
Exploring Parallelization of Conjunctive Branches in
Tableau-based Description Logic Reasoning

Kejia Wu and Volker Haarslev

w kejia@cs.concordia.ca haarslev@cse.concordia.ca
Computer Science, Concordia University, Canada

Abstract. Multiprocessor equipment is cheap and ubiquitous now, but users of
description logic (DL) reasoners have to face the awkward fact that the major
tableau-based DL reasoners can make use only one of the available processors.
Recently, researchers have started investigating how concurrent computing can
play a role in tableau-based DL reasoning with the intention of fully exploiting
the processing resources of multiprocessor computers. The published research
mostly focuses on utilizing disjunctive branches, the or-part of tableau expan-
sion trees. We investigated the possibility and the role of concurrently processing
conjunctive branches, the and-part of tableau expansion trees. In this work, we
present an algorithm to process conjunctive branches in parallel and address the
key implementation aspects of the algorithm. A research prototype to execute
this algorithm has been developed and empirically evaluated. The experimental
results are presented and analyzed. We found that parallelizing the processing
of conjunctive branches of tableau expansion trees is auspicious and can partly
evolve into a scalable solution for DL reasoning.

1 Introduction
Multiprocessor computers are almost everywhere now, such as high-performance com-
puting servers, personal computers, laptops, tablets, phones, watches, etc. In many com-
puting areas it is investigated how to better use the power of multiprocessor computers,
and concurrent computing is an important option. Unfortunately, few such advances
have been achieved for tableau-based Description Logic (DL) reasoning, which is the
dominant method adopted by the major DL reasoning systems. None of the major DL
reasoning systems can utilize the available processing capacity of multiprocessor com-
puters properly. To be more precise, any of them can only use one processor at a time,
no matter how many processors are available on the computer where it is running.

At the same time, DL reasoners are processing more complex ontologies. With the
fast development of the Internet, DL reasoning can be considered in the age of big data.
In the semantic web area, both huge but often simple as well as more and more com-
plicated ontologies are emerging. Even for specialized or highly optimized DL systems
it is not easy to reason about these ontologies. So, people are investigating innovative
methods to improve reasoning performance. Concurrent reasoning solutions may im-
prove performance for dealing with massive or complicated ontologies.

The wide availability of multiprocessor computing facilities makes concurrent DL
reasoning feasible. Several approaches have been reported for concurrent reasoning

in some non-shared or shared memory context [21, 6, 17, 20]. Considering the cost of
maintaining communication between computing objects, the latter looks more promis-
ing at present. However, compared with the vast research on optimization techniques
for tableau-based DL reasoning, there are only few research approaches that employ
concurrent computing as an optimization method, and none makes use of processing
conjunctive branches of tableau expansion trees.

It is well-known that an expansion tree is an and-or tree in tableau-based DL rea-
soning. Disjunctive branches compose the or part of a completion tree, conjunctive
branches do the and part, and generally the two types of branches interlace with one
another. Almost all of the few shared-memory parallelized tableau-based DL reasoning
investigations focus on exploiting disjunctive branches in expansion trees.

In the remaining sections, the role of conjunctive branches in tableau expansion
trees is addressed, a parallelized tableau-based algorithm which processes conjunctive
branches simultaneously is presented, the key points of the algorithm’s implementation
are discussed, experiments and evaluations on the program are shown and are analyzed,
and some related investigations are also mentioned.

2 The Role of Conjunctive Branches
Tableau-based algorithms have been the primary choice of DL reasoning for a long time.
The core of a tableau algorithm is a set of rules that are used to construct completion
trees. Whether a clash-free completion tree can be built determines the satisfiability of
a problem domain. In DL languages with sufficient expressive power, such completion
trees are regarded as and-or ones [24]. That is to say, both conjunctive and disjunctive
branches exist in the completion trees.

A clash-free completion tree must have at least one disjunctive branch that con-
tains no clashed conjunctive branches. For example, in a skeletal way, a typical tableau
algorithm generates the following completion tree at some point when testing the satis-
fiability of the concept pDr1.C1 [Dr2.C2q \ pC3 [C3q:

pDr1.C1 [Dr2.C2q \ pC3 [C3q

Dr1.C1, Dr2.C2

C1 C2

C3, C3

r1 r2

Fig. 1. The tableau expansion tree of testing the satisfiability of pDr1.C1[Dr2.C2q\pC3[C3q.

