

FungalWeb

Kingdom: Eumycota Phyla:

Chytridiomycota
Glomeromycota
Zygomycota
Dikaryomycota

Ascomycotina
Basidiomycotina

A Semantic Web for Exploring Knowledge-Based Bioinformatics

Greg Butler

Volker Haarslev, Chris Baker, Sabine Bergler Leila Kosseim, Doina Precup, Justin Powlowski Nematollah Shiri, Adrian Tsang

Centre for Structural and Functional Genomics
Dept of Computer Science & Software Engineering
Concordia University, Montreal, Canada

http://www.cs.concordia.ca/FungalWeb

Outline

• Introduction to Knowledge-Based Bioinformatics

- Introduction to FungalWeb
 - •Fungi, Enzymes, Industry
 - FungalWeb Ontology
 - Application Scenarios

•Conclusion

Knowledge-Based Bioinformatics Aim:
Provide an automated Research Assistant to a bio-scientist

[ie Make a human Research Assistant's life more interesting]

Find the data that ... answers a question... Compute a ... phylogenetic tree ... of ...

Find all papers relevant to ...

What is the answer to ...?
How confident are you in the answer?
On what evidence is the answer based?
How did you arrive at the answer?

What hypothesis best matches the evidence? What experiment should I perform to answer this question?

We all know how to create knowledge ...

Information retrieval, data collection,

Information extraction, data access and analysis, ...

Organize ...

integrate data and knowledge from multiple sources classify examples into categories note relationships between examples and categories note patterns, rules, constraints, ...

Observe... correlations, trends, exceptions, ...

But how to (semi-)automate?

Transparent Access to Knowledge

Tip of IceBerg

Workflow Coordination

Hidden

Knowledge Representation Reasoning

Hidden

Storage, Access, Analysis

Hidden

Scientific Literature

Data Collections

Algorithms

Hidden

Typical Workbench for Knowledge-Based Bioinformatics

The vision is to turn data into knowledge

... how best can the computer assist human knowledge workers

Hypothesis: Use ontologies and the semantic web

Web provides access, autonomy, diversity, ...

Ontologies *organize* knowledge: instances, concepts, relations, rules Ontologies *integrate* knowledge ... bridge sites across web

Software agents carry out plans, tasks, workflow, ...reasoning,...

But ... is this enough, is it buildable, is it usable by bio-scientists

FungalWeb Semantic Web

FungalWeb: Fungi, Enzymes, Industry

The Kingdom of Fungi includes over 1.5 million species

Personal care

Five kingdoms of life

^{*} Bruce Birren, Gerry Fink, and Eric Lander, The Fungal Research Community, Center for Genome Research, February 8, 2002

The FungalWeb Ontology

ISWC05 2nd prize (Semantic Web Challenge)

Application scenarios

Scenario 1: Enzymes acting on substrates

Scenario 2: Enzyme taxonomic provenance

Scenario 3: Enzyme benchmark testing

Scenario 4: Enzyme improvement

Enzyme Substrate

Could an enzyme be used to degrade this novel chemical substrate?

Homogalacturonan

Chemical Analysis describes it as a a polymer

EC 3 2 1 67 **IUBMB Enzyme Nomenclature**

Common name: galacturan 1,4-a-galacturonidase

(1,4-a-D-galacturonide)n + H2O =**Reaction:**

(1,4-a-D-galacturonide)n-1 + D-galacturonate

exopolygalacturonase; Other name(s):

poly(galacturonate) hydrolase;

exo-D-galacturonase;

exo-D-galacturonanase;

exopoly-D-galacturonase

poly(1,4-a-D-galacturonide) Systematic name:

galacturonohydrolase

'GALACTURON' NLP Semantic word stem summary:

Enzyme Substrate Conceptualization

Conceptual frame supporting the identification of pectinase enzymes using substrate word stems.

Enzyme Substrate Queries

```
1-Is Galacturon an instance for Semantic_word_stem_of_the_substrate_of_the_enzyme_reaction?

Retrieve ( ) (||http://a.com/ontology#Galacturon|
|http://a.com/ontology#Semantic word stem of the substrate of the enzyme reaction|)))
```

True

2-Find all Enzyme names which contain semantic word stem of the substrate of the enzyme reaction that matches with Galacturon

Retrieve (?x) (AND (?x |http://a.com/ontology#Enzyme|)(?x |http://a.com/ontology#Galacturon| | http://a.com/ontology#Enzyme_description_contains_the_stem|)))

```
<>?X:http://a.com/ontology#exopolygalacturonase:>>
<!?X:http://a.com/ontology#pectin_lyase:>>
<!?X:http://a.com/ontology#Pectin_methyl_esterase:>>
<!?X:http://a.com/ontology#Exo_polygalacturonate_lyase:>>
<!?X:http://a.com/ontology#Endopectinase:>>
<!?X:http://a.com/ontology#pectate_lyase:>>
<!?X:http://a.com/ontology#Pectin_acetylesterase:>>>
```


Pectinases

Enzyme Improvement: MutationMiner

MOL_ID: 1; MOLECULE: EXOCELLOBIOHYDROLASE I; CHAIN: A; FRAGMENT: CATALYTIC DOMAIN 1-434;

Xylanase

The mutations N11D and N38E did not have any significant effect N11D increased the half life scarcely 1.5 times at 55?C, and N38E about 1

Q182H, Q162Y, Q162L and Q162k, increased the half life of XYNII at 557C (pH 5) to 36,39, 26 and 11 min, respectively. Q162H, Q162Y and

The glutamic acid residue at position 210, which is part of the active center in this family of enzymes, was changed to either aspartic acid (E210

Mutation Miner

Designed to:

- Extract from full-text papers,
- ...sentences that describe impacts of mutations, and
- ...legitimately map them to protein structures

Conclusions

Data and knowledge integration works:

- •Fungal Web Ontology can support *real* biological questions not easily queryable from bioinformatics databases
- Ontologies are difficult to build, evaluate, ...
- RACER nRQL syntax is expressive enough, but is unreadable to scientists

Powerful approach to integrate
ontologies, NLP, computation, and visualization
eg Mutation Miner

Ongoing Work

Better user interfaces to access data

- •OntoIQ form-based pattern-based interface for nRQL
- •OntoNLP natural language interface for nRQL
- Visual graph-based queries

FungalWeb data warehouse

- •A web of data for experimentation with DB, agents, and FungalWeb Ontology
- •A benchmark for genomics databases

Ongoing validation of

- •PRM tools and application scenarios
- •NLP tools: Mutation Miner, BioKea, BioRAT

People and Science Issues

Technology will always need organization to create knowledge!

- IT being web services, semantic web, data, ...
- Ontologies offer a way to organize
- Ontologies evolve through community use, review, ...
- This takes people: expert knowledge workers

Remember human interaction steps

- Data entry, Manual curation
- Review, feedback, corrections, evolution,...of data and knowledge

Remember science evolves through theories, evidence, refutation

- What assumptions/theories are your computations based upon?
- How do differing assumptions affect results?
- Does your system accommodate competing conflicting theories?
- Can you undo/refute all results based on a discredited theory/assumption?

Acknowledgements

Volker Haarslev, Chris Baker, and all the FungalWeb team: see http://www.cs.concordia.ca/FungalWeb

Adrian Tsang, Reg Storms, Justin Powlwoski, and the bioinformatics team on the fungal genomics project

My graduate students: Farzad Kohantorabi, Ju Wang, Yue Wang, Michel Nathan