

 Int. J. Data Mining and Bioinformatics , Vol. x, No. x, xxxx

 Copyright © 200x Inderscience Enterprises Ltd.

Managing Changes in Distributed Biomedical Ontologies
using Hierarchical Distributed Graph Transformation

Arash Shaban-Nejad*

McGill Centre for Clinical and Health Informatics,

Department of Epidemiology and Biostatistics, Faculty of Medicine,

McGill University,

1140 Pine Avenue West

Montreal, Quebec, H3A 1A3
Canada

Fax: + (514) 843-1551

E-mail: arash.shaban-nejad@mcgill.ca

*Corresponding author

Volker Haarslev

Department of Computer Science and Software Engineering,
Concordia University,

1455 de Maisonneuve Blvd. W.,

Montreal, Quebec H3G 1M8

Canada

E-mail: haarslev@cse.concordia.ca

Abstract: Ontologies play a crucial role in current web-based biomedical applications for

capturing contextual knowledge in the domain of life sciences. They are continuously evolving in
order to fix the problems and provide valid knowledge. As our knowledge improves, the related

definitions in the ontologies will be altered. This issue is inadequately addressed by available tools

and algorithms, mostly due to the lack of suitable knowledge representation formalisms to deal

with temporal abstract notations, and the overreliance on human factors. Also most of the current
approaches have been focused on changes within the internal structure of ontologies, and

interactions with other existing ontologies have been widely neglected. In our research, after
revealing and classifying some of the common alterations in a number of popular biomedical

ontologies, we present a novel agent-based framework, RLR (Represent, Legitimate, and

Reproduce), to semi-automatically manage the evolution of bio-ontologies, with emphasis on the
FungalWeb Ontology, with minimal human intervention. RLR assists and guides ontology

engineers through the change management process in general, and aids in tracking and representing
the changes, particularly through the use of category theory. We have also employed rule-based

hierarchical graph transformation to propose a more specific semantics for analyzing ontological
changes and transformations between different versions of an ontology, as well as tracking the

effects of a change in different levels of abstractions.

Keywords: Controlled vocabulary; Bio-ontologies, Graph Transformation, Category theory;

Change management.

Reference to this paper should be made as follows: Shaban-Nejad, A., Haarslev V. (2012)

‘Managing Changes in Distributed Biomedical Ontologies using Hierarchical Distributed Graph
Transformation’, Int. J. Data Mining and Bioinformatics, Vol. x, No. xx, pp.x–xx.

 A. Shaban-Nejad and V. Haarslev

Biographical notes: Arash Shaban-Nejad is a postdoctoral fellow in McGill Clinical & Health
Informatics Centre at McGill University, where he conducts research on the knowledge

representation and modeling for different applications in healthcare. He received his M.S. and

Ph.D. in Computer Science from Concordia University in 2005 and 2010, respectively. His primary
research interest is knowledge representation and semantic web, particularly ontologies and

knowledge bases, description logics, category theory, intelligent agents, reasoning and inferencing,
with special emphasis on applications from health and biomedical domains.

Volker Haarslev is a professor at the department of Computer Science and Software Engineering,

Concordia University. He is a leading expert in knowledge representation, semantic web, and
description logics. Volker haarslev is the co-founder of RACER, a highly optimized reasoner for

ABoxes and TBoxes in description logics (DLs), and RacerPro, which supports OWL reasoning for

the Semantic Web.

1 Introduction

Using clinical vocabularies and lexicons has a long history in medicine and life sciences.

However, a new trend is emerging to use ontologies, as “specification of a

conceptualization” (Gruber, 1993) to provide an underlying discipline of sharing

knowledge and modeling biomedical applications by defining concepts, properties and

axioms. Ontologies are widely used as a vehicle for knowledge management in current

biomedical applications, for sharing common vocabularies, describing semantics of

programming interfaces, providing a structure to organize knowledge, reducing the

development effort for generic tools and systems, improving the data and tool integration,

reusing organizational knowledge, and capturing behavioral knowledge. The main

components of ontologies are concepts (classes), relations (properties), individuals

(instances) and axioms. Concepts represent a set or class of entities within a domain.

Relations describe the interactions between individuals of those concepts. Individuals are

the “things” that exist in the real world, represented by a concept. Axioms are being used

to constrain values for concepts or individuals. Ontologies capture knowledge from a

domain of interest in order to share it between both machines and humans. When the

knowledge changes, then definitions will be altered. Ontologies are evolving over time in

order to fix errors, reclassify the taxonomy, adding/removing concepts, attributes,

relations and instances. Generally most of the existing change management approaches

have been faced with the following three issues:

1- Overreliance on human factor;

2- Lack of a suitable formalism to deal with temporal abstract notions;

3- Neglecting the interactions with other existing ontologies and focusing on

changes in internal structure of ontologies.

In order to address these issues our study has been focused on finding a suitable

formalism to capture, represent and analyze the ontological alterations in the domain of

life sciences with minimum human intervention. Specifically we analyze how these

changes can affect the dependent artifacts in a distributed environment. To this end, after
analyzing the context of the problem and reviewing other existing techniques for change

management in some existing biomedical ontologies (Shaban-Nejad and Haarslev, 2009),

we presented a novel multi-agent-based approach, RLR (Represent, Legitimate, and

Reproduce) (Shaban-Nejad and Haarslev, 2008) (Figure 1) to manage the evolving

structure of biomedical ontologies in a semi-automatic and consistent manner with

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

reproducible results. The RLR framework aims to assist and guide ontology engineers

through the change management process in general, and aids in tracking and representing
the changes, particularly through the use of graph transformation empowered with

category theory as a mathematical notation, which is independent of any specific choice

of ontology language or particular implementation.

Figure 1 A general representation of RLR and the associated categorical graph-oriented

formalism for managing changes in biomedical ontologies. As shown category

theoritical approach has been used to perform change management in bio-ontologies by
defining categories of Class,States, Ontologies and Opearation to analyze ontological

changes at both internal and external levels. Also categories of Agent, MAS,Services,

Rules and Preposition have been used to formalize agents interactions and negotiation

(Ehrig, 1979). Moreover categorical representation has been employed as a main formal
method for performing hierarchical distributed graph transformation, specifically
through two categories of GRAPH and DGRAPH (distributed graphs).

As we will demonstrate throughout this manuscript categories and graph

transformation – more specifically hierarchically distributed (HD) graph transformation–

provide abstract yet expressive enough formalism to address the second and third issues

stated above. HD graph transformation as an adapted type of standard graph

transformation has been employed to maintain the hierarchically structured knowledge in

the Semantic Web environment. The graph transformation rules describe the structural

 A. Shaban-Nejad and V. Haarslev

changes placed during a knowledge base operation. To perform the transformation we

employ the well-known category theoretical method double-pushout (Ehrig et al., 1973).
In contrast to some of the existing works on ontology evolution, we specifically focus on

changes in distributed ontologies, not as standalone artifacts but in contact with other

ontologies in an open semantic web environment. Our proposed formalism can overcome

the decidability issue that occurs in temporal description logics and the rigidity of OWL’s

single semantic structure. We demonstrate the technical correctness and feasibility of our

approach through a set of case studies.

2 Changes in Biomedical Ontologies

There are currently a growing number of ontologies and controlled vocabularies in

various areas of life science. It is not a surprise that many of them do not have sufficient

requirement to be considered as a formal ontology. Especially most ontologies in the

biomedical domain are known to be seriously defective in both terminological and

ontological perspectives. In this paper we selected some of the most popular ontologies
and controlled vocabularies in health science to find the evidences for various types of

possible changes. The following ontologies have been selected based on several criteria

such as availability, popularity, complexity and accessibility to the source and

documentation. The Gene Ontology (GO) (Ashburner et al., 2000), Clinical Term

Version 3 (The Read Codes) (NHS Information Authority, 2000), Health Level 7 (HL7)

(Health Level 7 Reference Information Model), UMLS Semantic Network (McCray and

Nelson, 1995), The Foundational Model of Anatomy (FMA) (Rosse and Mejino, 2003),

Medical Subject Heading (MeSH) (Coletti MH, Bleich,2001) and Terminologia

Anatomica (TA) (Whitmore, 1999). Based on our research of the literature, observing

different releases of ontologies, surveys, and interviews with several domain experts and

ontology engineers, we distinguished about 74 different types of changes that frequently
occur in life cycles of existing bio-ontologies. We classified the changes under 10

groups: addition, deletion, retirement (obsoletion), merging, splitting, replacement (edit

or rename), movement, importing, integration, or changes to file structure (Table 1).

Table 1 Common changes in some of the popular bio-ontologies

Type of

change

Definition Observed

Ontology

Example

A
d

d
it

io
n

Improving ontological structure by adding one

or more components to the available makeup.

