technique identifies a certain form of rules that
can be rewritten into OWL axioms using features introduced in OWL 1.1 [5].
Since the rules are encoded as axioms, they are not restricted to DL-safety thus
the aforementioned inference is preserved. This could allow a user more used to
writing rules to define a complete ontology as a set of rules and it would have
the same semantics as its OWL counterpart. Another benefit of this rewriting is
that we can still use standard OWL reasoners. This rewriting obviously does not
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add expressivity to OWL 1.1, but it uses the available constructs in a non-trivial
way to maximize the expressive power of the rules. Here are a few examples
of the rules this rewriting can handle: (i) R(x, y) ∧ R(x, z) ∧ C(y) ∧ D(z) →
C(x), (ii) R(x, y)∧S(y, z) → S(x, y), (iii) hasOffspring(y, x )∧hasParent(x , y)∧
hasSibling(y, z ) ∧ Man(z ) → hasUncle(x , z ). The rule (i) can be rewritten as a
standard concept definition and is thus obviously rewritable. The rules (ii) and
(iii) are much more interesting because they are not obvious to rewrite, even for
an experienced OWL user.

In this paper we present a plug-in for the Protégé1 ontology editor, the DL-
Rule plug-in2. This plug-in is a feature-rich rule editor that allows the user to
create and edit rules within Protégé. The defining characteristic of this plug-in is
that it implements the rewriting introduced earlier so that if a rule is rewritable,
it will be added to the ontology as axioms to get the most inference possible
and if it is not rewritable, the rule is then added to the ontology as a SWRL
rule to be handled by a reasoner supporting DL-safe rules. By using these two
approaches in conjunction, we get the “best of both world”, so to speak, since
each rule is added to the ontology in the form that suits it best. The structure
of the paper is as follows. In Section 2 we introduce some notions of OWL 1.1
needed to understand this paper. We introduce the forms of rules that can be
rewritten in Section 3, and we give an overview of Protégé in Section 4. We then
describe the plug-in itself and its features in Section 5 and we finish by rewriting
a rule to give some intuition of how the rewriting works in Section 6.

2 OWL 1.1

The rewriting technique we implemented in the plug-in requires features that
are part of the OWL 1.1 submission. OWL 1.1 extends OWL-DL with many
new features but here, due to space constraints, we will focus on the two new
features that are used extensively in the rewriting: the self restriction and the
sub-property chain. The self restriction construct models individuals that are
connected to themselves by a given object property. The classical example to
illustrate the utility of this to define the class Narcissist with a self restriction
on the property likes. The sub-property chain feature expresses the propagation
of an object property over the composition of a sequence of object properties.
For instance, on could model the propagation of the hasLocation property over
the partOf property, meaning that if x is a part of y and y has location z then x

has location z. However, the form of the chain and the property hierarchy as a
whole is subject to some restrictions to ensure decidability. We will now explain
these restrictions.

We first need to define a relation, v, as the smallest relation on properties
for which the following holds. If the ontology contains an axiom of the form

– SubObjectPropertyOf(P1 P2), then P1 v P2 holds;

1 http://protege.stanford.edu
2 http://users.encs.concordia.ca/~f_gasse/
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– EquivalentObjectProperties(P1 P2), then P1 v P2 and P2 v P1 hold;
– InverseObjectProperties(P1 P2), then P1 v INV(P2) and INV(P2) v P1 hold;
– SymmetricObjectProperty(P), then P v INV(P) holds;
– P1 v P2 holds, then INV(P1) v INV(P2) holds as well.

The relation v∗ is the reflexive-transitive closure of v. An object property P
is composite if it, or its inverse, is either the super-property of a property chain,
or transitive. An object property P is simple if, for each object property P’ such
that P’ v∗ P, P’ is not composite. An ontology is valid in OWL 1.1 if it satisfies
the following conditions:

– Cardinality restriction and self restriction axioms only contain simple prop-
erties.

– Only simple properties are defined as functional, inverse functional, irreflex-
ive, asymmetric or disjoint.

– There must exist a strict partial ordering ≺ for which the following holds:
• If x ≺ y holds, then y v∗ x does not hold;
• Each axiom of the form SubObjectPropertyOf(SUB P) where SUB is of

the form SubObjectPropertyChain(P1...Pn) with n ≥ 2 fulfills the following
conditions:
∗ n = 2 and P1 = P2 = P, or
∗ Pi ≺ P for each 1 ≤ i ≤ n, or
∗ P1 = P and Pi ≺ P for each 2 ≤ i ≤ n, or
∗ Pn = P and Pi ≺ P for each 1 ≤ i ≤ n-1.

