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Abstract: Ontologies play a crucial role in current web-based biomedical applications for 

capturing contextual knowledge in the domain of life sciences. They are continuously evolving in 
order to fix the problems and provide valid knowledge. As our knowledge improves, the related 

definitions in the ontologies will be altered. This issue is inadequately addressed by available tools 

and algorithms, mostly due to the lack of suitable knowledge representation formalisms to deal 

with temporal abstract notations, and the overreliance on human factors. Also most of the current 
approaches have been focused on changes within the internal structure of ontologies, and 

interactions with other existing ontologies have been widely neglected. In our research, after 
revealing and classifying some of the common alterations in a number of popular biomedical 

ontologies, we present a novel agent-based framework, RLR (Represent, Legitimate, and 

Reproduce), to semi-automatically manage the evolution of bio-ontologies, with emphasis on the 
FungalWeb Ontology, with minimal human intervention. RLR assists and guides ontology 

engineers through the change management process in general, and aids in tracking and representing 
the changes, particularly through the use of category theory. We have also employed rule-based 

hierarchical graph transformation to propose a more specific semantics for analyzing ontological 
changes and transformations between different versions of an ontology, as well as tracking the 

effects of a change in different levels of abstractions.  
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1 Introduction 

 
Using clinical vocabularies and lexicons has a long history in medicine and life sciences. 

However, a new trend is emerging to use ontologies, as “specification of a 

conceptualization” (Gruber, 1993) to provide an underlying discipline of sharing 

knowledge and modeling biomedical applications by defining concepts, properties and 

axioms. Ontologies are widely used as a vehicle for knowledge management in current 

biomedical applications, for sharing common vocabularies, describing semantics of 

programming interfaces, providing a structure to organize knowledge, reducing the 

development effort for generic tools and systems, improving the data and tool integration, 

reusing organizational knowledge, and capturing behavioral knowledge. The main 

components of ontologies are concepts (classes), relations (properties), individuals 

(instances) and axioms. Concepts represent a set or class of entities within a domain. 

Relations describe the interactions between individuals of those concepts. Individuals are 

the “things” that exist in the real world, represented by a concept. Axioms are being used 

to constrain values for concepts or individuals. Ontologies capture knowledge from a 

domain of interest in order to share it between both machines and humans. When the 

knowledge changes, then definitions will be altered. Ontologies are evolving over time in 

order to fix errors, reclassify the taxonomy, adding/removing concepts, attributes, 

relations and instances. Generally most of the existing change management approaches 

have been faced with the following three issues: 
 

1- Overreliance on human factor; 

2- Lack of a suitable formalism to deal with temporal abstract notions; 

3- Neglecting the interactions with other existing ontologies and focusing on 

changes in internal structure of ontologies. 

In order to address these issues our study has been focused on finding a suitable 

formalism to capture, represent and analyze the ontological alterations in the domain of 

life sciences with minimum human intervention. Specifically we analyze how these 

changes can affect the dependent artifacts in a distributed environment. To this end, after 
analyzing the context of the problem and reviewing other existing techniques for change 

management in some existing biomedical ontologies (Shaban-Nejad and Haarslev, 2009), 

we presented a novel multi-agent-based approach, RLR (Represent, Legitimate, and 

Reproduce) (Shaban-Nejad and Haarslev, 2008) (Figure 1) to manage the evolving 

structure of biomedical ontologies in a semi-automatic and consistent manner with 
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reproducible results. The RLR framework aims to assist and guide ontology engineers 

through the change management process in general, and aids in tracking and representing 
the changes, particularly through the use of graph transformation empowered with 

category theory as a mathematical notation, which is independent of any specific choice 

of ontology language or particular implementation. 

 

Figure 1 A general representation of RLR and the associated categorical graph-oriented 

formalism for managing changes in biomedical ontologies. As shown category 

theoritical approach has been used to perform change management in bio-ontologies by 
defining categories of Class,States, Ontologies and Opearation to analyze ontological 

changes at both internal and external levels. Also categories of Agent, MAS,Services, 

Rules and Preposition have been used to formalize agents interactions and negotiation 

(Ehrig, 1979). Moreover categorical representation has been employed as a main formal 
method for performing hierarchical distributed graph transformation, specifically 
through two categories of GRAPH and DGRAPH (distributed graphs). 

   

 

 

As we will demonstrate throughout this manuscript categories and graph 

transformation – more specifically hierarchically distributed (HD) graph transformation– 

provide abstract yet expressive enough formalism to address the second and third issues 

stated above. HD graph transformation as an adapted type of standard graph 

transformation has been employed to maintain the hierarchically structured knowledge in 

the Semantic Web environment. The graph transformation rules describe the structural 
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changes placed during a knowledge base operation. To perform the transformation we 

employ the well-known category theoretical method double-pushout (Ehrig et al., 1973). 
In contrast to some of the existing works on ontology evolution, we specifically focus on 

changes in distributed ontologies, not as standalone artifacts but in contact with other 

ontologies in an open semantic web environment. Our proposed formalism can overcome 

the decidability issue that occurs in temporal description logics and the rigidity of OWL’s 

single semantic structure. We demonstrate the technical correctness and feasibility of our 

approach through a set of case studies. 

 

2 Changes in Biomedical Ontologies 

 
There are currently a growing number of ontologies and controlled vocabularies in 

various areas of life science. It is not a surprise that many of them do not have sufficient 

requirement to be considered as a formal ontology. Especially most ontologies in the 

biomedical domain are known to be seriously defective in both terminological and 

ontological perspectives. In this paper we selected some of the most popular ontologies 
and controlled vocabularies in health science to find the evidences for various types of 

possible changes. The following ontologies have been selected based on several criteria 

such as availability, popularity, complexity and accessibility to the source and 

documentation. The Gene Ontology (GO) (Ashburner et al., 2000), Clinical Term 

Version 3 (The Read Codes) (NHS Information Authority, 2000), Health Level 7 (HL7) 

(Health Level 7 Reference Information Model), UMLS Semantic Network (McCray and 

Nelson, 1995), The Foundational Model of Anatomy (FMA) (Rosse and Mejino, 2003), 

Medical Subject Heading (MeSH) (Coletti MH, Bleich,2001) and Terminologia 

Anatomica (TA) (Whitmore, 1999). Based on our research of the literature, observing 

different releases of ontologies, surveys, and interviews with several domain experts and 

ontology engineers, we distinguished about 74 different types of changes that frequently 
occur in life cycles of existing bio-ontologies. We classified the changes under 10 

groups: addition, deletion, retirement (obsoletion), merging, splitting, replacement (edit 

or rename), movement, importing, integration, or changes to file structure (Table 1). 

 

Table 1  Common changes in some of the popular bio-ontologies 

 

Type of   

change 

Definition Observed  

Ontology 

Example 

 

A
d

d
it

io
n

 

 

Improving ontological structure by adding one 

or more components to the available makeup. 

The most common additions in the observed 

bio-ontologies are of the following elements: 

Namespace, identifier code, concept, attribute, 
abbreviation, super-class, sub-class, attribute 

value, synonym, constraint (cardinality, type 

and min/max, inverse roles, default value), 

associative relationships (relationships to other 

individuals), annotation description, class-status 

(hidden/public), and instance. 