The most common additions in the observed

bio-ontologies are of the following elements:

Namespace, identifier code, concept, attribute,
abbreviation, super-class, sub-class, attribute

value, synonym, constraint (cardinality, type

and min/max, inverse roles, default value),

associative relationships (relationships to other

individuals), annotation description, class-status

(hidden/public), and instance.

Gene

Ontology

(GO)

The curators at MGI, who were reviewing the existing

terms for comprehensive annotation of mammalian

genes involved in the regulation of blood pressure,

realized that the existing GO terms were not sufficient

to annotate genes involved in the various processes that
regulate blood pressure. They then proposed 43 new

GO terms, which were discussed and refined with other

GO curators through the GO discussion forum. They

efforts yielded new annotations for mouse genes

directly involved in the process of blood pressure

regulation (GO Newsletter, 2006).

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

D
el

e
ti

o
n

Erasing the selected element(s) when it does not

reflect the ontological ‘truth’ anymore. The

most common deletions are of the following

elements: Namespace, identifier code, concept,

synonym, abbreviation, annotation (description),

constraint (cardinality, type and min/max),

attribute value, super-class, sub-class, constraint

(cardinality, type and min/max, inverse roles,

default value), associative relationships,

annotation description, class-status (hidden

/public), and instance.

Gene

Ontology

(GO)

The GO terms must characterize biological entities (i.e.,

functional activities that are catalyzed by enzymes). The

terms classified as “Unknown” violated this principle,

so the decision was made to delete the following terms:

biological process unknown; GO:0000004, molecular

function unknown; GO:0005554 and cellular

component unknown; and GO:0008372 from the

ontology. The new annotations signify that a given gene

product should have a molecular function, biological

process, or cellular component, but that no information

was available as of the date of annotation (GO News

letter, 2007).

R
et

ir
e
m

e
n

t

(O
b

so
le

sc
en

c
e
)

Deprecating an older element when a newer,

more functional element or meaning supersedes

it. The older version can be kept somewhere for

future use, but its usage will be discouraged

(Cimino , 1996). The retirement can usually be

seen for the concepts, attributes, identifier
codes, instances and relationships.

Health

Level 7

(HL7)

In the release 2.0 of HL7, the components:
ClinicalDocument.copyTime, MaintainedEntity,

CodedEntry, inkHtml.name,table.border, table.

cellspacing and table.cellpadding are retained for

backwards compatibility with HL7 Clinical Document

Architecture (CDA), Release 1.0, and have been retired.

Further use of these components is discouraged (Dolin
et al., 2004).

M
e
r
g

in
g

The process of creating a consistent and

coherent ontological element that includes

information from 2 or more basic elements. It

can be seen as following: Merging two or more

concepts into one of the concepts or into a new

concept (Cimino , 1996), two or more attributes

into one of the attributes or into a new attribute,

two or more associative relations into one of the

relations or into a new relation, two or more

identifier codes into one of the codes or into a
new code.

Health

Level 7

(HL7)

In HL7, the purpose of the header is to enable clinical

document exchange across and within institutions,

facilitate clinical document management, and facilitate

compilation of an individual patient's clinical

documents into a lifetime electronic patient record

(Dolin et al., 2004). In HL7’s Clinical Document

Architecture (CDA), Release 2.0, two concepts in the

header (service_actor and service_target) have been

merged (Dolin et al., 2004).

S

p
li

tt
in

g

An ontological element may be split into two or

more new elements. This means that a concept

can be split into two or more new concepts, an

attribute into two or more new attributes, an

associative relationship into two or more new
relationships, or an identifier code into two or

more codes.

Terminologia

Anatomica
(TA)

In TA, terms that share an id code are treated as

synonyms. But, this does not hold for sexually

dimorphic anatomical parts, such as ‘Ovarian artery’
and ‘Testicular artery’. These two share the same TA

code (A12.2.12.086) and therefore might be thought of

as synonyms, but the two arteries are distinct and have

different connections and other spatial relationships

(Whitmore, 1999). So, they have to be modeled as two

separated concepts, it means the code A12.2.12.086 can
be split into A12.2.12.086-1 for ‘Ovarian artery’ and

A12.2.12.086-2 for ‘Testicular artery’.

 R
e
p

la
ce

m
e
n

t
(E

d
it

,
R

en
am

e)

This process is for editing available labels and

values. This editing mostly happens to change

namespace, concept name, concept definition,

attribute value, attribute name, attribute

definition, and concept role.

Health

Level 7

(HL7)

A typical scenario (Dolin et al., 2004) from HL7
Release 2.0 is a simple replacement of Clinical

Document.id "1.2.345.6789.266" replacing

ClinicalDocument.id "1.2.345.6789. 123"

M
o
v

e
m

e
n

t

(T
ra

n
si

ti
o

n
)

The transition of one or more ontological

elements across the ontological hierarchy. This

transition can happen to identifier codes,

concepts, attributes, super-class, sub-class,

associative relationships, and instances.

Gene
Ontology

(GO)

GO terms representing transporter activity in the

Molecular Function are gradually being overtaken to
better represent current scientific knowledge. A new

high-level term called "transmembrane transporter

activity" (GO:0022857) was introduced. So, the related

child terms and sub-classes have been moved under GO

terms that describe the activity of the transporters, such
as channel activity, active transporter activity, and

symporter, antiporter and uniporter activity (GO

Newsletter, Aug 2007)

 A. Shaban-Nejad and V. Haarslev

 Im
p

o
r
ti

n
g

Importing refers to the process of bringing an

existing ontology (a tree) or parts of an existing

ontology (sub-tree) into another ontological

structure.

Gene

Ontology

(GO)

In 2001, the GO developers imported the first pass

annotation from SWISS-PROT, trEMBL and Ensembl.

Also, 7316 GO annotations were imported from

Proteome and literature associations (GO Meeting,

2001).

In
te

g
r
a

ti
o

n

In data integration, process data is extracted
from different sources with different data

formats, and then normalized into a consistent

syntactic representation and semantic frame of

reference (Buttler et al., 2002). The semantic

integration is more complex than data
integration.

Foundational

Model of

Anatomy
(FMA)

In order to meet the need for an expressive ontology in

neuroinformatics, the FMA developers have integrated

the extensive terminologies of NeuroNames and

Terminologia Anatomica into FMA. They have

enhanced the FMA to accommodate information unique
to neuronal structures, such as axonal input/output

relationships (Martin et al., 2003).

C
h

a
n

g
e

to
 R

el
e
a

se

F
il

e
 (

F
il

e
S

tr
u
ct

u
re

)

By the advancement of technology for storing

and retrieving data files and the emergence of
new standards, the format of file structures can

be changed.

Read

Codes

In Read Codes, Ver. 1.0 four character codes
determined the position of a term in a hierarchy (4-Byte

Set). The restrictions imposed by only 4 levels of

hierarchy led to the development of a 5-Byte Set, which

expanded the set to support secondary and tertiary care.

This set was released in two structurally different

versions. Ver. 1.0 has shorter terms and keys than Ver.
2.0. The more complex Ver. 3.0 structure is a superset

of all old versions, and supports the character structures

of both Ver. 1.0 and Ver. 2.0 (Robinson et al., 1997).

As an application scenario, we consider the FungalWeb Ontology (Baker et al., 2006),
an integrated formal bio-ontology in the domain of fungal genomics. The Fungal

taxonomy is not stable. Most of the alterations are changes in names and taxonomic

structure and relationships. Fungal names reflect data about the organisms; thus, as our

understanding of the relationships among taxa improves, these names will need to be

changed, as they will no longer convey the correct information to the user. Most fungi

names are currently based on phenotypes (visible characteristics of an organism). These

name changes may cause confusion and affect the validity of different queries. The

morphological conceptualization of fungi is not sufficient, and will no longer work

because all of the names based only on morphology must be re-evaluated. In addition, the

phylogenetic-based conceptualization has its own limitations, since the decision of where

to draw the line between different species is not always easy to make (Whitmore, 1999).

To manage this process of continuous change, we rely on ontological conceptualization,

where names in taxonomy are only meaningful once linked to descriptive datasets, which

are extracted and managed from various databases and literature in an integrated

environment.

3 The RLR Framework

The RLR framework for change management consists of a set of intelligent agents

designed to perform several intelligent tasks including learning, reasoning, capturing

changes and negotiation within a collaborative environment. In a typical scenario within

the RLR argumentative architecture, a user (human or agent) initially sends a request to

an ontology engineer for a particular change in the ontological structure. Based on the
system’s background knowledge and the choice of the ontology engineer, various options

are available to implement a change. The negotiation agent, along with the reasoning

agent, provides arguments for the acceptance or rejection of a change proposal. An

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

“Argument Generator” determines appropriate responses based on the negotiation rules.

