
TBox Classification in Parallel: Design and First
Evaluation

Mina Aslani and Volker Haarslev

Concordia University, Montreal, Canada
{m aslani,haarslev}@cse.concordia.ca

Abstract. One of the most frequently used inference services of descrip-
tion logic reasoners classifies all named classes of OWL ontologies into a
subsumption hierarchy. Due to emerging OWL ontologies from the web
community consisting of up to hundreds of thousand of named classes
and the increasing availability of multi-processor and multi- or many-
core computers, we extend the work on parallel TBox classification and
propose a new algorithm that is sound and complete and demonstrates
in a first experimental evaluation a low overhead in the number of sub-
sumption tests due to parallel execution.

1 Motivation

Due to the recent popularity of OWL ontologies in the web one can observe a
trend toward the development of very large or huge OWL-DL ontologies. For in-
stance, well known examples from the bioinformatics or medical community are
UMLS, GALEN or even ontologies with more concepts. Some (versions) of the
ontologies consist of more than hundreds of thousands of named concepts/classes
and have become challenging even for the most advanced and optimized descrip-
tion logic (DL) reasoners. Although specialized DL reasoners for certain sublogics
(e.g., CEL for EL++) and OWL-DL reasoners such as FaCT++, Pellet, HermiT,
or RacerPro could demonstrate impressive speed enhancements due to newly
designed optimization techniques, one can expect the need for parallelizing de-
scription logic inference services in the near future in order to achieve a web-like
scalability. Our research is also strongly motivated by recent trends in computer
hardware where processors feature multi-cores (2 to 8 cores) or many-cores (tens
or even hundreds of cores). These processors promise significant speed-ups for
algorithms exploiting so-called thread-level parallelism. This type of parallelism
is very promising for DL reasoning algorithms that can be executed in paral-
lel but might share common data structures (e.g., and/or parallelism in proofs,
classification of TBoxes, ABox realization or query answering).

First approaches on more scalable reasoning algorithms for ABoxes (sets of
declarations about individuals) were investigated with the Racer architecture [11]
where novel instance retrieval algorithms were developed and analyzed, which
exploit a variety of techniques such as index maintenance, dependency analysis,
precompletion generation, etc. Other research focused on scalable ABox reason-
ing with optimization techniques to partition ABoxes into independent parts



and/or creating condensed (summary) ABoxes [8, 9, 6]. These approaches rely
on the observation that the structure of particular ABoxes is often redundant
and these ABoxes contain assertions not needed for ABox consistency checking
or query answering.

Parallel algorithms for description logic reasoning were first explored in the
FLEX system [3] where various distributed message-passing schemes for rule
execution were evaluated. The only other approach on parallelizing core descrip-
tion logic reasoning [13] reported promising results using multi-core/processor
hardware, where the parallel treatment of disjunctions and individual merging
(due to number restrictions) is explored. While there exists some work on par-
allel DL algorithms, on parallel reasoning for first-order theorem proving (with
completely different proof techniques based on resolution), and on parallel dis-
tributed RDF inferencing (e.g., [16]), parallel TBox classification has only been
addressed in [1]. There has also been substantial work on reasoning through mod-
ularity and partitioning knowledge bases (e.g., [7, 5, 4]) that might be applicable
to our work.

In the following we extend the work on parallel TBox classification [1] and
propose a new algorithm that is sound and complete although it runs in parallel.
The implemented prototype system simulates parallel TBox classification with
various parameters such as number of threads, size of partitions assigned to
threads, etc. First results from a preliminary evaluation look very promising and
indicate a very low overhead in the number of subsumption tests due to parallel
execution.