The concept pDr1.C1 [Dr2.C2q \ pC3 [C3q must have the disjunctive branches
Dr1.C1[Dr2.C2 orC3[C3 clash-free only if it is satisfiable. In this case,C3[C3 �
K, so the satisfiability of pDr1.C1 [Dr2.C2q \ pC3 [C3q is determined by whether
Dr1.C1[Dr2.C2 is satisfiable. That is to say, if the concept pDr1.C1[Dr2.C2q\pC3[

 C3q is satisfiable, both the conjunctive branches Dr1.C1 and Dr2.C2 must be clash-
free. The algorithm has to explore all conjunctive branches unless an unsatisfiability
result is entailed.

Testing satisfiability is an essential function in tableau-based DL reasoning, and its
goal is to search for a model by expanding concepts descriptions to completion trees,
which consist of disjunctive and conjunctive branches. Testing satisfiability is generally
used by other DL reasoning services. As we know an important functionality of modern
DL systems is classification, which calculates all subsumption relationships entailed by
a terminology:

@CI � ∆I ,@DI � ∆I : T
?

|ù C � D ðñ T
?

|ù C \D (1)

With respect to T , C � D is proven if CI � DI holds for every model I of T . This
is calculated by testing the satisfiability of the concept C [D with respect to T . The
subsumption computation is reducible to testing satisfiability in such a way. It is obvious
that C � D is the most common case, and thus the majority of such subsumption tests
find models. That is to say, in order to gain better performance, a tableau-based DL
reasoning algorithm should find models as fast as possible. In a tableau expansion view,
such a model is a disjunctive branch with a bundle of conjunctive branches, both clash-
free. Considering that such a disjunctive branch exists quite often, faster processing of
conjunctive branches in that disjunctive branch should improve reasoning performance.
Although research on parallelizing the processing of disjunctive branches is known,
parallelizing the processing of conjunctive branches has not been researched so far, but
it should play a role in improving the performance of tableau-based DL reasoning.

3 Parallelism
As mentioned in Section 1, many approaches are known that pursue new methods to in-
crease the performance of reasoners, and concurrent computing is an option. In tableau-
based DL reasoning, disjunctive and conjunctive branches have always been sequen-
tially processed as of now, although there exists the potential benefit of parallelization.

The search for a model in a disjunctive branch is independent of other disjunctive
branches. The satisfiability of a concept is sufficiently supported by any model found
among disjunctive branches. With a sequential algorithm, if two disjunctive branches
are generated at some point, the second branch is only calculated if the first branch is not
clash-free. With a parallel algorithm, multiple disjunctive branches are processed at the
same time, and the search terminates when one of them is proven as clash-free. Some
research has already been reported on the topic of parallelizing tableau calculation on
disjunctive branches [17, 5, 20, 25].

Computation on a conjunctive branch impacts its siblings in a different way than for
disjunctive branches. A model is found by a tableau algorithm if and only if all involved
conjunctive branch siblings are clash-free. With a sequential algorithm, all conjunctive
branches on a disjunctive branch must be explored so that a clash-free and -tree can be
built. Parallelizing computation on conjunctive branches in a satisfiable context should
theoretically improve performance. Given the fact that most satisfiability tests intro-
duced by classification, a key functionality of a DL reasoning system, return positive
results, parallelizing conjunctive branches in tableau-based reasoning should play an

important role. However, conjunctive branch parallelization has not been researched as
much yet.

Parallelizing the processing of conjunctive branches is necessary to maximally uti-
lize parallel computers. As we discussed in Section 2, the majority of computations of
tableau-based DL reasoning find clash-free completion trees, each of which can be con-
sidered as a disjunctive branch containing a number of conjunctive branches. According
to our experience, subsumption tests in classification are often easily satisfiable. Such a
satisfiable disjunctive branch is usually the first one being tested. So, a parallel scheme
in that case hardly improves reasoning performance. On the other hand, all conjunc-
tive branches of a clash-free disjunctive branch must be explored and determined as
clash-free. Therefore, parallelizing the exploration of potentially clash-free conjunctive
branches can improve reasoning performance. Research on parallelizing the processing
of conjunctive branches in tableau-based DL reasoning may even play a more important
role than on disjunctive branches.