Different arguments attack each other to enforce their rules and defeat their peers by
sending counter-arguments. The inferred arguments can increase the possibility of higher

quality agreements (Capobianco et al., 2005). The Negotiation Protocols in the RLR

architecture contain the rules that dictate a protocol. As a knowledge base evolves, the

historical information about different changes will be accumulated in the change logs.

This information will be used by the learner agent, which acts as a basis for a

recommender system, to propose different alternatives for the implementation of future

changes. The reasoning and negotiation agents can change the rules if necessary and send

modifications to the learning agent. In order to maintain agents’ argumentation for

automation of ontology evolution, we employ the “dialectical databases” (Capobianco et

al., 2005). In argumentation-based multi-agent systems, a dialectical database tends to

improve the speed of inference responses by storing pre-compiled knowledge about

potential dialectical trees (Bryant and Krause, 2008). The dialectical trees represent sets

of possible dialectical confrontations between the arguments to accept or deny a proposal

to deal with a particular change. For the detail on the structure of RLR we refer the reader

to (Shaban-Nejad and Haarslev, 2008). We use category theory and graph transformation

to explore systematic changes in ontologies, analyze rule based transformations, and

study various dependencies between the ontological elements, as well as formalizing

agents’ interactions and communications in the RLR framework.

3.1. Category Theory

Category theory is a relatively new domain of mathematics, introduced and
formulated in 1945 (Eilenberg and Mac Lane, 1945). Category theory is closely

connected with computation and logic, which allows an ontology engineer to implement

different states of design models to represent the reality. Using categories, one can

recognize certain regularities to distinguish a variety of objects, capture and compose

their interactions and differentiate equivalent interactions, identify patterns of interacting

objects and extract some invariants in their action, or decompose a complex object into

basic components. Categorical notations consist of diagrams with arrows. Each arrow f:

X→Y represents a function. A Category C includes: A class of objects and a class of

morphisms (“arrows”), and for each morphism f there exists one object (A) as the domain

of f, and one object (B) as the codomain; For each object A, an identity morphism, which

has domain A and codomain A (
“
IDA

”
); and For each pair of morphisms f:A→B and

g:B→C, (i.e., cod(f) = dom(g)), a composite morphism, g o f: A→C exists.

Figure 2 A diagrammatic representation of categorical pushout

 A. Shaban-Nejad and V. Haarslev

Some of the primitive constructors of category theory that we use in our framework

for ontology change management are as follows: Products, Co-products, Functors,
Natural Transformation, Pushout and Pullback. More information on these categorical

notions can be found in (Asperti and Longo, 1991). The pushout for two morphisms f:

A→B & g: A→C is an object D, and two morphisms i1: B→D & i2: C→D exist such that

the square in Figure 2 commutes. D is the initial object in the full subcategory of all

candidates D' (i.e., for all objects D' with morphisms j1 and j2, there is a unique morphism

from D to D'). The pullback is the dual notion to the pushout. Functors are defined as

morphisms in the category of all small categories (where classes are defined as

categories) (Awodey, 2006). In other words they are structure-preserving maps between

categories. The maps between functors (morphism of functors) can be described by

Natural Transformation.

3.2. Graph Transformation DPO approach

The rule-based graph transformation can be studied based on the following three

activities (Heckel, 2006):

- Creating the conceptual generalizations of the reality and transferring them from

“reality” to its representation in a model;

- The definition of rules as specifications of state transformations;

- Using graphs as a means to represent snapshots, concepts, and rules.

Generally applying a transformation rule (production) p: L → R denotes finding a

proper match of L (Left hand side) in the source graph and replacing L by R (Right hand

side), leading to the target graph of the graph transformation. The major question in

graph transformations is how to delete L from a source graph and connect R with the

context in the target graph (Ehrig et al., 2006). Following the double-pushout approach

(DPO) (Ehrig et al., 1973), a transformation rule is defined as a pair t: L ← I → R of

morphisms l: I → L and r: I → R such that l is injective, where the graphs L and R are

called the left and right-hand sides respectively, and I is called the interface or gluing

graph. It is not necessary for the morphism r: I → R to be injective, which allows one to

identify different nodes or edges in various transformations. Also, the injectivity of l: I →

L ensures the uniqueness of the results in backward tracing in a transformation. The rule t

transforms a graph O
G
 into a graph O

H
, denoted by O

G
 ⇒

t
 O

H
if there is an injective

occurrence morphism m: L→O
G
, and two pushouts as represented in Figure 3.

Figure 3 Double-Pushout approach for graph transformation

In Figure 3, the morphism m, which models an occurrence of L in O

G,
 is called a

match. The transformation, which is performed by the specified rule, represents the

change of the graph O
G
 to the graph O

H
. In more complex transformations we usually see

a sequence of simpler transformations and a set of several transformation rules. As stated

in (Ehrig et al., 1990), by considering the dangling points (those points in L, a subgraph

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

of O
G, that are the source or target of arcs in O

G
 minus L) and the identification points

(those points in L that are identified in O
G
) in the transformation of O

G
, the gluing points

of L (identified by KL) can be identified if both dangling and identification conditions are

satisfied. These two conditions together form the gluing condition, which ensures the

transformation is valid.

Dangling condition ∪ Identification condition ⊆ Gluing Condition

Based on the previous definitions, the pushout exist if and only if m satisfies the

dangling condition with respect to l, and in this case O
G
, t, and m determine O

H
 uniquely

up to isomorphism. A graph transformation system is usually defined as a set of
transformation rules (productions) P. In summary DPO should be performed through the

following steps when a rule L ← I → R is given.

1. Find the elements of L in the given graph G, i.e. a match m: L → G.

2. Delete from G all the elements specified in L, which are not in the gluing graph I. This

means to find a graph K and graph morphisms K → O
G
, and I → K such that the

square is a pushout.

3. Add to graph K all the elements of R, which are not in the gluing graph I and create
the second pushout and obtain a derived graph H.

4 Employing HD Graph Transformation for Ontology Change Management

Changes in an area due to technical, industrial, cultural, or social matters force the existing

systems and applications to adapt themselves to the new state. Particularly, large systems

and knowledge bases built upon smaller reusable sub-systems are in greater danger and

should be continuously monitored to ensure the correctness and consistency of the entire

infrastructure. In an ontological sense, concepts in an ontology naturally match with nodes

of a graph, while the relationships in an ontology correspond to edges. The graph-based

representation of the biomedical ontologies has a great tendency to become large,

complex, and hard to grasp, understand, or maintain in a very short time. In applications

dealing with compound graphs in layered organizations, the notion of graph can be

extended to hierarchical graph. Hierarchical graphs attract broad attentions in theoretical

computer science (e.g., object oriented design (Van Eetvelde, 2003), database (Elmasri

and Navathe, 2007), and computational molecular biology (Mason and Verwoerd, 2008)),

mostly for representing semantically complex and interrelated network structures.

Different models, including the ones in (Engels and Heckel, 2000; Engels and Schürr,

2005) have been studied concerning the issue of hierarchical transformation of dynamic

complex graphs, and several models (Hoffmann, 1999; Palacz, 2008) have been

implemented using the rule-based approaches.

In order to mimic the actual nested hierarchical structure of the Semantic Web, where

information is distributed in the nodes (graphs) and edges (relations between the graphs),

we employ hierarchical distributed (HD) graphs (Taentzer, 1999), which enables us to

perform the transformation on different levels of abstraction. The hierarchical graphs

have richer semantics and are more expressive in comparison with regular flat graphs. In

addition, they reduce the complexity of representation of large interrelated systems by

allowing one to describe a system on a more abstract level through hiding the irrelevant

details in encapsulated sub-graphs (Engels and Schürr, 2005). Hierarchical graph

transformation can be performed using the extended double-pushout notion to represent

various aspects of dynamic structures (e.g., the rearrangements of some temporal parts,

 A. Shaban-Nejad and V. Haarslev

describing the changes in relations, creation/deletion of communication channels, and

performing operations such as “splitting” a graph into two or more graphs or “joining”
distributed graphs into one graph (Taentzer, 1994)). As defined by (Taentzer et al., 1999),

distributed graphs distinguish between two levels, namely local (internal), and network

(external or lattice) (Figure 4).

Figure 4 An schematic representation of a distributed graph.