2 The New Parallel TBox Classifier

This section describes the architecture of the implemented system and its under-
lying sound and complete algorithm for parallel classification of DL ontologies.
To compute the hierarchy in parallel, we developed a simulator using a multi-
threaded architecture providing control parameters such as number of threads,
number of concepts (also called partition size) to be inserted per thread, and
strategies used to partition a given set of concepts. The simulator reads an in-
put file containing a list of concept names to be classified and information about
them. The per-concept information available in the file includes its name, par-
ents (in the complete taxonomy), told subsumers, told disjoints, and pseudo
model information. The information about parents is used to compute the set of
ancestors and descendants of a concept. Told information consists of subsumers
and disjoints that can be easily extracted from axioms without requiring proof
procedures, e.g. the axiom A v B u¬C would result in information asserting B
as told subsumer of A and C as told disjoint of A. With the exception of told
subsumers this information is only used for (i) emulating a tableau subsump-
tion test, i.e., by checking whether a possible subsumer (subsumee) is in the
list of ancestors (descendants) of given concept, and (ii) in order to verify the
completeness of the taxonomy computed by the parallel classifier. The input in-
formation substitutes for an implemented tableaux reasoning procedure, hence



makes the parallel classifier independent of a particular DL logic or reasoner.
Currently, Racer is used to generate this file for a given OWL-DL ontology after
performing TBox classification.

The told subsumer information is passed to a preprocessing algorithm which
creates a taxonomy skeleton based on the already known (i.e. told) subsump-
tions and generates a topological-order list (e.g. depth-first traversal). Using a
topological sorting algorithm, the partial order can be serialized such that a total
order between concept names (or sets of concept names) is defined. During clas-
sification, the concept names are processed in the order of the topological order.
In our topological order list, from left to right, parent concepts precede child
concepts. To manage concurrency in our system, at least two shared-memory
approaches could be taken into account by using either (i) sets of local trees (so-
called ParTree approach) or (ii) one global tree. In the ParTree algorithm [14] a
local tree would be assigned to each thread, and after all the threads have fin-
ished the construction of their local hierarchy, the local trees need to be merged
into one global tree. TBox classification through a local tree algorithm would
not need any communication or synchronization between the threads. ParTree
is well suited for distributed systems which do not have shared memory. The
global tree approach was chosen because it implements a shared space which
is accessible to different threads running in parallel and avoids the large scale
overhead of ParTree on synchronizing local trees. To ensure data integrity a lock
mechanism for single nodes is used. This allows a proper lock granularity and
helps to increase the number of simultaneous write accesses to the subsumption
hierarchy under construction.

Most TBox classification algorithms are based on two (symmetric) tasks (e.g.,
see [2]). The first phase (top search) determines the parents of a given concept
to be inserted into the subsumption tree. It starts with the top concept (>)
and tries to push the given concept below the children of the current concept
and repeats this process with the goal to push the given concept as much to
the bottom of the subsumption tree as possible. Whenever a concept in the tree
subsumes the given concept, it is pushed below this subsumer. The second phase
(bottom search) determines the children of a given concept. It starts with the
bottom concept (⊥) and tries to move the given concept above the parents of
the current concept and repeats this process with the goal to move the current
concept up in the tree as much as possible. Whenever a concept in the tree is
subsumed by the given concept, it is moved above of this subsumee. Eventually,
the given concept is correctly positioned in the current subsumption hierarchy.
Both phases tag nodes of the tree (‘visited’, ‘positive’, ‘negative’) to prune the
search and avoid visiting already processed nodes. For instance, ‘positive’ is used
to tag nodes already known as (told) subsumers and ‘negative’ for already known
as (told) disjoints.

The work in [2] is an example for algorithms that incrementally construct a
subsumption tree and are highly optimized for sequential execution. In [10] some
of these techniques were extended to better deal with huge TBox hierarchies but
these algorithms are still based on a sequential execution. A recent approach



(not-woman)

(not-woman)

(not-mother)

(not-mother)

(not-female male)

(not-female male)

(not-girl)

(not-girl)

(not-parent)

(not-parent)

(boy)

(boy)

(not-man)

(not-man)

(not-father)

(not-father)

(parent)

(parent)

(father)

(father)

(man)

(man)

(mother)

(mother)

(woman)

(woman)

(girl)

(girl)

(female not-male)

(female not-male)

(not-boy)

(not-boy)

(top)

(top)