 

 
 

Gene 

Ontology 

(GO) 

 

The curators at MGI, who were reviewing the existing 

terms for comprehensive annotation of mammalian 

genes involved in the regulation of blood pressure, 

realized that the existing GO terms were not sufficient 

to annotate genes involved in the various processes that 
regulate blood pressure. They then proposed 43 new 

GO terms, which were discussed and refined with other 

GO curators through the GO discussion forum. They 

efforts yielded new annotations for mouse genes 

directly involved in the process of blood pressure 

regulation (GO Newsletter, 2006). 
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D
el

e
ti

o
n

 

 

Erasing the selected element(s) when it does not 

reflect the ontological ‘truth’ anymore. The 

most common deletions are of the following 

elements: Namespace, identifier code, concept, 

synonym, abbreviation, annotation (description), 

constraint (cardinality, type and min/max), 

attribute value, super-class, sub-class, constraint 

(cardinality, type and min/max, inverse roles, 

default value), associative relationships, 

annotation description, class-status (hidden 

/public), and instance.  

 
 

 

 
Gene 

Ontology 

(GO) 

 

The GO terms must characterize biological entities (i.e., 

functional activities that are catalyzed by enzymes). The 

terms classified as “Unknown” violated this principle, 

so the decision was made to delete the following terms: 

biological process unknown; GO:0000004, molecular 

function unknown; GO:0005554 and cellular 

component unknown; and GO:0008372 from the 

ontology. The new annotations signify that a given gene 

product should have a molecular function, biological 

process, or cellular component, but that no information 

was available as of the date of annotation (GO News 

letter, 2007). 
 

 

R
et

ir
e
m

e
n

t 

(O
b

so
le

sc
en

c
e
) 

 

Deprecating an older element when a newer, 

more functional element or meaning supersedes 

it. The older version can be kept somewhere for 

future use, but its usage will be discouraged 

(Cimino , 1996).  The retirement can usually be 

seen for the concepts, attributes, identifier 
codes, instances and relationships. 

 

 

 
Health 

Level 7 

(HL7) 

In the release 2.0 of HL7, the components: 
ClinicalDocument.copyTime, MaintainedEntity, 

CodedEntry, inkHtml.name,table.border, table. 

cellspacing and table.cellpadding are retained for 

backwards compatibility with HL7 Clinical Document 

Architecture (CDA), Release 1.0, and have been retired. 

Further use of these components is discouraged (Dolin 
et al., 2004). 
 

  

M
e
r
g

in
g
 

The process of creating a consistent and 

coherent ontological element that includes 

information from 2 or more basic elements. It 

can be seen as following: Merging two or more 

concepts into one of the concepts or into a new 

concept (Cimino , 1996), two or more attributes 

into one of the attributes or into a new attribute, 

two or more associative relations into one of the 

relations or into a new relation, two or more 

identifier codes into one of the codes or into a 
new code. 

 

 
Health 

Level 7 

(HL7) 

In HL7, the purpose of the header is to enable clinical 

document exchange across and within institutions, 

facilitate clinical document management, and facilitate 

compilation of an individual patient's clinical 

documents into a lifetime electronic patient record 

(Dolin et al., 2004). In HL7’s Clinical Document 

Architecture (CDA), Release 2.0, two concepts in the 

header (service_actor and service_target) have been 

merged (Dolin et al., 2004). 

 

 
S

p
li

tt
in

g
 

 
 
An ontological element may be split into two or 

more new elements. This means that a concept 

can be split into two or more new concepts, an 

attribute into two or more new attributes, an 

associative relationship into two or more new 
relationships, or an identifier code into two or 

more codes. 

 

 
 

 
Terminologia 

Anatomica 
(TA) 

 

In TA, terms that share an id code are treated as 

synonyms. But, this does not hold for sexually 

dimorphic anatomical parts, such as ‘Ovarian artery’ 
and ‘Testicular artery’. These two share the same TA 

code (A12.2.12.086) and therefore might be thought of 

as synonyms, but the two arteries are distinct and have 

different connections and other spatial relationships 

(Whitmore, 1999). So, they have to be modeled as two 

separated concepts, it means the code A12.2.12.086 can 
be split into A12.2.12.086-1 for ‘Ovarian artery’ and 

A12.2.12.086-2 for ‘Testicular artery’. 

 R
e
p

la
ce

m
e
n

t 
(E

d
it

, 
R

en
am

e)
 

This process is for editing available labels and 

values. This editing mostly happens to change 

namespace, concept name, concept definition, 

attribute value, attribute name, attribute 

definition, and concept role. 

 
Health 

Level 7 

(HL7) 

 
A typical scenario (Dolin et al., 2004) from HL7 
Release 2.0 is a simple replacement of Clinical 

Document.id "1.2.345.6789.266" replacing  

ClinicalDocument.id "1.2.345.6789. 123"  

 

 

M
o
v

e
m

e
n

t 

(T
ra

n
si

ti
o

n
) 

 
 

The transition of one or more ontological 

elements across the ontological hierarchy. This 

transition can happen to identifier codes, 

concepts, attributes, super-class, sub-class, 

associative relationships, and instances. 

 
 

Gene 
Ontology 

(GO) 

GO terms representing transporter activity in the 

Molecular Function are gradually being overtaken to 
better represent current scientific knowledge. A new 

high-level term called "transmembrane transporter 

activity" (GO:0022857) was introduced. So, the related 

child terms and sub-classes have been moved under GO 

terms that describe the activity of the transporters, such 
as channel activity, active transporter activity, and 

symporter, antiporter and uniporter activity (GO 

Newsletter, Aug 2007) 
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 Im
p

o
r
ti

n
g
  

Importing refers to the process of bringing an 

existing ontology (a tree) or parts of an existing 

ontology (sub-tree) into another ontological 

structure.  

 
Gene 

Ontology 

(GO) 

 

In 2001, the GO developers imported the first pass 

annotation from SWISS-PROT, trEMBL and Ensembl. 

Also, 7316 GO annotations were imported from 

Proteome and literature associations (GO Meeting, 

2001). 

  
  

  
  
 

In
te

g
r
a

ti
o

n
 

In data integration, process data is extracted 
from different sources with different data 

formats, and then normalized into a consistent 

syntactic representation and semantic frame of 

reference (Buttler et al., 2002). The semantic 

integration is more complex than data 
integration. 

 

 
Foundational 

Model of 

Anatomy 
(FMA) 

 
In order to meet the need for an expressive ontology in 

neuroinformatics, the FMA developers have integrated 

the extensive terminologies of NeuroNames and 

Terminologia Anatomica into FMA. They have 

enhanced the FMA to accommodate information unique 
to neuronal structures, such as axonal input/output 

relationships (Martin et al., 2003).  

 

C
h

a
n

g
e 

to
 R

el
e
a

se
 

F
il

e 
 (

F
il

e 
S

tr
u
ct

u
re

) 

 
 

 

 

By the advancement of technology for storing 

and retrieving data files and the emergence of 
new standards, the format of file structures can 

be changed.  

 

 

 

 
Read 

Codes 

 

In Read Codes, Ver. 1.0 four character codes 
determined the position of a term in a hierarchy (4-Byte 

Set). The restrictions imposed by only 4 levels of 

hierarchy led to the development of a 5-Byte Set, which 

expanded the set to support secondary and tertiary care. 

This set was released in two structurally different 

versions. Ver. 1.0 has shorter terms and keys than Ver. 
2.0. The more complex Ver. 3.0 structure is a superset 

of all old versions, and supports the character structures 

of both Ver. 1.0 and Ver. 2.0 (Robinson et al., 1997). 