The communication between internal graphs can be performed via interfaces. In our

model, the hierarchical graph (the lattice) consists of a set of internal graphs (which may
be hierarchical graphs as well), the root of the hierarchy, and a set of edges that relates

the internal graphs to each other. Each editorial action is expressed through a graph

transformation and every state of the ontological structure is modeled in a graph with the

nodes denoting objects and the edges representing the connections linking them. The

categorical graph grammar supports the flexible change of complex interrelated

compositions while providing explanations for corresponding actions performed by graph

transformation. Various states can be produced by internal or external actions, and their

communications can be modeled and simulated using graphs and state transitions, then

represented and described by means of graph transformation. The double-pushout

technique has been extended from flat to hierarchical graphs (Drewes et al., 2002), where

the associated transformation rules can be applied at all hierarchical levels. This

facilitates changes of the graph’s entries (i.e., by insertion or deletion) regardless of their

size and configuration, with adaptation of the “dangling condition” from the flat graphs

transformations (Drewes et al., 2002). The compound state of the entire system can be

known by analyzing several other internal graphs, each having an internal state and

behavior. There are also lattice-like dependency graphs representing dependencies

between different internal graphs. In the process of change management for the lattice-

like structure, several concerns related to sequential, parallel, or concurrent evolution of

its components arise.

Different ontologies in Semantic Web are usually connected in a lattice-like structure

and interact with each other through one or more interfaces. This lattice can be modeled

as a directed graph with individual ontologies (internal graphs) as its nodes and the links

between these ontologies as its edges (Figure 5). The described configuration is

analogous to HD-graph (Taentzer, 1994 and 1999), where each of the links connecting

the internal graphs contains a graph morphism specifying the relation between two

internal states. When the internal graphs are faced with any change (e.g., adding/deleting

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

a concept or relation), their state would be changed, which would affect other dependent

graphs, and a synchronization unit within the RLR framework, which stores all the states
in the change logs, forces the lattice-like structure and the mediator interface to change

their states accordingly. Following the approach given in (Taentzer, 1994), this structure

can be modeled in two different but related planes, namely conceptual (shows all existing

and potential relations, paths, and their revisions) and operational (shows only actual

existing nodes and relations) (Figure 5).

Figure 5 A hierarchical graph for managing distributed ontologies representing the relations

between different states of a lattice-like structure consisting different distributed
ontologies. The changes can be performed in an interface graph that consists of all the

nodes which have a matching node in the related internal graphs. In this way, the

transformation of objects and morphisms allow the change of an evolving structure by
changing its interfaces.

In order to categorically analyze the distributed transformations we employ the

category of distributed graphs DGRAPH with distributed graphs as objects and

distributed graph morphisms as arrows
1
, to define a transformation using an adapted

version of double pushout approach described in (Taentzer, 1999). Then we can define a

transformation using double-pushout, in the category DGRAPH. Based on the definitions

of graph, and the category Graph, a distributed graph can be defined as following.

Consider G (a network graph) from category Graph, a diagram
∧

G→ Graph is called a

distributed graph while
∧

G (i) refers to the local graph that is related to node i of network

graph (lattice) G (Taentzer, 1999). Then a distributed graph morphism for two distributed

graphs
∧

G and
∧

H can be defined as
∧

f (i):
∧

G →
∧

H such that
∧

f is a natural transformation

of
∧

f (i):
∧

G →
∧

H ° f in category Graph with f: G → H as its morphism (network

morphism). So, distributed graphs and distributed graph morphisms serve as objects and
arrows for the category DGRAPH (Taentzer, 1999). For the details of proofs and other

1 Notice the similarities with the notion of categorical functor.

 A. Shaban-Nejad and V. Haarslev

related categorical notions in distributed graph transformation one may refer to (Taentzer,

1999; Ehrig et al., 2006).

4.1. Analyzing Events and Actions in Rule-Based Model Transformation

In order to analyze different events that trigger actions during the ontological

evolution process, we consider events as part of the rule condition in a graph

transformation. The actions are described by productions and the events will occur if

certain predefined conditions are assessed to be true. To formalize graph transformation,

we employ the notion of double-pushout from category theory, which needs certain

requirements to compute production (describes actions in graph grammar) and its

corresponding element in other graphs. One of the requirements is satisfying the gluing

condition to derive a new graph by finding a match of the left side of the rule in the given

graph, then deleting it (except the gluing point) and adding the right side of the rule (see

(Ehrig et al., 1990) for the details). By following the approach proposed in (Taentzer,

1994), we use hierarchical distributed graph rules covering both internal and external
production describing the internal and external actions respectively. Since the lattice-like

structure covering the internal graphs is less likely to be changed by internal actions,

which affect mostly internal graphs, the external graph is transformed through an

identical production that preserves the external graph nodes. A typical example,

illustrated in Figure 6, is the addition of an ontological element (i.e., a concept) to an

existing ontology, which causes the state of the ontological structure (internal graph) to

be changed. This action does not have a significant effect on the lattice-like structure

(external graph). As represented in Figure 6, the hierarchical graph production “concept

addition” demonstrates an internal action that transforms the ontological structure O from

state St1 to state St2. This production will not alter the external graph represented in

Figure 5.

Figure 6 Adding a new concept to an individual ontology that is part of a lattice made from several

interconnected ontologies.

If one wants to delete an ontological element that has referenced a relation from other

distributed ontologies in the lattice, then an external action needs to be performed. The
external actions are capable of transforming the external graph. Controlling these

transformations is a central task in the ontology engineering domain, since they can

easily give rise to different types of inconsistencies, especially in cases that involve

several parallel actions and transformations.

An example of alterations in the lattice in our application domain is the insertion of

connective internal graphs (nodes) between two or more other internal graphs (nodes).

For instance, it is known that “a daily cup of yogurt significantly reduces the risk of

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

candida infection and colonization” (Hilton et al., 1992), but this diet might not seem

appropriate for lactose intolerant patients. Also, some studies show that some nutrition is
beneficial to reduce the risk and severity of candida infections if consumed in a proper

diet. Some of the examples
2
 are Probiotics (up to 900 mg daily of beneficial bacteria),

Fructooligosaccharides (up to 4 g daily), Goldenseal (250 to 750 mg daily), Lactoferrin

(300 mg daily), Topical tea tree oil (based on the prescription), Oil of oregano (460 mg

daily), Garlic (600 mg daily), and Boric acid (600 mg daily for 2-3 weeks, shown

effective in 65% of women with vaginal candida infections(Sobel et al., 2003)). In order

to conceptualize these facts in an ontological framework, we use a connecting node

(internal graph) “diet” to connect two structure fungal infections and “nutrition” through

the hierarchical distributed graph production “add connector” (Figure 7).

Figure 7 The hierarchical distributed graph production “add connector” is represented in a way

that the state of the graph “fungal infection” is now related to the graph “diet”, rather than
“nutrition”.

A transformation rule can determine conditions such as: ‘the deletion of a lattice

node should be performed after deleting its corresponding internal graphs’. As long as the

actions (e.g. deletion, insertion) do not violate the defined conditions in the production

rules several actions can be executed in parallel at the local level (e.g deletion/creation of

internal elements). As mentioned, the external lattice production describes the structural

changes of the external graph, and we can model the external actions using a hierarchical

distributed graph production in such a way that an identical production for the internal

graphs of every node of the external graph (individual ontological structures) must be

performed. If the stated predefined conditions for insertion/deletion of the nodes in the

internal graphs are satisfied, then the hierarchical distributed graph production can be

applied at the external (lattice) level (for adding/deleting edges, a set of morphisms will

be described instead).

4.2. Transformation Rules for Changes in Ontologies

The transformation rules in ontology evolution determine what types of changes are

allowed and can be performed on the ontological elements and axioms. Padberg (2008)

2 Fungal Infections (Candida). Life Extension E-Magazine: www.lef.org/protocols/infections/fungal_infections_candida_01.htm

 A. Shaban-Nejad and V. Haarslev

describes the notion of rule-based refinement as an extension of transformations with

added refinement morphisms alongside the rules, which can be applied for maintaining
component-based applications. We found that the ontology evolution process, through

subsequent refinements, is generally analogous and compatible with rule-based

hierarchical graph transformation and refinement. Generally, in a DPO approach, a rule-

based transformation indicates the changes of OG to OH based on the defined rule. The

rules can be atomic or compound and will be examined to ensure the compatibility and

consistency
3
 of the transformations. Our proposed rule-based transformation method for

ontologies determines the circumstances under which an ontological element can be

changed or refined. Table 2 represents some examples
4
 of graph transformation rules,

which can transform a typical graph such as Industry (Diagram 2). Diagram 3 represents

the establishment of the relation “is being used in” to connect two graphs, “Fungi” and

“Industry”. Diagrams 4 and 5 show the rules that specify the internal structure of the food

industry. By applying these transformation rules, Diagram 6 is obtained, which gives us

two potential matches (baking and wine industry) on the left. A transformation can be

defined to be conditional (Habel et al., 1996) in such a way that under certain conditions,

the graph production (rules) transform a source graph into the target graph. These

conditions, which impose a set of restrictions on the transformation processes, can help

one to avoid inconsistencies and conflicts (e.g., the conflicts due to dangling edges).