These restrictions prevents the rewriting of some common forms of rules. For
example, it does not allow the specialization of a property w.r.t. its filler such as
the rule hasChild(x , y)∧Man(y) → hasSon(x , y) would induce. Indeed, from the
rule we have hasChild≺hasSon and since hasSon is a subproperty of hasChild,
hasSonv∗hasChild also holds and this violates the definition of ≺.

3 Admissible rules

We will now define what form of rules are admissible to be rewritten, but first
we have to define a rule. Let X be a set of variables disjoint from role or concept
names. An atom is either a class atom C(x) or a property atom R(x, y), for C

a class, R a property and x, y variables from X . A rule is an expression of the
form A1 ∧A2 ∧ ...∧An → H where Ai and H are atoms of either form, and the
variables in H occur in some of the Ai. We will use a graph conceptualization of
the rules to define the admissible rules. We do so because it allows us to state
restrictions in an elegant way and it is a is rather intuitive way to see rules. We
now introduce the relevant graph related notions.

A rule graph is a directed labeled graph induced by the body of the rule.
Given a rule, its graph is defined as follows. For every atom of the form C(x),
there is a node x and its label contains C. For every atom of the form R(x, y),
x and y are nodes and there is an edge 〈x, y〉 labeled R. Nominals in atoms are
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treated the same as variables, but the nominal has to be added to the label of
the node. For example, for an atom R(Nominal, x) there is a node nominal,
labeled Nominal, and an edge 〈nominal, x〉 labeled R. To improve readability,
when we say that a graph contains an edge 〈x, y〉, labeled R, it is implied that
it could instead contain 〈y, x〉, labeled R−. We now introduce the notion of a
skeleton of a rule graph.

A graph is a skeleton, with respect to a property hierarchy, if there are no
edges that are implied by other edges of the graph. An edge can be implied by
edges of a sub-property, an inverse, a subproperty chain or itself, if it is transitive.
A skeleton of a rule graph is obtained by applying the following rules until none
is applicable anymore:

1. Let S be the inverse property of R. If 〈x, y〉 labeled R and 〈y, x〉 labeled S

are in the graph, then remove one of them.

2. Let R be a transitive property. If 〈x, y〉, 〈y, z〉 and 〈x, z〉 all labeled R, are in
the graph, then remove the 〈x, z〉 edge.

3. Let R be a super-property of S. If 〈x, y〉 labeled R, and 〈x, y〉 labeled S and
R 6= S, then remove the R edge.

4. Let a subproperty chain of the form R1, R2, ..., Rn be the subproperty of S.
If 〈x1, x2〉 labeled R1, . . . , 〈xn, xn+1〉 labeled Rn, and 〈x1, xn+1〉 labeled S

are in the graph, then remove the S edge.

The reason we use skeletons is that by removing implied edges from the rule
graph, we maximize the chances that it satisfies the restrictions imposed on the
form of the rules. There are two kind of rules, concept-headed and property-
headed. They have different admissibility conditions, so we will define both sep-
arately. A rule graph G is concept-headed rule admissible if it is a tree, i.e., does
not contain any cycle. To define the restrictions over the property-headed rules,
we first have to introduce the notion of the main chain of a rule’s skeleton graph,
which is the path between the two nodes referenced in the rule’s head, including
these. A rule graph G is property-headed rule admissible if:

1. It is a tree.

2. Let l be the list of the labels of the edges of the main chain and P be the
property in the head of the rule

(a) l is of one of the valid form for property chain listed in Section 2, and

(b) if P is the first (resp. last) property in l, then the first (resp. last) node
does not contain class assertions and P is the only edge connected to it.

These restrictions are necessary since we rewrite the main chain as a RIA. We
have to add further restriction if P is the first or last role in l because the presence
of class assertions or other edges in the theses nodes would cause the insertion of
other properties at either end of l during the rewriting. In such a case, P would
not be the first (last) role in l and the resulting RIA would be invalid.
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4 Protégé

Protégé is an open-source, Java-based ontology development environment that
is developed by Stanford University and University of Manchester. In its basic
form, Protégé can edit OWL ontologies graphically, browse the class and prop-
erty hierarchies, etc. The reasoning is handled by third-party reasoners. Two
reasoners, FaCT++ [6] and Pellet [7], are bundled with Protégé and any DIG
enabled reasoner can also be used. Protégé’s architecture was created with ex-
tensibility in mind, so a framework was provided to enable the development
of plug-ins by third party developers. There exists a lot of plug-ins3 that offer
a variety of services, from visualization to conversion to other formalism. This
extensibility and customizability make Protégé extremely versatile. Protégé’s ex-
tensibility and its large user base were the main motivations to implement the
rewriting within that framework.

The current official release of Protégé (3.3.1) does not offer support for OWL
1.1, which we need, so we have to use an alpha release (4.0) that is however quite
stable. Obviously, the reasoner used has to support OWL 1.1 and the reasoners
bundled with Protégé do so.