 

As an application scenario, we consider the FungalWeb Ontology (Baker et al., 2006), 
an integrated formal bio-ontology in the domain of fungal genomics. The Fungal 

taxonomy is not stable. Most of the alterations are changes in names and taxonomic 

structure and relationships. Fungal names reflect data about the organisms; thus, as our 

understanding of the relationships among taxa improves, these names will need to be 

changed, as they will no longer convey the correct information to the user. Most fungi 

names are currently based on phenotypes (visible characteristics of an organism). These 

name changes may cause confusion and affect the validity of different queries. The 

morphological conceptualization of fungi is not sufficient, and will no longer work 

because all of the names based only on morphology must be re-evaluated. In addition, the 

phylogenetic-based conceptualization has its own limitations, since the decision of where 

to draw the line between different species is not always easy to make (Whitmore, 1999). 

To manage this process of continuous change, we rely on ontological conceptualization, 

where names in taxonomy are only meaningful once linked to descriptive datasets, which 

are extracted and managed from various databases and literature in an integrated 

environment. 
 

3 The RLR Framework 

 
The RLR framework for change management consists of a set of intelligent agents 

designed to perform several intelligent tasks including learning, reasoning, capturing 

changes and negotiation within a collaborative environment. In a typical scenario within 

the RLR argumentative architecture, a user (human or agent) initially sends a request to 

an ontology engineer for a particular change in the ontological structure. Based on the 
system’s background knowledge and the choice of the ontology engineer, various options 

are available to implement a change. The negotiation agent, along with the reasoning 

agent, provides arguments for the acceptance or rejection of a change proposal. An 
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“Argument Generator” determines appropriate responses based on the negotiation rules. 

Different arguments attack each other to enforce their rules and defeat their peers by 
sending counter-arguments. The inferred arguments can increase the possibility of higher 

quality agreements (Capobianco et al., 2005). The Negotiation Protocols in the RLR 

architecture contain the rules that dictate a protocol. As a knowledge base evolves, the 

historical information about different changes will be accumulated in the change logs. 

This information will be used by the learner agent, which acts as a basis for a 

recommender system, to propose different alternatives for the implementation of future 

changes. The reasoning and negotiation agents can change the rules if necessary and send 

modifications to the learning agent. In order to maintain agents’ argumentation for 

automation of ontology evolution, we employ the “dialectical databases” (Capobianco et 

al., 2005). In argumentation-based multi-agent systems, a dialectical database tends to 

improve the speed of inference responses by storing pre-compiled knowledge about 

potential dialectical trees (Bryant and Krause, 2008). The dialectical trees represent sets 

of possible dialectical confrontations between the arguments to accept or deny a proposal 

to deal with a particular change. For the detail on the structure of RLR we refer the reader 

to (Shaban-Nejad and Haarslev, 2008). We use category theory and graph transformation 

to explore systematic changes in ontologies, analyze rule based transformations, and 

study various dependencies between the ontological elements, as well as formalizing 

agents’ interactions and communications in the RLR framework. 

 
3.1. Category Theory 

Category theory is a relatively new domain of mathematics, introduced and 
formulated in 1945 (Eilenberg and Mac Lane, 1945). Category theory is closely 

connected with computation and logic, which allows an ontology engineer to implement 

different states of design models to represent the reality. Using categories, one can 

recognize certain regularities to distinguish a variety of objects, capture and compose 

their interactions and differentiate equivalent interactions, identify patterns of interacting 

objects and extract some invariants in their action, or decompose a complex object into 

basic components. Categorical notations consist of diagrams with arrows. Each arrow f: 

X→Y represents a function. A Category C includes: A class of objects and a class of 

morphisms (“arrows”), and for each morphism f there exists one object (A) as the domain 

of f, and one object (B) as the codomain; For each object A, an identity morphism, which 

has domain A and codomain A (
“
IDA

”
); and For each pair of morphisms f:A→B and 

g:B→C, (i.e., cod(f) = dom(g)), a composite morphism, g o f: A→C exists.  
 

Figure 2 A diagrammatic representation of categorical pushout 
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Some of the primitive constructors of category theory that we use in our framework 

for ontology change management are as follows: Products, Co-products, Functors, 
Natural Transformation, Pushout and Pullback. More information on these categorical 

notions can be found in (Asperti and Longo, 1991). The pushout for two morphisms f: 

A→B & g: A→C is an object D, and two morphisms i1: B→D & i2: C→D exist such that 

the square in Figure 2 commutes. D is the initial object in the full subcategory of all 

candidates D' (i.e., for all objects D' with morphisms j1 and j2, there is a unique morphism 

from D to D'). The pullback is the dual notion to the pushout. Functors are defined as 

morphisms in the category of all small categories (where classes are defined as 

categories) (Awodey, 2006). In other words they are structure-preserving maps between 

categories. The maps between functors (morphism of functors) can be described by 

Natural Transformation.  
 

3.2. Graph Transformation DPO approach 

The rule-based graph transformation can be studied based on the following three 

activities (Heckel, 2006):  

- Creating the conceptual generalizations of the reality and transferring them from 

“reality” to its representation in a model; 

- The definition of rules as specifications of state transformations; 

- Using graphs as a means to represent snapshots, concepts, and rules. 

Generally applying a transformation rule (production) p: L → R denotes finding a 

proper match of L (Left hand side) in the source graph and replacing L by R (Right hand 

side), leading to the target graph of the graph transformation. The major question in 

graph transformations is how to delete L from a source graph and connect R with the 

context in the target graph (Ehrig et al., 2006). Following the double-pushout approach 

(DPO) (Ehrig et al., 1973), a transformation rule is defined as a pair t: L ← I → R of 

morphisms l: I → L and r: I → R such that l is injective, where the graphs L and R are 

called the left and right-hand sides respectively, and I is called the interface or gluing 

graph. It is not necessary for the morphism r: I → R to be injective, which allows one to 

identify different nodes or edges in various transformations. Also, the injectivity of l: I → 

L ensures the uniqueness of the results in backward tracing in a transformation. The rule t 

transforms a graph O
G
 into a graph O

H
, denoted by O

G
 ⇒

t
 O

H 
if there is an injective 

occurrence morphism m: L→O
G
, and two pushouts as represented in Figure 3.  

 

Figure 3 Double-Pushout approach for graph transformation 

 
In Figure 3, the morphism m, which models an occurrence of L in O

G,
 is called a 

match. The transformation, which is performed by the specified rule, represents the 

change of the graph O
G
 to the graph O

H
. In more complex transformations we usually see 

a sequence of simpler transformations and a set of several transformation rules. As stated 

in (Ehrig et al., 1990), by considering the dangling points (those points in L, a subgraph 
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of O
G, that are the source or target of arcs in O

G
 minus L) and the identification points 

(those points in L that are identified in O
G
) in the transformation of O

G
, the gluing points 

of L (identified by KL) can be identified if both dangling and identification conditions are 

satisfied. These two conditions together form the gluing condition, which ensures the 

transformation is valid. 

Dangling condition ∪ Identification condition ⊆ Gluing Condition 

Based on the previous definitions, the pushout exist if and only if m satisfies the 

dangling condition with respect to l, and in this case O
G
, t, and m determine O

H
 uniquely 

up to isomorphism. A graph transformation system is usually defined as a set of 
transformation rules (productions) P. In summary DPO should be performed through the 

following steps when a rule L ← I → R is given.  
  