4 Algorithm Design and Implementation
In this section we present a parallel tableau-based DL algorithm. When we use the word
parallel in the following, a modern shared-memory multi-thread architecture should
always be taken into account.

Concurrent algorithms have much more technical features than sequential ones.
Some solutions require very tricky techniques. For example, in a sequential context,
a DL tableau algorithm terminates the search in a disjunctive branch when a clash is
found in a conjunctive branch. Such a termination task needs more complex mechanics
in a parallel context. A termination test in a multiple threads context not only needs
to check its own state but also the state of its siblings, i.e., it must monitor contradic-
tion detection for all its siblings as the prerequisite for ensuring both soundness and
performance.

The efficient managing of resources is an important tradeoff in designing concurrent
algorithms, especially in a shared-memory context. A common pitfall in developing
shared-memory parallel algorithms consist of taking unlimited threading for granted,
as usually happens in recursive algorithms. A compensation for this flaw is the use
of shared data to control resources allocated to a parallel program. However, shared
data as well as communication between threads always reduce a parallel program’s
performance.

Our scheme for controlling continuation resources is using a thread pool, which
is normally configured with a fixed size. The members of the pool are reusable, which
largely reduces system overhead. The most notable shared data consists of an increasing
number of sibling conjunctive branches, and we use a concurrent queue to buffer them.
Every threaded reasoning continuation picks a conjunctive branch out of the shared
queue and processes it. Also, every continuation has to monitor and report its finding,
as mentioned before.

The parallelization of processing conjunctive branches is addressed by Algorithms
1 and 2. It consists of two parts: Algorithm 1 as the control (master) and Algorithm
2 as the continuation (slave). Algorithm 1 first applies tableau expansion rules that
are neither a D-rule nor a @-rule. The function clashed? returns true if all disjunctive
branches (i.e., stages in Deslog [25]) are not clash-free, otherwise it returns false and

cuts away clashed stages. If all disjunctive branches are not clash-free in this phase,
the computation terminates. Otherwise, the model-search is continued on the generated
disjunctive branches, which are provisionally clash-free. That is to say, the generating
rule produces conjunctive branches which are kept in a buffer. Then the aforementioned
thread pool schedules computation continuations on the conjunctive branch buffer. The
computation continuation executed by the pooled thread is addressed by Algorithm 2,
which is executed by multiple threads simultaneously.

We implemented Algorithms 1 and 2 with our parallelized tableau-based DL rea-
soning framework Deslog [25]. The underground parallel mechanics of Deslog is sup-
ported by the java.concurrent package. All working threads processing continuations
are activated and pooled in the bootstrap phase. In each subsumption test run, every
thread monitors a volatile flag that indicates whether a clash has been detected by its
siblings and modifies the flag if it finds a clash (Line 2 and 3, Algorithm 2). If a clash
has been detected, all threads and the flag are reset.

A performance bottleneck may result from the low level Java concurrency compo-
nents. For example, we use a concurrent linked queue to buffer immediate conjunctive
branches, and the buffer is accessed by a number of threads concurrently. Also, we use
volatile flags as shared states with the intention of notifying state modification as fast
as possible, and the maintenance of the volatile variables may require extra processor
resources in a shared-memory parallel computing environment. We can design and con-
struct the high level part of the program, but can hardly control the low level facilities
on which the program depends.

5 Experiments
Algorithm 1 is expected to improve the performance of tableau-based DL reasoning in
such a way that conjunctive branches are processed simultaneously. A higher perfor-
mance improvement is expected from reasoning about problems where more conjunc-
tive expansion branches are involved. We designed a series of synthesized tests to prove
this assumption.