Table 2 Some examples of the graph transformation rules for part of the FungalWeb Ontology.

1

Two individual graphs

Fungi and Industry are in

their initial state

2

Transforming the Industry
graph (R) to the new

version (L) to cover more

detailed information

(adding child)

3

Defining the relation “is

being used in” to connect
the two graphs Fungi and

Industry.

3 In fact using graph transformation as the underlying formalism can guarantee the consistency of

the results (Taentzer , 1998). This is an important point, since the distributing nature of evolving

structures gives rise to different types of inconsistencies.
4
 For demonstrating the transformation rules in our model, we have employed the diagrammatical
notions (Table 2) introduced in (Palacz, 2004).

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

4

Adding a child node to

specify the internal

structure of the food

industry.

5

Adding another child

node to specify the

internal structure of the

food industry.

6

The two potential
matches (baking and wine

industry) can be chosen

from the left hand side.

4.3. Formalizing the Ontology Change Model in Distributed Environments

 In our model, the hierarchical distributed graph has been used for analyzing dynamic

distributed models and their transitions by describing the initial state, internal and

external actions and defining communicating channels for synchronization. Category

theory is used as a complementary formalism for supporting graph grammar describing

the initial graph and a set of all hierarchical graph productions modeling various actions

(e.g., additions, modification of relations, and so on) in a distributed system. The DPO

approach to graph transformation as a constructor within the categorical framework is

comprehensively described in (Ehrig et al., 2006) for directed and labeled graphs. This

method has been generalized to so-called high-level replacement (HLR) systems in

(Ehrig et al., 1990; 2006) by abstracting the results into arbitrary objects and morphisms.

It has been proven (Taentzer, 1994) that the hierarchical distributed graph transformation

is a highly appropriate scenario for HLR systems. Reflecting this approach into our

framework, we consider the lattice L consisting of all interacting ontologies as a

hierarchical distributed graph, with a set of transformation rules (e.g., rules for node

addition/deletion), which is defined as a functor HD: L → G, where G is the category of

all labeled graph and L∈G. To define the HD-morphism we can use natural

transformations, which are simply the morphisms in the category of functors.

Categorically speaking, the distributed ontological structures can be considered as objects

and the links between them, which shape the lattice structure, as morphisms. This

approach allows one to study the behavior of evolving categorical systems in different

layers (analogous to the modular definition of ontologies) and different levels of

abstraction.

 A. Shaban-Nejad and V. Haarslev

5 Distributed Change Management within the RLR Framework

In our approach, we adapted the graph transformation methods for realizing the problem

of specifying changes in distributed ontologies in two levels of abstractions, namely

micro level (changes in internal structure of an ontology, e.g., adding/deleting a concept

to/from an ontology) and macro level (when the internal changes spread out to an

interrelated ontological organization, e.g., changing the state of an ontology or

adding/deleting an ontology to/from interrelated system). The propagation of changes

may need to be performed during the runtime of many critical systems (e.g., knowledge

bases supporting robotic surgeries or aviations); therefore, these two levels always need

to interact closely to ensure the success of a change management strategy. The distributed

graph transformation can act on different levels of abstractions, ranging from explaining

the details of local actions to the rule-based analysis of different interactions and

operations (e.g., inter-communication, migration, and synchronization) (Taentzer et al.,

1998) before or after a transformation. In order to successfully manage changes in a

specific dynamic system, it would be essential to know, or at least have a reasonably

accurate guess, about all the possible states of that system at different times. The fact that

the dynamic system acts in a distributed environment makes this need more vital. The

concept of distributed graphs has been defined in (Taentzer et al., 1998) as networked

compound graphs with a set of internal graphs as the nodes expressing a internal state of

the system, and a set of graph morphisms as the edges connecting the nodes (internal
graphs) to each other. Distributed graph transformation aims to mediate between these

two levels of abstractions (networks and nodes) and can be used to model many different

types of dynamic network reconfiguration by applying a set of rules for each of the levels

(Figure 8).

Figure 8 Pl and Pi respectively specify sets of lattice and internal transformation rules.

The rules contain the instructions for performing different changes (either in the network

topology or in the nodes) and transformation in a dynamic system via defined actions at

different levels of a distributed graph. The rules also determine whether or not a change

operation is eligible to occur. The communication between lattice and internal rules

performed within a coordinated channel can be used to synchronize different actions in

node and lattice levels.

5.1. Synchronization and Coordination

Managing several concurrent internal and external actions is also vital in the Semantic

Web domain. Considering the Semantic Web as a hierarchically organized graph-like

structure, each action on a graph has consequences in its modified consecutive version,

which helps in tracing the events while preserving the reference state, or in some cases
reconstruction of the past, if it has been removed from the original version. The changes

in a lattice-like structure can be performed at the nodes (e.g., replace/rename a node),

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

edges (e.g., replace an edge) or hierarchical structure (e.g., adding/deleting one or more

nodes).
A hierarchical distributed graph production can be used for synchronization purposes

by checking whether the external production is identical (or compatible) with what is

performed by internal actions. More precisely, it checks if the lattice nodes and edges, in

coordination with internal actions, have been identically replaced in the interface with

respect to the gluing condition. For example, a graph production can describe a

synchronous communication channel (Taentzer, 1994) between two different versions of

an internal graph by highlighting the revisions in the original state and the current state

through the use of an interface graph. Later on, the action that causes a change in the

internal graph needs to be synchronized with other actions on dependent internal graphs

and finally with the actions that alter the external graph. In real world applications, this

synchronization usually results in a series of mappings between the previous and current

states. To manage the interaction between the actions on different levels, we generalize

the change model proposed in (Kramer and Magee, 1990) for the software engineering

domain to classify the changes in a dynamic network at nodes and network levels.

The agents in the RLR framework interact with each other through a set of

communication channels to control actions at different levels. This control assures the

consistency and integrity of changes by defining quiescent
5
 nodes and states. The nodes

are assumed to be in a quiescent state (non-active/passive state) when changes occur at

the lattice level. According to (Kramer and Magee, 1990), a quiescent state for a node is a

state wherein the whole system is consistent and no active communication exists between

the nodes or within their environment. The notification for changing the node’s state

from active to passive (and vice versa) is given through the established communication

channel between the defined abstraction levels. In RLR, upon detection of the alterations
by the set of change capture agents, the current state of the system would be assigned to

the newly affected elements (e.g., newly added nodes) and an alert would be sent to the

other involved components to inform them about the latest state of the system.

The state of a system should be determined and declared by an agent to allow some

actions to be performed in a proper state of the system, to postpone them for later states,

or to prevent them from acting on some of the preserved elements. For example, in the

case of deleting or splitting a node, it acts like the lock mechanism in the database. The

synchronization begins with assigning the states to each element, starting with the initial

state upon its creation and continuing until the final state is assigned upon its termination.

RLR controls the changes by incorporating the transformation rules (at different levels)

along with other pre-defined consistency conditions. The synchronization of two different

nodes (internal graphs) in a distributed graph can be performed through an interface
(Taentzer et al., 1998) that connects these nodes together. The transformation is

performed by a sequence of simpler transformations, each meeting certain conditions to

ensure the target graph is still a distributed graph and to avoid any side-effects (explicit or

implicit) on the graph structure. Some of these conditions are as follows (Taentzer et al.,

1998):

- Gluing condition of the double-pushout approach for the rules at different levels;

- Connection condition, which prevents the deletion of the nodes and the edges if they

are being used by other components.

5 This strategy is similar to “locking” in database research.

 A. Shaban-Nejad and V. Haarslev

Also some other conditions and restrictions may be applied to each distributed rule,

depending on its function. The main context conveyed by the lattice may be defined as
protected to keep it unchanged. If the different actions and changes that are executed at

the node’s level have minimal or no interference with each other, they can operate in

parallel. Assume a set of related ontologies, each with the ability to manage the changes

in its own structure and each change potentially affecting other ontologies. An agent can

initiate an action for changing each ontology in the lattice, based on imposed rules. This

action can then be spread throughout the entire lattice. The distributed graph

transformation can be used to model real-time changes, such as the insertion or deletion

of ontologies. This is important since many changes and updates, unseen in the design

phase, can be applied when the system is in operation if they do not cause any

interruption. If we consider changing a node, it should be flagged as an inactive state, so

it will not update the system’s knowledge upon a change (neither initiate an update nor

service any update request (Taentzer et al., 1998)).

5.2. Rule-based Patterns for Transformations

After each change, the system needs to be verified for consistency. In order to preserve

the ontological elements’ identities and guarantee the consistency and integrity of the

changes, we can define a set of pre- and post-conditions to be satisfied. If all the

conditions within a distributed graph transformation rule are satisfied, then the result of

transforming an initial distributed graph would be a legitimate distributed graph as well.