5 DLRule plug-in

We now describe the plug-in and the way it works. We present the different
components composing it, how it is integrated within Protégé and how to edit
rules using it. The plug-in appears as a tab within the Protégé interface labeled
“DLRules”. There are six main components in the tab (the numbers refer to
Figure 1):

1. The class pane is a standard Protégé component which displays the class
hierarchy of the current ontology as a tree.

2. The property pane is a standard Protégé component which displays the
property hierarchy of the current ontology as a tree.

3. The rule list contains all the rules in the project. The selected rule is dis-
played in the editor.

4. The text rule editor is where the user types in the rules (syntax is defined
in Section 5.1). Properties and classes can be dragged from the panes and
dropped to create an atom.

5. The graphical rule viewer shows a graphical representation of the rule cur-
rently edited. This allows the user to validate the rule before inserting it into
the ontology in a more intuitive way than textually.

6. The component labeled “Actions” is where the user can launch the different
tasks executed by the plug-in. These tasks are explained in Section 5.3

7. The rule previewer lets the user see what effects the rules will have on the
class hierarchy.

3 http://protege.stanford.edu/plugins/
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Fig. 1. Overview of the DLRule plug-in.

5.1 Rule Syntax

The syntax of a rule we use in the editor is really close to the usual abstract
syntax of rules. The syntax of the rules is defined in the following grammar,
written using EBNF notation:

<rule> = <atom> [ ,"@" <atom> ] , ">" , <head>;

<atom> = <propertyAtom> | <classAtom> ;

<head> = <propertyAtom> | <classAtom>;

<propertyAtom> = <propertyName>,"(",<variable>,",",<variable>,")";

<classAtom> = <className>,"(",<variable>,")";

In the above grammar, <className> and <propertyName> refer to classes and
properties present in the ontology and <variable> is a string starting with a
letter and composed only of letters and digits.

5.2 Ontology I/O

The quantity of axioms, classes and properties that are added to an ontology
by the rewriting can be rather large, so browsing and editing the ontology can
get confusing for the user since he has to discriminate the domain axioms from
the axioms generated by the rewriting. Thus, we provided a mechanism to allow
the user to browse and edit an ontology containing rules without seeing the
properties and classes created by the rewriting. We developed a module that
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handles the input/output tasks for ontologies containing rules. The general idea
of this module is that it isolates the rules from the other tabs of Protégé. The
loading and saving of rule augmented ontologies has to be launched from the
DLRules tab, not from Protégé’s menu, for it to use this code.

Save To save an ontology and rules, for all rule we verify if it is rewritable. If so,
we add the necessary OWL axioms to the ontology, otherwise we build a SWRL
rule and add it to the ontology. The ontology is then actually saved.

Load When loading an ontology containing rules, the file is traversed and all the
axioms marked as generated by the rewriting component are removed from the
ontology and set aside. We then load this “cleaned” ontology into Protégé and
reverse engineer the rules from the set of axioms we isolated earlier. These rules
are then loaded into the tab.

The isolation between Protégé and the rules we mentioned above has a side-
effect. Since Protégé loads a cleaned version of the ontology, it is not aware of the
changes to the class hierarchy caused by the rules, such as a new subsumption.
That can lead to all sorts of problems, for example a rule could cause a class
to be unsatisfiable and it would not show in Protégé (except in the DLRule
tab). In order to overcome this problem, when we create the clean ontology
we add axioms to assert explicitly all the rule induced changes in the classes
hierarchy. This way, we maintain the separation between Protégé and the rules
while ensuring that Protégé works with the valid class hierarchy.

5.3 How to use the plug-in

We tried to maximize the plug-in’s usability while designing it and it resulted in
a plug-in that is rather intuitive and simple to use. Even so, we will outline how
to carry on the most common tasks. The “Text” tab is where the user can edit
the rules in a text-based mode. The user can type in the rule and can also drag
a property or a class from the arborescences over to where in the rule the atom
is going and drop it. This will insert the structure of an atom in the rule, leaving
only the variables left to type. The “Graph” tab shows a visual representation
of the rule, in which the rule is shown as a graph. The rule’s variables are nodes
in the graph, the property atoms are edges and class atoms are the labels of the
node. Such a graphical representation is very intuitive and allows the user to
easily validate the rule.

The Actions zone This area contains the components that launch all the tasks
carried on by the plug-in. We will now describe each of these tasks, how to use
them, when to use them and their benefits.