The test cases consist of a set of Web Ontology Language (OWL) benchmarks
developed on the basis of the tea ontology1. Their size (and complexity) can be scaled
by a general concept inclusion (GCI) axiom pattern as follows:

§

i�0

@R2i�1.pC2i�1 [C2i�2q �
¦

i�0

DR2i.pC2i \ C2i�1q,

CI
i � ∆I , RI

i � ∆I �∆I , i P N, P N, i ¤ (2)

We defined a set of factors to measure the algorithm’s performance. Performance
improvement is directly reflected by thread number and speedup. With the same thread
number, reasoning performance varies with the number of involved conjunctive branches.
So, our program records the number of involved conjunctive branches, µ, in every sat-
isfiability test.Nµ, the total number of the tests in a set of computations, of which every
one processes µ conjunctive branches, is calculated after each run. We discovered that

1 http://code.google.com/p/deslog/downloads/detail?name=tea.tar.gz

Algorithm 1: parallelize-tracesptree, rule-queue-without-D@, worker-queueq
input :

tree: a tableau expansion tree.
rule-queue-without-D@: an ordered set containing tableau expansion rules

except for D-rule and @-rule.
worker-queue: the pool keeping threads.

output :
some-trace-clashed?: true if clash is found, otherwise false.

1 begin
2 reloadprule-queue-without-D@q;
3 ruleÐ dequeueprule-queue-without-D@q;
4 while rule �� H ^ clashed?ptreeq do
5 applicable?Ð applyprule, treeq;
6 if applicable? then
7 reloadprule-queue-without-D@q;
8 end if
9 ruleÐ dequeueprule-queue-without-D@q;

10 end while
11 some-trace-clashed?Ð clashed?ptreeq;
12 if some-trace-clashed? then
13 foreach disjunctive-branch P tree do
14 trace-queueÐ generate-trace-queuepdisjunctive-branch, rule-Dq;
15 some-trace-clashed?Ð false;
16 if empty?ptrace-queueq then
17 continue?Ðtrue;
18 while continue? do
19 traceÐ dequeueptrace-queueq;
20 if trace �� H then
21 worker ÐH;
22 while worker � H^ some-trace-clashed? do
23 worker Ð get-idle-workerpworker-queueq;
24 end while
25 if some-trace-clashed? then
26 continue?Ðfalse;
27 else
28 do-jobpworker, λptrace, some-trace-clashed?qq;
29 end if
30 else
31 if some-trace-clashed? _
32 get-busy-workerpworker-queueq � H then
33 continue?Ðfalse;
34 end if
35 end if
36 end while
37 if some-trace-clashed? then
38 break;
39 end if
40 end if
41 end foreach
42 end if
43 return some-trace-clashed?;
44 end

Algorithm 2: λptrace, �clashed-flag?�q
input :

trace: a tableau conjunctive branch.
�clashed-flag?�: a pointer argument indicating whether a clash exists: true if

clash is found; otherwise false.
1 begin
2 apply-tableau-rulesptraceq;
3 �clashed-flag?� Ð clash-free?ptraceq;
4 end

the most frequently occurring number of the involved conjunctive branches impacts the
final reasoning performance and is the order of the conjunctive branches involved in a
run. We take the mean of the values to calculate this order, which is noted as τ , where
at most k conjunctive branches are involved in a satisfiability test:

τ �

k°
µ�0

Nµ � µ

k°
µ�0

Nµ

, k P N, 0 ¤ τ �8 (3)

For example, we get τ � 5�0�8�1�13�2�21�3
5�8�13�21 � 97

47 , with respect to the sample data
shown in Table 1.

µ 0 1 2 3
Nµ 5 8 13 21

Table 1. A sample data set for Equation 3 with k � 3.

We conducted several experiments to evaluate Algorithm 1. According to our knowl-
edge, the hardware environment can have quite an impact on the performance of a par-
allel program in a shared-memory context [25, 17]. In this case, a 16-core computer
running Solaris OS and 64-bit Sun Java 6 was employed to test the program. The 16
processors are manufactured on 2 integrated circuits, each having 8 processors. At most
64G physical memory is accessible by the JVM. With various combinations of the num-
ber of processing threads and problem sizes, Algorithm 1 demonstrated the capability
of being scaled.