1.  Find the elements of L in the given graph G, i.e. a match m: L → G. 

2.  Delete from G all the elements specified in L, which are not in the gluing graph I. This 

means to find a graph K and graph morphisms K → O
G
, and I → K such that the 

square is a pushout. 
 

3.  Add to graph K all the elements of R, which are not in the gluing graph I and create 
the second pushout and obtain a derived graph H. 

 

4 Employing HD Graph Transformation for Ontology Change Management 

 
Changes in an area due to technical, industrial, cultural, or social matters force the existing 

systems and applications to adapt themselves to the new state. Particularly, large systems 

and knowledge bases built upon smaller reusable sub-systems are in greater danger and 

should be continuously monitored to ensure the correctness and consistency of the entire 

infrastructure. In an ontological sense, concepts in an ontology naturally match with nodes 

of a graph, while the relationships in an ontology correspond to edges. The graph-based 

representation of the biomedical ontologies has a great tendency to become large, 

complex, and hard to grasp, understand, or maintain in a very short time. In applications 

dealing with compound graphs in layered organizations, the notion of graph can be 

extended to hierarchical graph. Hierarchical graphs attract broad attentions in theoretical 

computer science (e.g., object oriented design (Van Eetvelde, 2003), database (Elmasri 

and Navathe, 2007), and computational molecular biology (Mason and Verwoerd, 2008)), 

mostly for representing semantically complex and interrelated network structures. 

Different models, including the ones in (Engels and Heckel, 2000; Engels and Schürr, 

2005) have been studied concerning the issue of hierarchical transformation of dynamic 

complex graphs, and several models (Hoffmann, 1999; Palacz, 2008) have been 

implemented using the rule-based approaches.  

In order to mimic the actual nested hierarchical structure of the Semantic Web, where 

information is distributed in the nodes (graphs) and edges (relations between the graphs), 

we employ hierarchical distributed (HD) graphs (Taentzer, 1999), which enables us to 

perform the transformation on different levels of abstraction. The hierarchical graphs 

have richer semantics and are more expressive in comparison with regular flat graphs. In 

addition, they reduce the complexity of representation of large interrelated systems by 

allowing one to describe a system on a more abstract level through hiding the irrelevant 

details in encapsulated sub-graphs (Engels and Schürr, 2005). Hierarchical graph 

transformation can be performed using the extended double-pushout notion to represent 

various aspects of dynamic structures (e.g., the rearrangements of some temporal parts, 
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describing the changes in relations, creation/deletion of communication channels, and 

performing operations such as “splitting” a graph into two or more graphs or “joining” 
distributed graphs into one graph (Taentzer, 1994)). As defined by (Taentzer et al., 1999), 

distributed graphs distinguish between two levels, namely local (internal), and network 

(external or lattice) (Figure 4).  

 

Figure 4 An schematic representation of a distributed graph. 

 
 

The communication between internal graphs can be performed via interfaces. In our 

model, the hierarchical graph (the lattice) consists of a set of internal graphs (which may 
be hierarchical graphs as well), the root of the hierarchy, and a set of edges that relates 

the internal graphs to each other. Each editorial action is expressed through a graph 

transformation and every state of the ontological structure is modeled in a graph with the 

nodes denoting objects and the edges representing the connections linking them. The 

categorical graph grammar supports the flexible change of complex interrelated 

compositions while providing explanations for corresponding actions performed by graph 

transformation. Various states can be produced by internal or external actions, and their 

communications can be modeled and simulated using graphs and state transitions, then 

represented and described by means of graph transformation. The double-pushout 

technique has been extended from flat to hierarchical graphs (Drewes et al., 2002), where 

the associated transformation rules can be applied at all hierarchical levels. This 

facilitates changes of the graph’s entries (i.e., by insertion or deletion) regardless of their 

size and configuration, with adaptation of the “dangling condition” from the flat graphs 

transformations (Drewes et al., 2002). The compound state of the entire system can be 

known by analyzing several other internal graphs, each having an internal state and 

behavior. There are also lattice-like dependency graphs representing dependencies 

between different internal graphs. In the process of change management for the lattice-

like structure, several concerns related to sequential, parallel, or concurrent evolution of 

its components arise. 

Different ontologies in Semantic Web are usually connected in a lattice-like structure 

and interact with each other through one or more interfaces. This lattice can be modeled 

as a directed graph with individual ontologies (internal graphs) as its nodes and the links 

between these ontologies as its edges (Figure 5). The described configuration is 

analogous to HD-graph (Taentzer, 1994 and 1999), where each of the links connecting 

the internal graphs contains a graph morphism specifying the relation between two 

internal states. When the internal graphs are faced with any change (e.g., adding/deleting 
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a concept or relation), their state would be changed, which would affect other dependent 

graphs, and a synchronization unit within the RLR framework, which stores all the states 
in the change logs, forces the lattice-like structure and the mediator interface to change 

their states accordingly. Following the approach given in (Taentzer, 1994), this structure 

can be modeled in two different but related planes, namely conceptual (shows all existing 

and potential relations, paths, and their revisions) and operational (shows only actual 

existing nodes and relations) (Figure 5). 
 

Figure 5 A hierarchical graph for managing distributed ontologies representing the relations 

between different states of a lattice-like structure consisting different distributed 
ontologies. The changes can be performed in an interface graph that consists of all the 

nodes which have a matching node in the related internal graphs. In this way, the 

transformation of objects and morphisms allow the change of an evolving structure by 
changing its interfaces.  

 

 
       

In order to categorically analyze the distributed transformations we employ the 

category of distributed graphs DGRAPH with distributed graphs as objects and 

distributed graph morphisms as arrows
1
, to define a transformation using an adapted 

version of double pushout approach described in (Taentzer, 1999). Then we can define a 

transformation using double-pushout, in the category DGRAPH. Based on the definitions 

of graph, and the category Graph, a distributed graph can be defined as following. 

Consider G (a network graph) from category Graph, a diagram  
∧

G→ Graph is called a 

distributed graph while 
∧

G (i) refers to the local graph that is related to node i of network 

graph (lattice) G (Taentzer, 1999). Then a distributed graph morphism for two distributed 

graphs 
∧

G and
∧

H can be defined as 
∧

f (i): 
∧

G →
∧

H such that 
∧

f  is a natural transformation 

of 
∧

f (i): 
∧

G →
∧

H ° f in category Graph with f: G → H as its morphism (network 

morphism). So, distributed graphs and distributed graph morphisms serve as objects and 
arrows for the category DGRAPH (Taentzer, 1999). For the details of proofs and other 

                                                
1 Notice the similarities with the notion of categorical functor. 
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related categorical notions in distributed graph transformation one may refer to (Taentzer, 

1999; Ehrig et al., 2006). 