Check Validity The conditions that have to be met for a rule to be admissible
to the rewriting are not always so easy to verify and the reasoners do not nec-
essarily warn the user that the resulting ontology is not valid w.r.t. OWL 1.1’s
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specification. This feature verifies that the rules are all admissible to be rewritten
and that the property hierarchy of the rewritten ontology is valid, w.r.t. OWL’s
restrictions. The errors, if any, will be displayed so that the user can correct
them. This ensures that the reasoning process will be sound, which may not be
the case with a flawed ontology.

Simulate Rule Application Rules are a powerful mechanism and can affect the
ontology in many ways that a user cannot always easily foresee. To help the user
to ensure that the addition of a rule will not have unwanted effects, we provide
a simulator that will list all the changes that the re of the rule would imply.

Load an ontology As we mentioned earlier, we override Protégé’s I/O system so
we can hide the axioms generated by the rules that are irrelevant to the user.
To enjoy these benefits, the user has to launch the load process from here.

Insert Rules When a user creates a rule, it is not rewritten and added to the
ontology right away. It is that way to prevent the insertion of a rule that would
not be completed. The insertion of the rules in the ontology has to be launched
explicitly by the user using this component. The ontology is automatically saved
after the rules are inserted and a cleaned version of the ontology is reloaded in
Protégé afterward.

6 Example

In order to illustrate how the rewriting works, we will now rewrite a rule step
by step. The rewriting of class-headed rules is quite intuitive so we will rewrite
a property-headed rule. Since the “uncle” example was used so often to demon-
strate the motivations to have rules integrated with OWL, we will use it for the
example. Obviously, we can write a subproperty chain axiom to model this prob-
lem in OWL 1.1, e.g., SubObjectPropertyOf(SubObjectPropertyChain (hasParent,
hasBrother) hasUncle), but we will assume that we do not have hasBrother to
show the potential of the rewriting. Let us assume that the rule is formulated
as follows: hasOffspring(y, x ) ∧ hasParent(x , y) ∧ hasSibling(y, z ) ∧ Man(z ) →
hasUncle(x , z ). The rule graph of this rule is shown in Figure 2.

•x •y •z:Man
hasParent

hasOffspring

hasSibling

Fig. 2. The rule graph of the example
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The first step is to make this rule graph a skeleton by removing implied edges.
In our example ontology, we have SubObjectPropertyOf (hasParent InverseObject-
Property (hasOffspring)). It follows that the hasOffspring edge in the rule graph
is implied by the hasParent edge, so the hasOffspring edge has to be removed
from the graph. Now that the rule graph is a skeleton, we have to verify it is
admissible. With the implied edge removed, there are no cycles anymore and
the property hierarchy fits the requirements. We can now build the rule’s axiom
and insert it into the KB. For that we have to traverse the graph and build the
property chain that we will add as a subproperty of the head. Here is how to
build a list of properties, w, for each nodes and edges:

– Node x:
• No label in node.
• Add hasParent to w.

– Node y:
• No label in node.
• Add hasSibling to w.

– Node z:
• Add SubClassOf(ManObjectExistsSelf(instMan)) to the KB and instMan

to w.
• No successor.

The content of w is now hasParent, hasSibling, instMan. The last step is to insert
the RIA modelling the rule in the ontology, SubObjectPropertyOf(SubObjectProp−
ertyChain (hasParenthasSiblinginstMan)hasUncle).

6.1 Performance

FaCT++ 1.1.10 The rewriting technique we implemented being new, it had
yet to be verified how the addition of the rules’ axioms would influence the
reasoner’s performance, and how well it would scale. We conducted three sets of
experiments to answer these questions: one in which the number of assertions
grew, one where the number of rules and classes grew and in the last one the
size of the whole ontology grows. The results are shown in Figure 3 where the
displayed value is the average computation time of three independent runs to
classify and realize the ontology(note that the Y axis has a logarithmic scale).
However, the tendency is much more interesting than the values. The added
axioms do not have a sizable effect on the computational properties of OWL
and it has scaled well in our experiments. These results confirm the practical
usability of the plug-in.

7 Conclusion and Future Work

In this paper, we presented a plug-in for the Protégé ontology editor that al-
lows to edit rules, rewrite them as OWL axioms if they are admissible, or as
SWRL rules otherwise, and insert them into an ontology. The plug-in includes
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Fig. 3. Performance Graph.

interesting features such as a graphical visualization of the rules and a valida-
tion tool that shows the effect of a rule on the ontology. Rewriting the rules as
OWL axioms let us avoid the restriction to DL-safety, that in turn allows one to
get some nice inferences. Adding the non-rewritable rules as SWRL rules to the
ontology allows the handling of arbitrary rules by the plug-in. It is to be noted
that we also provide the functionalities of the plug-in in a command-line tool to
allow the batch processing of ontologies. As future work, we plan to improve the
plug-in so it can handle all datatypes restrictions valid in OWL 1.1 as atoms.
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