The reasoning performance of Algorithm 1 is illustrated by the results shown in
Figures 2-8. When τ � 2.09, i.e., each test processes only �2 conjunctive branches,
parallelizing the processing of conjunctive expansion does not contribute to a perfor-
mance improvement. It seems that the overhead introduced by threading outclasses the
benefits. However, according to our experiments performance improvements can be
gained when τ ¥ 3.09. Better performance improvements come from greater τ values.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

0.5

11

threads

sp
ee

du
p

Fig. 2. The speedup when � 2 and τ � 2.09.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

0.5

11

threads

sp
ee

du
p

Fig. 3. The speedup when � 3 and τ � 3.09.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

1

threads

sp
ee

du
p

Fig. 4. The speedup when � 4 and τ � 5.08.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

3

1

threads

sp
ee

du
p

Fig. 5. The speedup when � 7 and τ � 7.13.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

2

4

6

1

threads

sp
ee

du
p

Fig. 6. The speedup when � 11 and τ � 12.11.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

2

4

6

1

threads

sp
ee

du
p

Fig. 7. The speedup when � 17 and τ � 18.08.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

5

10

1

threads

sp
ee

du
p

Fig. 8. The speedup when � 28 and τ � 29.06.

2.09
3.09

5.08
7.13

12.11
18.08

29.06

0

2

4

6

1

τ

m
ed

ia
n

sp
ee

du
p

Fig. 9. The median speedup trend of the variety of τ values.

The scalability of parallelizing the processing of conjunctive branches is summa-
rized in Figure 9 by illustrating the speedup trend, which is based on the median speedup
values from our 9-thread tests (Figure 2-8), given the observed τ values.

Besides synthesized test cases, we also tested a real-world ontology, fly anatomy.
Figure 10 shows the result for fly anatomy. The maximum speedup value is around the
value of τ , which is in this test case 2.91, and we see that the peak value of the speedup
is greater than 2 and that there exists a linear speedup increase before reaching the peak
value. This test result shows a stable scalability to some degree.

We amend Equation 3 to a more general form as indicated by Equation 4, in order
to illustrate the program’s impacts on real-world ontologies:

τq �

k°
µ�q

Nµ � µ

k°
µ�q

Nµ

, 0 ¤ q ¤ k, k P N, 0 ¤ τ �8 (4)

Here, q is a lower bound of a sample space. Namely, tests with conjunctive branches
less than q are bypassed. With Equation 4, we can focus on the tests with greater q
value, e.g. q � 3. Figure 11 shows the speedups gained by testing some ontologies,
with q � 4.

Scalability is the most interesting point in this research. Optimistically, we expect to
gain linear or even super-linear scalability.2 In the circumstances of expecting minimal
overheads, we anticipate the ratio, between speed-up and the number of thread, e ¥ 1
in accordance with e � s

n , n ¤ τ, n ¤ p, where s is speedup, n is thread number,
and p is the total number of processors. However, e ¤ 1 is the most normal case in
practice. According to our tests, e � 0.8398 is the greatest value, which occurs when

2 A super-linear speedup is controversial but sometimes observed, and we accept it as the result
of the combined effectiveness of hardware, software, and algorithms [23, 11, 10, 22, 1].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

1

2

1

threads

sp
ee

du
p

Fig. 10. Test ontology fly anatomy, τ � 2.91.

1 2 3 4 5 6 7 8 90

1

2

1

threads

sp
ee

du
ps

rex elpp
fix

tick anatomy

Fig. 11. Test ontologies rex elpp, fix, and tick anatomy with τ4 � 4.73, 5.00, and 4.22 respec-
tively.

s � 12.5971, n � 15, τ � 29.06, and p � 16 (see Figure 8). It is obvious that a
certain system overhead cannot be avoided and must hinder the program from reaching
the normal peak value. Furthermore, most tableau-based satisfiability tests for classifi-
cation find models, as mentioned above, and parallelizing the processing of conjunctive
branches is useful in the case of satisfiable tests. However, negative tests entailing un-
satisfiability predominantly exist in classification, too. If a number of clashes can be
detected before processing a bundle of conjunctive branches, this parallel algorithm can
hardly contribute to a performance gain.