Figure 9 Representation of a change in a part of the FungalWeb Ontology using graph
transformation.

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

Consider the three ontologies (O1, O2, and O3), connected to each other in a lattice-

like structure. Each node of the lattice represents an ontology and each edge signifies a
graph morphism. The information about the state of each ontology and its relations with

other ontologies in the lattice is stored in an interface node. The diagrams in category

theory intuitively reflect the feasibility of our method, by demonstrating the interactions

between the states and the information related to the changes. By following the method

given in (Taentzer et al., 98), Figure 9 demonstrates the changes in industrial applications

within the FungalWeb Ontology (as an internal graph in a whole integrated lattice),

which consists of the concepts “enzyme” and “product”, with the relation “uses”. The

figure depicts the effect of changes and the state of the ontology (starting from initial

inactive state) in the lattice-like environment, along with its predecessor and successor

versions, using the following distributed graphs:

In Figure 9 assume an update (internal action) starts at the FungalWeb Ontology to

delete the existing relation “Uses” and add the new concept “Company” and the new

relations “Uses” and “Produces” to relate the newly added concept with concepts

“Enzyme” and “Product” respectively. We apply the following rules to perform this

update:

Add interface node (“FungalWeb Interface”),

Operation 1: Add ontological element_Concept (FungalWeb, “Company”);
Operation 2: Delete ontological element_Relation (FungalWeb, “Uses”);

Operation 3: Add ontological element_Relation (FungalWeb,”Company”, “Product”, “Produces”);

Operation 4: Add ontological element_Relation (FungalWeb,”Company”, “Enzyme”, “Uses”).

To hide unnecessary details, the change processes and related interactions are

performed via interfaces
6
. In using category theory, we focus on the interactions between

objects rather than their internal structure. In summary, in our categorical representation

of a hierarchical graph organization, anything other than nodes and edges (e.g., attributes
such as data type properties for ontologies) are supposed to be marginal and not essential.

Thus, the notion of graph transformation can be defined (Busatto et al., 2005) as G,R ⇒⇒⇒⇒
C,E , with G, R, C, E respectively indicating a category of graphs, a category of rules, a

category of control conditions, and a category of graph expressions (cf. (Busatto et al.,

2005) for more information). Modeling the notion of graph transformation in an abstract

way is significant in the sense that it hides the marginal information, which does not

explicitly contribute in the transformation process. As an example, a transformation using

the double-pushout (DPO) has been shown in Figure 10 for part of the FungalWeb

taxonomy. The transformation rule determines a condition for a consistent deletion

operation within an ontology by specifying that if a parent-node has to be deleted its

children should be deleted as well.

The double-pushout approach, constructed based on categorical pushout, in our

example has been generally represented as the gluing of two graphs via a common

interface. As shown in Figure 10, the left side indicates a pattern
7
 to be located in the

original graph (G); the right side represents the requested transformation, which

transforms the original graph (G) to the transformed graph (H); and the middle section

represents the gluing point(s) (C1 and C2), which are identified by L ∩ R. In the RLR

Framework the agents generalize the behaviors by systematically monitoring the

6 “Interface generally refers to an abstraction that an entity provides of itself to the outside. This

separates the methods of external communication from internal operation, and allows it to be
internally modified without affecting the way outside entities interact with it.” (Miller et al., 2010).

7
 To define a pattern to be always applicable it is sufficient to leave the left side of the associated rule empty.

 A. Shaban-Nejad and V. Haarslev

transformations and encapsulating the changes from one point to the subsequent position

to extract rules and generate the patterns. The patterns can be repaired, improved, and
evolved through an intensive didactic teaching process, which enables the agents to

derive rules from a sequence of trial state changes.

Figure 10 The transformation of an ontological structure following the rule “deletes a parent

node”. The upper part represents the transformation rule, and the bottom left shows a
given graph and the bottom right demonstrate the result of the transformation, which

has been obtained by following the three steps in DPO.

 Deleted element(s) Gluing point(s) Adding element(s)

5.3. Similarity Checking and Traceability

A graph comparison methodology has been presented in (Drewes et al., 2002) to compare

the contents of two graphs by considering the number of nodes and edges. The

comparison has been performed based on applying the rules while considering the

hierarchical dangling condition, to check whether a specific sub-graph exists or not (i.e.

when one attempts to delete a graph). RLR intends to audit and monitor very large,

heterogeneous, evolving biomedical ontologies and nomenclature scattered across the

Web by highlighting changes between different versions of an ontology. In order to
facilitate the change tracking process, we employ diagrammatic features on graph

representation along with category theory, which enable us to represent the system’s

activity in different levels of abstraction. Our approach is similar to the tracking graph

transformation approach (Busatto et al., 2005), which models the rules’ internal structure

by means of LHS (left-hand side) and RHS (right-hand side) graphs and a partial

morphism between them, which facilitates the tracking of preserved graph components

between two versions of a graph through a set of consistency constraints to check

matching morphisms.

5 Case Study: Managing Changes in Distributed Ontologies

As the knowledge about fungi species grows and new methods become available one can

anticipate a fundamental change in the current fungal taxonomy structure. A small

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

percentage of discovered fungi have been linked to human diseases, including dangerous

infections. Treating these diseases can be risky because, as mentioned above, human and
fungal cells are very similar. Any medicine that kills the fungus may also damage the

human cells. Therefore, greater knowledge of fungi and correct identification of each

species is crucial to improving the quality of fungal-based products and identifying new

and better ways to treat serious fungal infections in humans. From the other way since

skin disorders have been historically categorized by appearance rather than scientific and

systematic facts, the existing taxonomy of fungal diseases must be also modified based

on the new knowledge to update the ontological truth. Many terms in current medical

mycology vocabularies describing skin disorders originate as verbal descriptions of

appearance, foods, people, mythological and religious texts, geographical places, and

acronyms (Al-Aboud et al., 2003). Many names and terms are highly dependent on

individual or regional preferences, causing redundancy, vagueness, and misclassification

in current vocabularies. Thus, we study various alterations in both fungal taxonomy and

fungal disease classification. As an example of changes in fungal terminologies, one can

see several changes in the name of pathogenic fungi Trichophyton family (i.e.

Trichophyton Soudanense, Trichophyton megninii, and Trichophyton equinum) in

relatively short period of time. As another example, the pathogenic fungus Candida

glabrata is now called Torulopsis glabrata (Cushion and Stringer, 2005). Usually

changes in fungi taxonomy alter the related disease name and description. For instance,

the name of the fungus, Allescheria boydii which can cause various infections in humans,

was changed to Petriellidium boydii and then to Pseudallescheria boydii within a short

time (Odds et al., 1992). Consequently, the infections caused by this organism were

referred to as allescheriasis, allescheriosis, petriellidosis, and pseudallescheriosis in the

medical literature (Odds and Rinaldi, 1995).

Figure 11 The categorical representation of the alignment between two ontologies O1 (Fungal

disorders), and O2 (Diseases) using a bridge ontology OB and a set of bridge axioms (r).

Fungal Meningitis is an infectious disease caused by a fungus, e.g. Cryptococcus

Neoformans
8
, which is typically seen in patients with immune deficiency such as AIDS.

It usually results from an infection that spreads to patient’s brain from another part of her

body. This disease has been a subject for study in both dermatology (Leung, 1990) and

neurology for a long time. The knowledge about this disease (i.e. symptoms, causes, etc.)

8 Here is the lineage of Cryptococcus neoformans in the FungalWeb Ontology: Fungi; Dikarya;

Basidiomycota; Agaricomycotina; Tremellomycetes; Tremellales; Tremellaceae; Filobasidiella;
Cryptococcus neoformans (Filobasidiella neoformans).

 A. Shaban-Nejad and V. Haarslev

are scattered in several existing ontologies and knowledge bases, which need to be

aligned. We model the alignment of two ontologies by means of a pair of ontology
mappings from a bridge ontology using categorical notations (Figure 11). In order to

achieve a composite knowledge of the disease’s properties we have used the categorical

product to represent this integrated view (Figure 12). As can be seen in the Figure 12

medical specialty is the product arrow of the two branches in medicine, which includes

the attributes of both domains. In order to merge two unrelated ontologies we can simply

perform the disjoint union (or co-product).

Figure 12 Determining the medical specialty for a particular disease through product.

In our domain, we need to update and improve the ontological structure of the

FungalWeb and SKDON (SKin Disease ONtology) Ontologies regularly for the

annotation of fungal genes and analyzing the role of the fungi species in various diseases.