4.1. Analyzing Events and Actions in Rule-Based Model Transformation 

In order to analyze different events that trigger actions during the ontological 

evolution process, we consider events as part of the rule condition in a graph 

transformation. The actions are described by productions and the events will occur if 

certain predefined conditions are assessed to be true. To formalize graph transformation, 

we employ the notion of double-pushout from category theory, which needs certain 

requirements to compute production (describes actions in graph grammar) and its 

corresponding element in other graphs. One of the requirements is satisfying the gluing 

condition to derive a new graph by finding a match of the left side of the rule in the given 

graph, then deleting it (except the gluing point) and adding the right side of the rule (see 

(Ehrig et al., 1990) for the details). By following the approach proposed in (Taentzer, 

1994), we use hierarchical distributed graph rules covering both internal and external 
production describing the internal and external actions respectively. Since the lattice-like 

structure covering the internal graphs is less likely to be changed by internal actions, 

which affect mostly internal graphs, the external graph is transformed through an 

identical production that preserves the external graph nodes. A typical example, 

illustrated in Figure 6, is the addition of an ontological element (i.e., a concept) to an 

existing ontology, which causes the state of the ontological structure (internal graph) to 

be changed. This action does not have a significant effect on the lattice-like structure 

(external graph). As represented in Figure 6, the hierarchical graph production “concept 

addition” demonstrates an internal action that transforms the ontological structure O from 

state St1 to state St2. This production will not alter the external graph represented in 

Figure 5.   

 
Figure 6  Adding a new concept to an individual ontology that is part of a lattice made from several 

interconnected ontologies.  

 

 
 

If one wants to delete an ontological element that has referenced a relation from other 

distributed ontologies in the lattice, then an external action needs to be performed. The 
external actions are capable of transforming the external graph. Controlling these 

transformations is a central task in the ontology engineering domain, since they can 

easily give rise to different types of inconsistencies, especially in cases that involve 

several parallel actions and transformations. 

An example of alterations in the lattice in our application domain is the insertion of 

connective internal graphs (nodes) between two or more other internal graphs (nodes). 

For instance, it is known that “a daily cup of yogurt significantly reduces the risk of 
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candida infection and colonization” (Hilton et al., 1992), but this diet might not seem 

appropriate for lactose intolerant patients. Also, some studies show that some nutrition is 
beneficial to reduce the risk and severity of candida infections if consumed in a proper 

diet. Some of the examples
2
 are Probiotics (up to 900 mg daily of beneficial bacteria), 

Fructooligosaccharides (up to 4 g daily), Goldenseal (250 to 750 mg daily), Lactoferrin 

(300 mg daily), Topical tea tree oil (based on the prescription), Oil of oregano (460 mg 

daily), Garlic (600 mg daily), and Boric acid (600 mg daily for 2-3 weeks, shown 

effective in 65% of women with vaginal candida infections(Sobel et al., 2003)). In order 

to conceptualize these facts in an ontological framework, we use a connecting node 

(internal graph) “diet” to connect two structure fungal infections and “nutrition” through 

the hierarchical distributed graph production “add connector” (Figure 7). 

 
Figure 7 The hierarchical distributed graph production “add connector” is represented in a way 

that the state of the graph “fungal infection” is now related to the graph “diet”, rather than 
“nutrition”.  

 
 

A transformation rule can determine conditions such as: ‘the deletion of a lattice 

node should be performed after deleting its corresponding internal graphs’. As long as the 

actions (e.g. deletion, insertion) do not violate the defined conditions in the production 

rules several actions can be executed in parallel at the local level (e.g deletion/creation of 

internal elements). As mentioned, the external lattice production describes the structural 

changes of the external graph, and we can model the external actions using a hierarchical 

distributed graph production in such a way that an identical production for the internal 

graphs of every node of the external graph (individual ontological structures) must be 

performed. If the stated predefined conditions for insertion/deletion of the nodes in the 

internal graphs are satisfied, then the hierarchical distributed graph production can be 

applied at the external (lattice) level (for adding/deleting edges, a set of morphisms will 

be described instead). 
 

4.2. Transformation Rules for Changes in Ontologies 

The transformation rules in ontology evolution determine what types of changes are 

allowed and can be performed on the ontological elements and axioms. Padberg (2008) 

                                                
2  Fungal Infections (Candida). Life Extension E-Magazine: www.lef.org/protocols/infections/fungal_infections_candida_01.htm  
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describes the notion of rule-based refinement as an extension of transformations with 

added refinement morphisms alongside the rules, which can be applied for maintaining 
component-based applications. We found that the ontology evolution process, through 

subsequent refinements, is generally analogous and compatible with rule-based 

hierarchical graph transformation and refinement. Generally, in a DPO approach, a rule-

based transformation indicates the changes of OG to OH based on the defined rule. The 

rules can be atomic or compound and will be examined to ensure the compatibility and 

consistency
3
 of the transformations. Our proposed rule-based transformation method for 

ontologies determines the circumstances under which an ontological element can be 

changed or refined. Table 2 represents some examples
4
 of graph transformation rules, 

which can transform a typical graph such as Industry (Diagram 2). Diagram 3 represents 

the establishment of the relation “is being used in” to connect two graphs, “Fungi” and 

“Industry”. Diagrams 4 and 5 show the rules that specify the internal structure of the food 

industry. By applying these transformation rules, Diagram 6 is obtained, which gives us 

two potential matches (baking and wine industry) on the left. A transformation can be 

defined to be conditional (Habel et al., 1996) in such a way that under certain conditions, 

the graph production (rules) transform a source graph into the target graph. These 

conditions, which impose a set of restrictions on the transformation processes, can help 

one to avoid inconsistencies and conflicts (e.g., the conflicts due to dangling edges). 

Table 2 Some examples of the graph transformation rules for part of the FungalWeb Ontology. 

 
 

1 

 

 

 

Two individual graphs 

Fungi and Industry are in 

their initial state 

 

 

 

2 
 

 

Transforming the Industry 
graph (R) to the new 

version (L) to cover more 

detailed information 

(adding child)  

 
 

 

 

 
3 
 

 

 

 

 

 

 

Defining the relation “is 

being used in” to connect 
the two graphs Fungi and 

Industry. 

                                                
3 In fact using graph transformation as the underlying formalism can guarantee the consistency of 

the results (Taentzer , 1998). This is an important point, since the distributing nature of evolving 

structures gives rise to different types of inconsistencies. 
4
  For demonstrating the transformation rules in our model, we have employed the diagrammatical 
notions (Table 2) introduced in (Palacz, 2004). 
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4 

 

 

 

Adding a child node to 

specify the internal 

structure of the food 

industry. 

 

 
5 

 

 

 

Adding another child 

node to specify the 

internal structure of the 

food industry. 

 

 
6 

 

 

 

The two potential 
matches (baking and wine 

industry) can be chosen 

from the left hand side. 

 

4.3. Formalizing the Ontology Change Model in Distributed Environments 

 In our model, the hierarchical distributed graph has been used for analyzing dynamic 

distributed models and their transitions by describing the initial state, internal and 

external actions and defining communicating channels for synchronization. Category 

theory is used as a complementary formalism for supporting graph grammar describing 

the initial graph and a set of all hierarchical graph productions modeling various actions 

(e.g., additions, modification of relations, and so on) in a distributed system. The DPO 

approach to graph transformation as a constructor within the categorical framework is 

comprehensively described in (Ehrig et al., 2006) for directed and labeled graphs. This 

method has been generalized to so-called high-level replacement (HLR) systems in 

(Ehrig et al., 1990; 2006) by abstracting the results into arbitrary objects and morphisms. 

It has been proven (Taentzer, 1994) that the hierarchical distributed graph transformation 

is a highly appropriate scenario for HLR systems. Reflecting this approach into our 

framework, we consider the lattice L consisting of all interacting ontologies as a 

hierarchical distributed graph, with a set of transformation rules (e.g., rules for node 

addition/deletion), which is defined as a functor HD: L → G, where G is the category of 

all labeled graph and L∈G. To define the HD-morphism we can use natural 

transformations, which are simply the morphisms in the category of functors. 