6 Related Work
In the past, tableau-based DL reasoning techniques have been investigated extensively.
In [24] a tableau algorithm was proposed to reason about ALC. After that, tableau
algorithms have been presented along with the growing expressivity of DL languages
[18, 15, 4, 14, 8, 7, 9]. The core of these algorithms is searching for models by building
completion trees, which are and-or trees.

Generic tableau algorithms generally run with a low performance, so a number of
optimization techniques have been developed for real-world reasoners. Without some of
these optimization techniques, a tableau-based DL reasoning system remains unusable.
Examples of important optimization techniques are dependency-directed backjumping,
lazy unfolding, axiom absorption, etc [12, 13]. However, most of these optimization
techniques do not improve reasoning performance by making use of parallelized pro-
cessing. None of the well-known tableau-based DL reasoning systems has necessarily
needed more than one processor in this multiprocessor computing age so far.

For the purpose of exploiting multiprocessor computers’ power to deal with in-
creasingly complex ontologies, researchers have started looking for scalable solutions,
among which concurrent computing plays a role. A variety of concurrency-oriented DL
reasoning research has been presented recently. [17] reported on a parallel SHN rea-
soner, which can execute disjunction and at-most cardinality restriction rules in parallel,

as well as some primary DL tableau optimization techniques. [2, 3] presented the first
algorithm for parallel TBox classification achieving (super)linear scalability. [16] re-
ported on a reasoner that can classify EL ontologies concurrently, and its consequence-
based parallel algorithm brought encouraging results for non-tableau-based reasoning.
[25] presented an ALC reasoner that can process disjunctive branches in parallel. [20,
19] proposed the idea of applying a constraint programming solver to DL reasoning.
Most of these studies focus on how to best make use of disjunctive branches, the or-part
of tableau expansion trees. According to the best of our knowledge, there is no reported
research on investigating the role of simultaneously processing conjunctive branches,
the and -part of tableau expansion trees. Our contribution is to initiate research on con-
junction parallelization in tableau-based DL reasoning.

7 Summary and Future Work
Cheap multiprocessor computing resources are ubiquitous now. How these powerful
computers can be used adequately is an important topic in computing areas, and some
research, such as graphics processing, has progressed a lot. Unfortunately, DL reasoning
just started its journey in this direction, and any full-scale DL/OWL reasoner can only
use one single processor at a time no matter how many are available. At the same
time, ontologies processed by DL reasoning systems are becoming bigger and more
complex because of the fast development of the semantic web technology. A possible
solution is the integration of concurrent computing, or more specifically, concurrent
reasoning, which should make full use of the availability of multiprocessor computing
resources and may improve performance in a scalable way. Our research proved that
such scalability is possible.

We have shown that the computing performance of tableau-based DL reasoning can
be improved by parallelizing the processing of conjunctive branches of expansion trees.
All of the investigations that explore parallelized tableau-based DL reasoning make an
effort to exploit simultaneous processing of disjunctive branches in tableau expansion
trees. On the other hand, our research is the first one to seriously investigate the par-
allel processing of conjunctive branches in tableau expansion trees. We addressed the
role of conjunctive branches in tableau expansion trees and noticeable points of paral-
lelizing the processing of conjunctive branches. We presented a parallel algorithm that
simultaneously calculates conjunctive branches. We discussed the key characteristics of
implementing the algorithm. We evaluated the program, and the essential effectiveness
of the algorithm was shown by synthesized tests. We analyzed the scalability of the
algorithm based on our proposed τ metric.

In the future, more efficient memory management techniques may be explored. At
present, we implemented the algorithm with Java. When processing complex ontolo-
gies, which generally need relatively large memory sizes, Java’s memory management,
e.g., garbage collection, has a high impact on reasoning performance. Such influence is
generally negative and could be avoided by using C++ for implementation. Moreover,
thread scheduling used by the present implementation heavily depends on the Java con-
currency package. More elaborate designs may improve performance further.