For example, the older version of the FungalWeb Ontology did not have sufficient

terminology to annotate genes involved in Malassezia infections. To meet this new
requirement, the updated version of the ontology has gained 26 additional terms

addressing these infections.

Category theory within the RLR framework has a significant potential to be

considered as a supplementary tool to capture and represent the full semantics of

ontology driven applications and it can provide a formal basis for analyzing complex

evolving biomedical ontologies.

In fact ontologies are not isolated structures, but they tend to be reused as much as

possible. The Semantic Web ultimate vision is to bring the existing ontologies,

knowledge bases, controlled vocabularies, thesauri, databases and linked data sources

under one umbrella, in such a way that they can communicate with each other and with

users in a coordinated interactive manner. The FungalWeb ontology is in close contact
with other resources such as Gene Ontology, TAMBIS (Baker et al., 1998), SwissProt

(Bairoch, 2000), BRENDA (Schomburg et al., 2004), and etc (Figure 13). It is highly

desirable that all changes within a resource can be tracked and all the impacts of such

changes as well as their directions can be recognized and indentified. In our approach

changes to each part of the ontology can cause that the conceptual design changes the

state and also may cause alterations to other dependent artifacts.

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

Figure 13 Interrelated distributed ontologies, knowledge bases and data sources in biomedical
domain.

Defining appropriate transformation rules, such as what is represented in Figure 14,

is the first step towards performing a transformation. Recalling the definition of category

DGRAPH and using the approach proposed in (Taentzer, 1999), a pushout over

distributed graph morphisms with respecting to both lattice (network) and internal (local)
morphisms can be constructed, which enables us to apply the defined pushout-based

transformation rules to describe changes in the distributed ontologies.

Figure 14 A distributed transformation rule, which regulates the transformation of different

interconnected ontologies in two abstraction levels, namely internal and lattice.

 A. Shaban-Nejad and V. Haarslev

5 Discussions and Conclusion

Our proposed approach has still room for improvement in several areas, some of which

have been considered for future work. Incorporating new knowledge in an ontology, must be
in a way that it should not contradict the existing ‘truth’. Therefore as a vital part of ontology

maintenance one should always watch for the consistency and coherency of the evolving
ontologies. During the agents’ collaboration and negotiation in RLR, each action is evaluated

for its potential consequences on the detected and identified inconsistencies in each context.

Then, either the action should be banned or the inconsistencies must be resolved. Ideally these

processes should be examined every time the state transition has occurred to ensure that the

ontological consistency still holds. The consistency management in our model includes

several options including:
- Enforcing the actions for prohibiting the alterations that may lead to inconsistencies that

often inherit to different versions and endure over the substantial part of the ontology’s life

cycle. This has been done by defining a set of conditions on transformations. Checking

consistency of the graph transformation and whether a sound graph structure exists or not,

along with controlling the consistency conditions have been broadly addressed in (Heckel

and Wagner, 1995).

- Isomorphic Reasoning and Commutative Inference: In order to validate the categorical
diagrams the partial isomorphism in the semantic web environment can be defined based

on the similarity in structural relationships between syntax, semantics, and the resources
of the knowledge in ontological frameworks. From a categorical point of view, the

simplest type of isomorphic reasoning involves an explicit and continuous mapping of the
correspondences and similarities at the syntactic level while ignoring the semantics. This

method enables us to perform reasoning about the dynamic structure of ontologies. For

example, in the case of context change in ontology evolution, since the applicability of

specific knowledge in one context does not automatically indicate the validity of the

reasoning in the new context, thus the isomorphism between different states of the

ontological structures and the knowledge they implied needs to be carefully analyzed. A

common sense approach to get insight into a categorical diagrammatic structure and trace

its various states, is to follow and chase the diagrams depicting the objects and

morphisms, to check whether the diagram is commutative or not and ensure the equality of

the compositions. A diagram is commutative “if and only if whenever p and p' are paths

with the same source and target, then the compositions of morphisms along these two

paths are equal” (Goguen , 1991). Putting two commutative diagrams together yields

another commutative diagram. The diagram chasing along with commutative inference
allow us the state space analysis to examine all the potential state transitions based on a

derived transformational pattern. Therefore, one of the fundamental functionalities in
ontology engineering that is the traceability of isomorphic reasoning processes through

time from an initial ontology version to its current operational version can be performed.

In order to fully utilize the potential of reasoning and consistency checking in our
framework, we are still working on this part as our ongoing research. Based on our experience

in dealing with category theory, we feel that this formalism still has plenty of potential left to

be used for ontology change management; thus, the categorical constructors such as sketches,

n-categories, and enriched categories are due for examination in future work.

In the employed graph transformation approach, we restricted ourselves to using typed

labeled graphs; however, in order to increase the expressivity of the graph representation, one

may want to employ hypergraphs instead. Although using hypergraphs increases the

expressivity of our formalism, it also induces a tremendous amount of complexity on the
reasoning process (comparable with using OWL Full as the representation language). In

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

addition, extending the types of interactions between different change actions at the internal
and external levels of our introduced HD graphs could be another possible enhancement.

Moreover, modeling a rule-based query engine that enables us to pose complex queries to
changing knowledge bases is another possible task to be pursued. From our experience so far,

some of the advantages of our introduced model are:

- The representation of events, time, actions, and operations employed in different scenarios

of a dynamic ontological framework is an effective way to trace model changes;

- The independency of the framework from any particular domain, algorithm, protocol, or

implementation language and its abstractness makes it more flexible for reuse in many
application domains that use different formalisms and platforms;

- Employing transformation rules to perform changes ensures the consistency of the evolving

ontologies in different states;

- Following the double-pushout approach for defining model transformation, which isolates

the parts that remain unchanged, enables concurrent changes within an integrated
knowledge-based system with minimum interruption to the system’s operation.

The abstract categorical notions and their ability to specify objects and their relations in different

levels of granularities, together with graph oriented semantics, enable us to describe the complex

evolving structure in a consistent manner, which is beyond the capability offered by OWL’s

single semantic structure

Acknowledgements

This paper is the extended version of the workshop paper (Shaban-Nejad and Haarslev,
2011) presented at 2011 International Workshop on Biomedical and Health Informatics.

The authors would like to thank anonymous reviewers for their constructive comments

and suggestions.

References

Al-Aboud K, Al-Hawsawi K, Ramesh V, Al-Aboud D, AL-Githami A: An Appraisal of Terms Used in

Dermatology. SKINmed 2003, 2(3):151–153.

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D. et al. (2000) Gene Ontology: tool for theunification of
biology. Nat Genet., 25: 25–29.

Asperti A, Longo G: Categories, Types, and Structures: An Introduction to Category Theory for the

Working Computer Scientist. MIT Press, 1991.

Awodey S: Category Theory. Oxford University Press, 2006.

Bairoch, A. (2000) The ENZYME database in 2000. Nucleic Acids Res, 28: 304–305.

Baker, C.J.O., Shaban-Nejad, A., Su, X., Haarslev, V., and Butler, G. (2006) Semantic web infrastructure

for fungal enzyme biotechnologists. Journal of Web Semantics, 4(3):168-180.

Baker, P.G., Brass, A., Bechhofer, S., Goble, C., Paton, N., Stevens, R. (1998) TAMBIS-Transparent Access

to Multiple Bioinformatics Information Sources. Proc Int’l Conf Intell Syst Mol Biol, 6: 25–34.

Bryant D, Krause P: A review of current defeasible reasoning implementations. Knowledge Eng. Review

2008, 23(3):227-260.

Busatto G, Kreowski HJ, Kuske S: Abstract hierarchical graph transformation. Mathematical Structures in

Computer Science 2005, 15(4):773–819.

Buttler D, Coleman M. T. et al.: Querying Multiple Bioinformatics Data Sources: Can Semantic Web

Research Help? SIGMOD Record 2002, 31(4):59-64.

Capobianco M, Chesñevar CI, Simari GR: Argumentation and the Dynamics of Warranted Beliefs in

Changing Environments. Autonomous Agents and Multi-Agent Systems 2005, 11(2):127-151.

Cimino JJ: Formal descriptions and adaptive mechanisms for changes in controlled medical vocabularies.

Methods of Information in Medicine 1996, 35(3):202-210.

 A. Shaban-Nejad and V. Haarslev

Coletti MH, Bleich HL: Technical milestone-Medical subject headings used to search the biomedical

literature. J. of the American Med Info. Asso., 2001, 8(4):317-323.

Cushion MT, Stringer JR: Has the Name Really Been Changed? It Has for Most Researchers. Clinical

Infectious Diseases 2005, 41:1756-1758.

Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM, Biron PV, Shabo A: HL7 Clinical Document
Architecture, Release 2.0 (Published: Sun 12/12/2004).

Drewes F, Hoffmann B, Plump D: Hierarchical Graph Transformation. J. Comput. Syst. Sci. 2002,

64(2):249-283.