Fig. 1. Complete subsumption hierarchy for yaya-1

(parent)

(parent)

(not-woman)

(not-woman)

(not-parent)

(not-parent)

(not-mother)

(not-mother)

(not-man)

(not-man)

(not-male)

(not-male)

(not-girl)

(not-girl)

(not-female)

(not-female)

(not-father)

(not-father)

(not-boy)

(not-boy)

(married-to)

(married-to)

(father)

(father)

(man)

(man)

(boy)

(boy)

(male)

(male)

(has-child)

(has-child)

(mother)

(mother)

(woman)

(woman)

(girl)

(girl)

(female)

(female)

(top)

(top)

Fig. 2. Told subsumer hierarchy for yaya-1

[15] on TBox classification exploits partial information about OWL subclass
relationships to reduce the number of subsumption tests and, thus, improves the
algorithms presented in [2].

2.1 Example Scenario

In [1] the degree of incompleteness caused by classifying partitions of concepts in
parallel was tested. For a variety of ontologies it turned out that a surprisingly
few number of subsumptions were missed. This motivated the work in this paper.
In the following we illustrate two scenarios which may cause that a concept is
misplaced in the taxonomy due to parallel classification. We use a very small
ontology named yaya-1 with 16 concepts (see Fig. 1 and 2).

For this example, we configured our system so that it runs with 4 threads and
3 number-of-tasks-per-thread. As explained previously, in parallel classification
the topological sort order divides concept partitions between the threads (e.g.
round-robin). For instance, in Fig. 3 a list of concepts allocated to each thread is

thread#1 −→ (female not-male), girl, parent
thread#2 −→ woman, mother, (male not-female)
thread#3 −→ man, boy, father
thread#4 −→ not-boy, not-father, not-girl
thread#1 −→ not-man, not-mother, not-parent, not-woman

Fig. 3. Concept assignments to each thread for classifying yaya-1



shown. The two possible scenarios that may lead to a situation where the correct
place of a concept in the hierarchy is overlooked are described as follows.

Scenario I: In top search, as the new concept is pushed downward, right after
the children of the current concept have been processed, at least one new child
is added by another thread. In this scenario, the top search for the new concept
is not aware of the recent change and this might cause missing subsumptions if
there is any interaction between the new concept and the added children. The
same might happen in bottom search if the bottom search for the new concept
is not informed of the recent change to the list of parents of the current node.

Scenario II: Between the time that top search has been started to find the
location of a new concept in the taxonomy and the time that its location has
been decided, another thread has placed at least one concept into the hierarchy
which the new concept has an interaction with. Again, this might cause missing
subsumptions and is analogously also applicable to bottom search.

In our example (yaya-1), due to the small size of the taxonomy, scenario I
was not encountered, however, scenario II occurred in our experiments because
thread#1 inserted (female not-male)1 and thread#2 added woman independently
into the taxonomy and due to the parallelism each thread did not have any
information regarding the latest concept insertion by other threads (see also
Fig. 3). Hence, both (female not-male) and woman were initially placed under
the top concept although woman should be a child of (female not-male) (see Fig.
1). This was discovered and corrected by executing lines 6-7, 16-17, and 25-36
in Algorithm 2 as shown below.

2.2 Algorithms for Parallel Classification

The procedure parallel tbox classification is sketched in Algorithm 1. It is called
with a list of named concepts and sorts them in topological order w.r.t. to the
initial taxonomy created from the already known told ancestors and descendants
of each concept (using the told subsumer information). The classifier assigns
in a round-robin manner partitions with a fixed size from the concept list to
idle threads and activates these threads with their assigned partition using the
procedure insert partition outlined in Algorithm 2. All threads work in parallel
with the goal to construct a global subsumption tree (taxonomy). They also
share a global array inserted concepts indexed by thread identifications. Nodes
in the global tree as well as entries in the array will be locked for modification.