References
1. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Information

Processing Letters 82(1), 7–13 (2002)
2. Aslani, M., Haarslev, V.: Parallel TBox classification in description logics—first experimen-

tal results. In: Proceedings of the 2010 conference on ECAI 2010: 19th European Conference
on Artificial Intelligence. pp. 485–490 (2010)

3. Aslani, M., Haarslev, V.: Concurrent classification of OWL ontologies—an empirical evalu-
ation. In: Proceedings of the 2012 International Workshop on Description Logics. pp. 7–10
(2012)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: 2005 International Joint Con-
ference on Artificial Intelligence. vol. 19, p. 364 (2005)

5. Bock, J.: Parallel computation techniques for ontology reasoning. In: Proceedings of the 7th
International Conference on The Semantic Web. pp. 901–906 (2008)

6. Dentler, K., Guéret, C., Schlobach, S.: Semantic web reasoning by swarm intelligence.
In: The 5th International Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS2009). p. 1 (2009)

7. Ding, Y.: Tableau-based reasoning for description logics with inverse roles and number re-
strictions. Ph.D. thesis, Concordia University (2008)

8. Ding, Y., Haarslev, V.: An exptime tableau-based decision procedure for ALCQI. In: Pro-
ceedings of the 2007 International Workshop on Description Logics (2007)

9. Ding, Y., Haarslev, V.: A procedure for description logic ALCFI. Journal of Logic and Com-
putation 20(1), 5–34 (2010)

10. Donaldson, V., Berman, F., Paturi, R.: Program speedup in a heterogeneous computing net-
work. Journal of Parallel and Distributed Computing 21(3), 316–322 (1994)

11. Helmbold, D.P., McDowell, C.E.: Modelling speedup (n) greater than n. IEEE Transactions
on Parallel and Distributed Systems 1(2), 250–256 (1990)

12. Horrocks, I.: Optimising tableaux decision procedures for description logics. Ph.D. thesis,
The University of Manchester (1997)

13. Horrocks, I.: Implementation and optimization techniques. In: Baader, F., Calvanese, D.,
McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) The description logic handbook: the-
ory, implementation, and applications, chap. 9. Cambridge University Press (2003)

14. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. Journal of Automated
Reasoning 39, 249–276 (2007)

15. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic
SHIQ. In: Automated deduction - CADE-17: 17th International Conference on Automated
Deduction, Pittsburgh, PA, USA, June 2000, Proceedings. p. 482 (2000)

16. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Concurrent classification of EL ontologies. In:
Proceedings of the 10th International Semantic Web Conference (2011)

17. Liebig, T., Müller, F.: Parallelizing tableaux-based description logic reasoning. In: Proceed-
ings of the 2007 OTM Confederated International Conference on the Move to Meaningful
Internet Systems-Volume Part II. pp. 1135–1144 (2007)

18. Lipkis, T.: A KL-ONE classifier. In: Proceedings of the 1981 KL-ONE Workshop. pp. 128–
145 (1982)

19. Meissner, A.: A simple parallel reasoning system for the ALC description logic. In: Com-
putational Collective Intelligence: Semantic Web, Social Networks and Multiagent Systems
(First International Conference, ICCCI 2009, Wroclaw, Poland, October 2009). pp. 413–424
(2009)

20. Meissner, A., Brzykcy, G.: A parallel deduction for description logics with ALC language.
Knowledge-Driven Computing 102, 149–164 (2008)

21. Mutharaju, R., Maier, F., Hitzler, P.: A MapReduce algorithm for EL+. In: Proceedings of
the 2010 International Workshop on Description Logics. p. 456 (2010)

22. Nagashima, U., Hyugaji, S., Sekiguchi, S., Sato, M., Hosoya, H.: An experience with super-
linear speedup achieved by parallel computing on a workstation cluster: Parallel calculation
of density of states of large scale cyclic polyacenes. Parallel computing 21(9), 1491–1504
(1995)

23. Quinn, M.J., Deo, N.: An upper bound for the speedup of parallel best-bound branch-and-
bound algorithms. BIT Numerical Mathematics 26(1), 35–43 (1986)

24. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Arti-
ficial Intelligence 1(48), 1–26 (1991)

25. Wu, K., Haarslev, V.: A parallel reasoner for the description logic ALC. In: Proceedings of
the 2012 International Workshop on Description Logics (2012)