Ehrig H: Introduction to the algebraic theory of graph grammars (a survey). In: proc. of workshop on

Graph-Grammars and their App., LNCS 73, 1979, 1-69.

Ehrig H, Pfender M, Schneider HJ: Graph grammars: An algebraic approach. In: Proc. of 14
th

 Symposium

on Foundations of Comp. Science, IEEE, 1973, 167-180
Ehrig H, Orejas F, Prange U: Categorical Foundations of Distributed Graph Transformation. In: Proc. of

3
rd

 int'l Conference on Graph Transformations (ICGT'06), LNCS 4178, 2006, 215-229.

Ehrig H, Ehrig K, Prange U, Taentzer G: Fundamentals of Algebraic Graph Transformation. Monographs

in Theori. Comp. Sci. An EATCS Series, Springer 2006.

Ehrig, H., Habel, A., Kreowski, H.J., and Parisi-Presicce, F. From Graph Grammars to High Level

Replacement Systems. In Proc. of the 4th int'l workshop on Graph-Grammars and Their App. to

Comp. Sci. Bremen, Germany, LNCS 532, Springer, 1990, pp. 269–291.

Ehrig H, Korff M, Löwe M: Tutorial Introduction to the Algebraic Approach of Graph Grammars Based

on Double and Single Pushouts. In Proc. of 4
th

 Int'l Workshop Graph-Grammars and Their App.,

LNCS 532, 1990, 24-37.

Eilenberg S, Mac Lane S: General Theory of Natural Equivalences. T Am Math Soc 1945, 58:231-294.

Elmasri R, Navathe SB: Fundamentals of Database Systems. 5
th

 Ed., Addison Wesley 2007.

Engels G, Schürr A: Encapsulated hierarchical graphs, graph types, and meta types. Electr. Notes Theor.

Comput. Sci. 2005, 2: 101–109.

Engels G, Heckel R: Graph Transformation as a Conceptual and Formal Framework for System Modeling

and Model Evolution. In: Proc. ICALP’00, LNCS 1853, 2000, 127-150.

Goguen J: A Categorical Manifesto. Mathematical Structures in Comp. Sci. 1991, 1(1): 49–67.

GO Newsletter, No. 5 May 2007: http://www.geneontology.org/newsletter/archive/200705.pdf

GO Newsletter, Issue No. 1 May 2006. http://www.geneontology.org/newsletter/archive/200605.shtml#bp

GO Newsletter, Issue No. 6 Aug. 2007. (http://www.geneontology.org/newsletter/current-

Newsletter.shtml)

GO Meeting collected notes, July 14-15,2001, Hosted by Judy Blake and the Jackson Lab in Bar Harbor,

ME. compiled by L. Reiser. http://www.geneontology.org/minutes/collected_minutes.txt

Gruber TR: A translation approach to portable ontologies. Knowledge Acquisition 1993, 5(2):199-220.

Habel A, Heckel R, Taentzer G: Graph Grammars with Negative Application Conditions. Fundam.

Inform. 1996, 26(3/4):287-313.
Health Level 7 Reference Information Model:

http://healthinfo.med.dal.ca/hl7intro/CDA_R2_normativewebedition/infrastructure/rim/rim.htm

Heckel R (2006) Graph Transformation in a Nutshell. Electr. Notes Theor. Comput. Sci. 148(1):187-198.
Heckel R and Wagner A: Ensuring Consistency of Conditional Graph Grammars - A Constructive

Approach. Electronic Notes in Theoretical Comp. Sci. 1995, 2:118-126.

Hilton E, Isenberg HD, Alperstein P (1992) Ingestion of yogurt containing Lactobacillus acidophilus as

prophylaxis for candidal vaginitis. Ann Intern Med, 116:353-7.

Hoffmann B: From Graph Transformation to Rule-Based Programming with Diagrams. In: Proc. of

AGTIVE'99, LNCS 1779, 1999, 165-180.

Kramer J, Magee J: The Evolving Philosophers Problem: Dynamic Change Management. IEEE

Transactions on Software Engineering 1990, 16(11):1293–1306.

Leung CY: Antifungal Therapy in Dermatology. Journal of the Hong Kong Medical Association 1990,

42(4):203-205.

Martin RF, Rickard K, Mejino JLV, Agoncillo AV, Brinkley JF, Rosse C: The Evolving Neuroanatomical

Component of the Foundational Model of Anatomy. Proc. of Am. Med. Info. Assoc. Fall Symp. 2003,

927.

Mason O, Verwoerd M: Graph Theory and Networks in Biology. arXiv:q-bio/0604006v1 2008.

McCray, A.T., Nelson, S.J. (1995) The representation of meaning in the UMLS. Method Inform Med 34

(1/2):193-201.

 Managing Changes in Distributed Biomedical Ontologies using Hierarchical...

Miller FP, Vandome AF, McBrewster J: Interface (computer science): Interface, Abstraction (computer

science), Polymorphism in Object- oriented Programming, Indirection, User Interface. Alphascript

Publishing 2010.

NHS Information Authority: The Clinical Terms Version 3 (The Read Codes): Managing Change:

Description Change File. Ref # 1999-IA-173 v1.0 issue, March 2000.
Odds FC, Arai T, Di Salvo AC, Evans EGV, Hay RJ et al.: Nomenclature of fungal diseases. A report

from a Sub-Committee of the Intl’ Society for Human and Animal Mycology (ISHAM), 1992.

Odds FC, Rinaldi MG: Nomenclature of fungal diseases. Curr. Top. Med. Mycol. 1995, 6:33-46.

Padberg J. Integration of Categorical Frameworks: Rule-Based Refinement and Hierarchical Composition

for Components. Applied Categorical Structures 2008, 16(3):333-364.

Palacz, W. (2004) Algebraic hierarchical graph transformation. Journal of Computer and System Sciences,

68(3): 497–520.
Palacz W: Hierarchical graph transformations with meta-rules. Annales UMCS Informatica AI VIII 2008,

2:89-96.

Robinson D, Comp D, Schulz E, Brown P. et al.: Updating the Read Codes: User-interactive Maintenance

of a Dynamic Clinical Vocabulary. J Am Med Inform Assoc 1997, 4(6):465-472.

Rosse C, Mejino JL Jr: A reference ontology for bioinformatics: the Foundational Model of Anatomy. J

Biomed Inform. 2003, 36(6):478-500.

Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, et al. (2004) BRENDA, the enzyme database:

updates and major new developments. Nucleic Acids Res 32(DB issue):431–433.

Shaban-Nejad A, Haarslev V: Bio-medical Ontologies Maintenance and Change Management. In: Sidhu

& Dillon (Eds.) Biomedical Data and Applications. Studies in Comput. Intelligence 224, Springer, 2009,

143-168.

Shaban-Nejad A, Haarslev V (2008) Incremental biomedical ontology change management through

learning agents. In: Proc. of 2
nd

 KES Sympo. on Agent & Multi-Agent Sys. (KES-AMSTA '08), LNCS

4953, 2008, 526–535.

Shaban-Nejad, A., Haarslev, V. (2011) An enhanced graph-oriented approach for change management in

distributed biomedical ontologies and linked data. IEEE BIBM Workshops 2011, p. 615-622.

Sobel JD, Chaim W, Nagappan V, Leaman D: Treatment of vaginitis caused by Candida glabrata: use of

topical boric acid and flucytosine. American Journal of Obstetrics and Gynecology 2003,

189(5):1297-1300.

Taentzer G. Distributed Graphs and Graph Transformation. Applied Categorical Structures 1999,

7(4):431-462.

Taentzer G (1994) Hierarchically Distributed Graph Transformation. In: Proc. of 5
th

 Int'l Workshop on

Graph Grammars and App. (TAGT'94), LNCS 1073, pp. 304-320.
Taentzer G, Fischer I, Koch M, Volle V: Distributed Graph Transformation with Application to Visual

Design of Distributed Systems, In: Ehrig H, Kreowski HJ et al. (eds.) Handbook of Graph

Grammars and Computing by Graph Transformation, Vol 3, World Scientific 1999.

Taentzer G, Goedicke M, Meyer T: Dynamic Change Management by Distributed Graph Transformation:

Towards Configurable Distributed Systems. In: Proc. of TAGT'98, LNCS 1764, 1998, 179-193.

Van Eetvelde N, Janssens D: A Hierarchical Program Representation for Refactoring. Electr. Notes Theor.

Comput. Sci. 2003, 82(7):91-104.
Whitmore I: Terminologia Anatomica: new terminology for the new anatomist. Anat Rec. 1999,

257(2):50-3

Whitmire SA: Object Oriented Design Measurement. John Wiley & Sons, 1997.