The procedure insert partition inserts all concepts of a given partition into
the global taxonomy. For updating a concept or its parents or children, it locks
the corresponding nodes. It first performs for each concept new the top-search
phase (starting from the top concept) and possibly repeats the top-search phase
for new if other threads updated the list of children of its parents. Then, it sets
the parents of new and adds new for each parent to its list of children. After-
wards the bottom-search phase (starting from the bottom concept) is performed.

1 This notation indicates that the concepts female and not-male are synonyms for each
other.



Algorithm 1: parallel tbox classification(concept list)

topological-order-list ← topological order(concept list)
repeat

wait until an idle thread ti becomes available
select a partition pi from topological-order-list
run thread ti with insert partition(pi, ti)

until all concepts in topological-order-list are inserted
compute ratio and overhead
print statistics

Algorithm 2: insert partition(partition,id)

1: lock(inserted concepts(id))
2: inserted concepts(id)← ∅
3: unlock(inserted concepts(id))
4: for all new ∈ partition do
5: parents ← top search(new,>)
6: while ¬ consistent in top search(parents,new) do
7: parents ← top search(new,>)
8: lock(new)
9: predecessors(new) ← parents

10: unlock(new)
11: for all pred ∈ parents do
12: lock(pred)
13: successors(pred) ← successors(pred) ∪ {new}
14: unlock(pred)
15: children ← bottom search(new,⊥)
16: while ¬ consistent in bottom search(children,new) do
17: children ← bottom search(new,⊥)
18: lock(new)
19: successors(new) ← children
20: unlock(new)
21: for all succ ∈ children do
22: lock(succ)
23: predecessors(succ) ← predecessors(succ) ∪ {new}
24: unlock(succ)
25: check ← check if concept inserted(new , inserted concepts(id))
26: if check 6= 0 then
27: if check = 1 ∨ check = 3 then
28: new predecessors ← top search(new,>)
29: lock(new)
30: predecessors(new) ← new predecessors
31: unlock(new)
32: if check = 2 ∨ check = 3 then
33: new successors ← bottom search(new,⊥)
34: lock(new)
35: successors(new) ← new successors
36: unlock(new)
37: for all busy threads ti 6= id do
38: lock(inserted concepts(ti))
39: inserted concepts(ti)← inserted concepts(ti) ∪ {new}
40: unlock(inserted concepts(ti))



Analogously to the top-search phase the bottom search is possibly repeated and
sets the children of new and updates the parents of the children of new. After
finishing the top and bottom search for new it is checked again whether other
threads updated its entry in inserted concepts and the top and/or bottom search
needs to be repeated. This step needs to be done only once. Finally, new is added
to the entries in inserted concepts of all other busy threads.

In order to avoid unnecessary tree traversals and tableau subsumption tests
when computing the subsumption hierarchy, the parallel classifier adapted the
enhanced traversal method [2], which is an algorithm that was designed for
sequential execution. Algorithm 3 and 4 outline the traversal procedures for the
top-search phase.

Algorithm 3: top search(new,current)

mark(current,‘visited’)
pos-succ ← ∅
captured successors(new)(current) ← successors(current)
for all y ∈ successors(current) do

if enhanced top subs(y,new) then
pos-succ ← pos-succ ∪ {y}

if pos-succ = ∅ then
return {current}

else
result ← ∅
for all y ∈ pos-succ do

if y not marked as ‘visited’ then
result ← result ∪ top search(new,y)

return result

The procedure top search outlined in Algorithm 3 recursively traverses the
taxonomy top-down from a current concept and tries to push the new concept
down the taxonomy as far as possible by traversing the children of the current
concept. It uses an auxiliary procedure enhanced top subs (outlined in Algo-
rithm 4) which itself uses an auxiliary procedure subsumes (not specified here)
that implements a subsumption test.

In a symmetric manner the procedure bottom search traverses the taxonomy
bottom-up from a current concept and tries to push the new concept up the tax-
onomy as far as possible. It uses an auxiliary procedure enhanced bottom subs.
Both procedures are omitted for ease of presentation.

To resolve the possible incompleteness caused by parallel classification, we
utilize Algorithms 5, 6 and 7. The procedure consistent in bottom search is not
shown here because it mirrors consistent in top search.