Categorically speaking, the distributed ontological structures can be considered as objects 

and the links between them, which shape the lattice structure, as morphisms. This 

approach allows one to study the behavior of evolving categorical systems in different 

layers (analogous to the modular definition of ontologies) and different levels of 

abstraction. 
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5 Distributed Change Management within the RLR Framework 

 
In our approach, we adapted the graph transformation methods for realizing the problem 

of specifying changes in distributed ontologies in two levels of abstractions, namely 

micro level (changes in internal structure of an ontology, e.g., adding/deleting a concept 

to/from an ontology) and macro level (when the internal changes spread out to an 

interrelated ontological organization, e.g., changing the state of an ontology or 

adding/deleting an ontology to/from interrelated system). The propagation of changes 

may need to be performed during the runtime of many critical systems (e.g., knowledge 

bases supporting robotic surgeries or aviations); therefore, these two levels always need 

to interact closely to ensure the success of a change management strategy. The distributed 

graph transformation can act on different levels of abstractions, ranging from explaining 

the details of local actions to the rule-based analysis of different interactions and 

operations (e.g., inter-communication, migration, and synchronization) (Taentzer et al., 

1998) before or after a transformation. In order to successfully manage changes in a 

specific dynamic system, it would be essential to know, or at least have a reasonably 

accurate guess, about all the possible states of that system at different times. The fact that 

the dynamic system acts in a distributed environment makes this need more vital. The 

concept of distributed graphs has been defined in (Taentzer et al., 1998) as  networked 

compound graphs with a set of internal graphs as the nodes expressing a internal state of 

the system, and a set of graph morphisms as the edges connecting  the nodes (internal 
graphs) to each other. Distributed graph transformation aims to mediate between these 

two levels of abstractions (networks and nodes) and can be used to model many different 

types of dynamic network reconfiguration by applying a set of rules for each of the levels 

(Figure 8).  

Figure 8 Pl and Pi respectively specify sets of lattice and internal transformation rules. 

 
 

The rules contain the instructions for performing different changes (either in the network 

topology or in the nodes) and transformation in a dynamic system via defined actions at 

different levels of a distributed graph. The rules also determine whether or not a change 

operation is eligible to occur. The communication between lattice and internal rules 

performed within a coordinated channel can be used to synchronize different actions in 

node and lattice levels.  

 
5.1. Synchronization and Coordination  

Managing several concurrent internal and external actions is also vital in the Semantic 

Web domain. Considering the Semantic Web as a hierarchically organized graph-like 

structure, each action on a graph has consequences in its modified consecutive version, 

which helps in tracing the events while preserving the reference state, or in some cases 
reconstruction of the past, if it has been removed from the original version. The changes 

in a lattice-like structure can be performed at the nodes (e.g., replace/rename a node), 
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edges (e.g., replace an edge) or hierarchical structure (e.g., adding/deleting one or more 

nodes).  
A hierarchical distributed graph production can be used for synchronization purposes 

by checking whether the external production is identical (or compatible) with what is 

performed by internal actions. More precisely, it checks if the lattice nodes and edges, in 

coordination with internal actions, have been identically replaced in the interface with 

respect to the gluing condition. For example, a graph production can describe a 

synchronous communication channel (Taentzer, 1994) between two different versions of 

an internal graph by highlighting the revisions in the original state and the current state 

through the use of an interface graph. Later on, the action that causes a change in the 

internal graph needs to be synchronized with other actions on dependent internal graphs 

and finally with the actions that alter the external graph. In real world applications, this 

synchronization usually results in a series of mappings between the previous and current 

states. To manage the interaction between the actions on different levels, we generalize 

the change model proposed in (Kramer and Magee, 1990) for the software engineering 

domain to classify the changes in a dynamic network at nodes and network levels.  

The agents in the RLR framework interact with each other through a set of 

communication channels to control actions at different levels. This control assures the 

consistency and integrity of changes by defining quiescent
5
 nodes and states. The nodes 

are assumed to be in a quiescent state (non-active/passive state) when changes occur at 

the lattice level. According to (Kramer and Magee, 1990), a quiescent state for a node is a 

state wherein the whole system is consistent and no active communication exists between 

the nodes or within their environment. The notification for changing the node’s state 

from active to passive (and vice versa) is given through the established communication 

channel between the defined abstraction levels. In RLR, upon detection of the alterations 
by the set of change capture agents, the current state of the system would be assigned to 

the newly affected elements (e.g., newly added nodes) and an alert would be sent to the 

other involved components to inform them about the latest state of the system.  

The state of a system should be determined and declared by an agent to allow some 

actions to be performed in a proper state of the system, to postpone them for later states, 

or to prevent them from acting on some of the preserved elements. For example, in the 

case of deleting or splitting a node, it acts like the lock mechanism in the database. The 

synchronization begins with assigning the states to each element, starting with the initial 

state upon its creation and continuing until the final state is assigned upon its termination. 

RLR controls the changes by incorporating the transformation rules (at different levels) 

along with other pre-defined consistency conditions. The synchronization of two different 

nodes (internal graphs) in a distributed graph can be performed through an interface 
(Taentzer et al., 1998) that connects these nodes together. The transformation is 

performed by a sequence of simpler transformations, each meeting certain conditions to 

ensure the target graph is still a distributed graph and to avoid any side-effects (explicit or 

implicit) on the graph structure. Some of these conditions are as follows (Taentzer et al., 

1998): 

- Gluing condition of the double-pushout approach for the rules at different levels; 

- Connection condition, which prevents the deletion of the nodes and the edges if they 

are being used by other components. 

                                                
5 This strategy is similar to “locking” in database research.  
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Also some other conditions and restrictions may be applied to each distributed rule, 

depending on its function. The main context conveyed by the lattice may be defined as 
protected to keep it unchanged. If the different actions and changes that are executed at 

the node’s level have minimal or no interference with each other, they can operate in 

parallel. Assume a set of related ontologies, each with the ability to manage the changes 

in its own structure and each change potentially affecting other ontologies. An agent can 

initiate an action for changing each ontology in the lattice, based on imposed rules. This 

action can then be spread throughout the entire lattice. The distributed graph 

transformation can be used to model real-time changes, such as the insertion or deletion 

of ontologies. This is important since many changes and updates, unseen in the design 

phase, can be applied when the system is in operation if they do not cause any 

interruption. If we consider changing a node, it should be flagged as an inactive state, so 

it will not update the system’s knowledge upon a change (neither initiate an update nor 

service any update request (Taentzer et al., 1998)). 

5.2. Rule-based Patterns for Transformations 

After each change, the system needs to be verified for consistency. In order to preserve 

the ontological elements’ identities and guarantee the consistency and integrity of the 

changes, we can define a set of pre- and post-conditions to be satisfied. If all the 

conditions within a distributed graph transformation rule are satisfied, then the result of 

transforming an initial distributed graph would be a legitimate distributed graph as well.  

 

Figure 9 Representation of a change in a part of the FungalWeb Ontology using graph 
transformation.  
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Consider the three ontologies (O1, O2, and O3), connected to each other in a lattice-

like structure. Each node of the lattice represents an ontology and each edge signifies a 
graph morphism. The information about the state of each ontology and its relations with 

other ontologies in the lattice is stored in an interface node. The diagrams in category 

theory intuitively reflect the feasibility of our method, by demonstrating the interactions 

between the states and the information related to the changes. By following the method 

given in (Taentzer et al., 98), Figure 9 demonstrates the changes in industrial applications 

within the FungalWeb Ontology (as an internal graph in a whole integrated lattice), 

which consists of the concepts “enzyme” and “product”, with the relation “uses”. The 

figure depicts the effect of changes and the state of the ontology (starting from initial 

inactive state) in the lattice-like environment, along with its predecessor and successor 

versions, using the following distributed graphs: 

In Figure 9 assume an update (internal action) starts at the FungalWeb Ontology to 

delete the existing relation “Uses” and add the new concept “Company” and the new 

relations “Uses” and “Produces” to relate the newly added concept with concepts 

“Enzyme” and “Product” respectively. We apply the following rules to perform this 

update:  

Add interface node (“FungalWeb Interface”),  

Operation 1: Add ontological element_Concept (FungalWeb, “Company”); 
Operation 2:  Delete ontological element_Relation (FungalWeb, “Uses”); 

Operation 3: Add ontological element_Relation (FungalWeb,”Company”, “Product”, “Produces”);  

Operation 4: Add ontological element_Relation (FungalWeb,”Company”, “Enzyme”, “Uses”).  

To hide unnecessary details, the change processes and related interactions are 

performed via interfaces
6
. In using category theory, we focus on the interactions between 

objects rather than their internal structure. In summary, in our categorical representation 

of a hierarchical graph organization, anything other than nodes and edges (e.g., attributes 
such as data type properties for ontologies) are supposed to be marginal and not essential. 

Thus, the notion of graph transformation can be defined (Busatto et al., 2005) as G,R ⇒⇒⇒⇒    
C,E , with G, R, C, E respectively indicating a category of graphs, a category of rules, a 

category of control conditions, and a category of graph expressions (cf. (Busatto et al., 

2005) for more information). Modeling the notion of graph transformation in an abstract 

way is significant in the sense that it hides the marginal information, which does not 

explicitly contribute in the transformation process. As an example, a transformation using 

the double-pushout (DPO) has been shown in Figure 10 for part of the FungalWeb 

taxonomy. The transformation rule determines a condition for a consistent deletion 

operation within an ontology by specifying that if a parent-node has to be deleted its 

children should be deleted as well.  

The double-pushout approach, constructed based on categorical pushout, in our 

example has been generally represented as the gluing of two graphs via a common 

interface. As shown in Figure 10, the left side indicates a pattern
7
 to be located in the 

original graph (G); the right side represents the requested transformation, which 

transforms the original graph (G) to the transformed graph (H); and the middle section 

represents the gluing point(s) (C1 and C2), which are identified by L ∩ R. In the RLR 

Framework the agents generalize the behaviors by systematically monitoring the 

                                                
6 “Interface generally refers to an abstraction that an entity provides of itself to the outside. This 

separates the methods of external communication from internal operation, and allows it to be 
internally modified without affecting the way outside entities interact with it.” (Miller et al., 2010).  

7
 To define a pattern to be always applicable it is sufficient to leave the left side of the associated rule empty. 
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transformations and encapsulating the changes from one point to the subsequent position 

to extract rules and generate the patterns. The patterns can be repaired, improved, and 
evolved through an intensive didactic teaching process, which enables the agents to 

derive rules from a sequence of trial state changes. 
 

Figure 10 The transformation of an ontological structure following the rule “deletes a parent 

node”. The upper part represents the transformation rule, and the bottom left shows a 
given graph and the bottom right demonstrate the result of the transformation, which 

has been obtained by following the three steps in DPO.  

 

            Deleted element(s)   Gluing point(s)    Adding element(s)  

 
 
5.3. Similarity Checking and Traceability 

A graph comparison methodology has been presented in (Drewes et al., 2002) to compare 

the contents of two graphs by considering the number of nodes and edges. The 

comparison has been performed based on applying the rules while considering the 

hierarchical dangling condition, to check whether a specific sub-graph exists or not (i.e. 

when one attempts to delete a graph). RLR intends to audit and monitor very large, 

heterogeneous, evolving biomedical ontologies and nomenclature scattered across the 

Web by highlighting changes between different versions of an ontology. In order to 
facilitate the change tracking process, we employ diagrammatic features on graph 

representation along with category theory, which enable us to represent the system’s 

activity in different levels of abstraction. Our approach is similar to the tracking graph 

transformation approach (Busatto et al., 2005), which models the rules’ internal structure 

by means of LHS (left-hand side) and RHS (right-hand side) graphs and a partial 

morphism between them, which facilitates the tracking of preserved graph components 

between two versions of a graph through a set of consistency constraints to check 

matching morphisms. 

 

 

5 Case Study: Managing Changes in Distributed Ontologies 
 

As the knowledge about fungi species grows and new methods become available one can 

anticipate a fundamental change in the current fungal taxonomy structure. A small 
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percentage of discovered fungi have been linked to human diseases, including dangerous 

infections. Treating these diseases can be risky because, as mentioned above, human and 
fungal cells are very similar. Any medicine that kills the fungus may also damage the 

human cells. Therefore, greater knowledge of fungi and correct identification of each 

species is crucial to improving the quality of fungal-based products and identifying new 

and better ways to treat serious fungal infections in humans. From the other way since 

skin disorders have been historically categorized by appearance rather than scientific and 

systematic facts, the existing taxonomy of fungal diseases must be also modified based 

on the new knowledge to update the ontological truth. Many terms in current medical 

mycology vocabularies describing skin disorders originate as verbal descriptions of 

appearance, foods, people, mythological and religious texts, geographical places, and 

acronyms (Al-Aboud et al., 2003). Many names and terms are highly dependent on 

individual or regional preferences, causing redundancy, vagueness, and misclassification 

in current vocabularies. Thus, we study various alterations in both fungal taxonomy and 

fungal disease classification. As an example of changes in fungal terminologies, one can 

see several changes in the name of pathogenic fungi Trichophyton family (i.e. 

Trichophyton Soudanense, Trichophyton megninii, and Trichophyton equinum) in 

relatively short period of time. As another example, the pathogenic fungus Candida 

glabrata is now called Torulopsis glabrata (Cushion and Stringer, 2005). Usually 

changes in fungi taxonomy alter the related disease name and description. For instance, 

the name of the fungus, Allescheria boydii which can cause various infections in humans, 

was changed to Petriellidium boydii and then to Pseudallescheria boydii within a short 

time (Odds et al., 1992). Consequently, the infections caused by this organism were 

referred to as allescheriasis, allescheriosis, petriellidosis, and pseudallescheriosis in the 

medical literature (Odds and Rinaldi, 1995). 
 

Figure 11 The categorical  representation of the alignment between two ontologies O1 (Fungal 

disorders), and O2 (Diseases) using a bridge ontology OB and a set of bridge axioms (r). 

 

 
 

 

Fungal Meningitis is an infectious disease caused by a fungus, e.g. Cryptococcus 

Neoformans
8
, which is typically seen in patients with immune deficiency such as AIDS. 

It usually results from an infection that spreads to patient’s brain from another part of her 

body. This disease has been a subject for study in both dermatology (Leung, 1990) and 

neurology for a long time. The knowledge about this disease (i.e. symptoms, causes, etc.) 

                                                
8  Here is the lineage of Cryptococcus neoformans in the FungalWeb Ontology: Fungi; Dikarya; 

Basidiomycota; Agaricomycotina; Tremellomycetes; Tremellales; Tremellaceae; Filobasidiella; 
Cryptococcus neoformans (Filobasidiella neoformans). 
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are scattered in several existing ontologies and knowledge bases, which need to be 

aligned. We model the alignment of two ontologies by means of a pair of ontology 
mappings from a bridge ontology using categorical notations (Figure 11). In order to 

achieve a composite knowledge of the disease’s properties we have used the categorical 

product to represent this integrated view (Figure 12). As can be seen in the Figure 12 

medical specialty is the product arrow of the two branches in medicine, which includes 

the attributes of both domains. In order to merge two unrelated ontologies we can simply 

perform the disjoint union (or co-product).  

 
 

Figure 12 Determining the medical specialty for a particular disease through product. 

 

 

 
 

In our domain, we need to update and improve the ontological structure of the 

FungalWeb and SKDON (SKin Disease ONtology) Ontologies regularly for the 

annotation of fungal genes and analyzing the role of the fungi species in various diseases. 

For example, the older version of the FungalWeb Ontology did not have sufficient 

terminology to annotate genes involved in Malassezia infections. To meet this new 
requirement, the updated version of the ontology has gained 26 additional terms 

addressing these infections.  

Category theory within the RLR framework has a significant potential to be 

considered as a supplementary tool to capture and represent the full semantics of 

ontology driven applications and it can provide a formal basis for analyzing complex 

evolving biomedical ontologies.  

In fact ontologies are not isolated structures, but they tend to be reused as much as 

possible. The Semantic Web ultimate vision is to bring the existing ontologies, 

knowledge bases, controlled vocabularies, thesauri, databases and linked data sources 

under one umbrella, in such a way that they can communicate with each other and with 

users in a coordinated interactive manner. The FungalWeb ontology is in close contact 
with other resources such as Gene Ontology, TAMBIS (Baker et al., 1998), SwissProt 

(Bairoch, 2000), BRENDA (Schomburg et al., 2004), and etc (Figure 13). It is highly 

desirable that all changes within a resource can be tracked and all the impacts of such 

changes as well as their directions can be recognized and indentified. In our approach 

changes to each part of the ontology can cause that the conceptual design changes the 

state and also may cause alterations to other dependent artifacts. 
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Figure 13 Interrelated distributed ontologies, knowledge bases and data sources in biomedical 
domain. 

 

 
 

Defining appropriate transformation rules, such as what is represented in Figure 14, 

is the first step towards performing a transformation. Recalling the definition of category 

DGRAPH and using the approach proposed in (Taentzer, 1999), a pushout over 

distributed graph morphisms with respecting to both lattice (network) and internal (local) 
morphisms can be constructed, which enables us to apply the defined pushout-based 

transformation rules to describe changes in the distributed ontologies. 
 

Figure 14 A distributed transformation rule, which regulates the transformation of different 

interconnected ontologies in two abstraction levels, namely internal and lattice. 
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5 Discussions and Conclusion 

 
Our proposed approach has still room for improvement in several areas, some of which 

have been considered for future work. Incorporating new knowledge in an ontology, must be 
in a way that it should not contradict the existing ‘truth’. Therefore as a vital part of ontology 

maintenance one should always watch for the consistency and coherency of the evolving 
ontologies. During the agents’ collaboration and negotiation in RLR, each action is evaluated 

for its potential consequences on the detected and identified inconsistencies in each context. 

Then, either the action should be banned or the inconsistencies must be resolved. Ideally these 

processes should be examined every time the state transition has occurred to ensure that the 

ontological consistency still holds. The consistency management in our model includes 

several options including:  
- Enforcing the actions for prohibiting the alterations that may lead to inconsistencies that 

often inherit to different versions and endure over the substantial part of the ontology’s life 

cycle. This has been done by defining a set of conditions on transformations. Checking 

consistency of the graph transformation and whether a sound graph structure exists or not, 

along with controlling the consistency conditions have been broadly addressed in (Heckel 

and Wagner, 1995).  

- Isomorphic Reasoning and Commutative Inference: In order to validate the categorical 
diagrams the partial isomorphism in the semantic web environment can be defined based 

on the similarity in structural relationships between syntax, semantics, and the resources 
of the knowledge in ontological frameworks. From a categorical point of view, the 

simplest type of isomorphic reasoning involves an explicit and continuous mapping of the 
correspondences and similarities at the syntactic level while ignoring the semantics. This 

method enables us to perform reasoning about the dynamic structure of ontologies. For 

example, in the case of context change in ontology evolution, since the applicability of 

specific knowledge in one context does not automatically indicate the validity of the 

reasoning in the new context, thus the isomorphism between different states of the 

ontological structures and the knowledge they implied needs to be carefully analyzed. A 

common sense approach to get insight into a categorical diagrammatic structure and trace 

its various states, is to follow and chase the diagrams depicting the objects and 

morphisms, to check whether the diagram is commutative or not and ensure the equality of 

the compositions. A diagram is commutative “if and only if  whenever p and p' are paths 

with the same source and target, then the compositions of morphisms along these two 

paths are equal” (Goguen , 1991). Putting two commutative diagrams together yields 

another commutative diagram. The diagram chasing along with commutative inference 
allow us the state space analysis to examine all the potential state transitions based on a 

derived transformational pattern. Therefore, one of the fundamental functionalities in 
ontology engineering that is the traceability of isomorphic reasoning processes through 

time from an initial ontology version to its current operational version can be performed. 

In order to fully utilize the potential of reasoning and consistency checking in our 
framework, we are still working on this part as our ongoing research. Based on our experience 

in dealing with category theory, we feel that this formalism still has plenty of potential left to 

be used for ontology change management; thus, the categorical constructors such as sketches, 

n-categories, and enriched categories are due for examination in future work.  

In the employed graph transformation approach, we restricted ourselves to using typed 

labeled graphs; however, in order to increase the expressivity of the graph representation, one 

may want to employ hypergraphs instead. Although using hypergraphs increases the 

expressivity of our formalism, it also induces a tremendous amount of complexity on the 
reasoning process (comparable with using OWL Full as the representation language). In 
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addition, extending the types of interactions between different change actions at the internal 
and external levels of our introduced HD graphs could be another possible enhancement. 

Moreover, modeling a rule-based query engine that enables us to pose complex queries to 
changing knowledge bases is another possible task to be pursued. From our experience so far, 

some of the advantages of our introduced model are: 

 

- The representation of events, time, actions, and operations employed in different scenarios 

of a dynamic ontological framework is an effective way to trace model changes; 

- The independency of the framework from any particular domain, algorithm, protocol, or 

implementation language and its abstractness makes it more flexible for reuse in many 
application domains that use different formalisms and platforms; 

- Employing transformation rules to perform changes ensures the consistency of the evolving 

ontologies in different states; 

- Following the double-pushout approach for defining model transformation, which isolates 

the parts that remain unchanged, enables concurrent changes within an integrated 
knowledge-based system with minimum interruption to the system’s operation. 

 

The abstract categorical notions and their ability to specify objects and their relations in different 

levels of granularities, together with graph oriented semantics, enable us to describe the complex 

evolving structure in a consistent manner, which is beyond the capability offered by OWL’s 

single semantic structure 
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