Algorithms 5 and 6 illustrate the solution for scenario I described in Section
2.1. As already described, in top search we start traversing from the top concept
to locate the concept new in the taxonomy. At time t1, when top search is
called, we capture the children information “captured successors” of the concept
current; the children information is stored relative2 to the concept new being

2 Otherwise a different thread could overwrite captured successors for node current.
This is now prevented because each concept (new) is inserted by only one thread.



Algorithm 4: enhanced top subs(current,new)

if current marked as ‘positive’ then
return true

else if current marked as ‘negative’ then
return false

else if for all z ∈ predecessors(current)
enhanced top subs(z,new)

and subsumes(current,new) then
mark(current,‘positive’)
return true

else
mark(current,‘negative’)
return false

Algorithm 5: consistent in top search(parents,new)

for all pred ∈ parents do
if successors(pred) 6= captured successors(new)(pred) then

diff children ← successors(pred) \ captured successors(new)(pred)
for all diff ∈ diff children do

if check interactions(diff,new) then
return false

return true

inserted (we use an array of arrays) and captures the successors of the concept
current (see Algorithm 3). As soon as top search is finished at time t2, and the
parents of the concept new have been determined, we check if there has been
any update on the children list of the computed parents for new between t1 and
t2 (e.g., see Algorithm 5 on how this is discovered). If there is any inconsistency
and also if there is a subsumption possible3 between new and any concept newly
added to the children list, we rerun top search until there is no inconsistency
(see line 6 in Algorithm 2).

The same process as illustrated in Algorithm 5 happens in bottom search.
The only difference is that parents information is captured when bottom search
starts; and when bottom search finishes, the inconsistency and interaction is
checked between the parents list of the computed children for new and the “cap-
tured predecessors”.

Algorithms 6 and 7 describe the solution for scenario II; every time a thread
inserts a concept in the taxonomy, it notifies the other threads by adding the
concept name to their “inserted concepts” list. Therefore, as soon as a thread
finds the parents and children of the new concept by running top search and
bottom search; it checks if there is any interaction between new concept and

3 This is checked by subsumption possible using pseudo model merging [12], where a
sound but incomplete test for non-subsumption on cached pseudo models of named
concepts and their negation is utilized.



Algorithm 6: check interactions(diff,new)

return subsumption possible(diff,new)

Algorithm 7: check if concept inserted(new,inserted concepts)

if inserted concepts = ∅ then
return 0

else
for all concept ∈ inserted concepts do

if check interactions(concept,new) then
if check interactions(new,concept) then

return 3
else

return 1
else if check interactions(new,concept) then

if check interactions(concept,new) then
return 3

else
return 2

return 0

the concepts located in the “inserted concepts” list. Based on the interaction,
top search and/or bottom search need to be repeated accordingly.

Proposition 1 (Completeness of Parallel TBox Classifier) The proposed
algorithms are complete for TBox classification.

TBox classification based on top search and bottom search is complete in
the sequential case. This means that the subsumption algorithms will find all
subsumption relationships between concepts of a partition assigned to a single
thread. The threads lock and unlock nodes whenever they are updating the
information about a node in the global subsumption tree. Thus, we need to
consider only the scenarios where two concepts C and D are inserted in parallel
by different threads (e.g., thread#1 inserts concept C while thread#2 inserts
concept D). In principle, if top (bottom) search pushed a new concept down
(up), the information about children (parents) of a traversed node E could be
incomplete because another thread might later add more nodes to the parents or
children of E that were not considered when determining whether the concept
being inserted subsumes or is subsumed by any of these newly added nodes. This
leads to two scenarios that need to be examined for incompleteness.

W.l.o.g. we restrict our analysis to the case where a concept C is a parent
of a concept D in the complete subsumption tree (CT ). Let us assume that
our algorithms would not determine this subsumption, i.e., in the computed
(incomplete) tree (IT ) the concept C is not a parent of D.

Case I: top search incomplete for D: After D has been pushed down the
tree IT as far as possible by top search (executed by thread#2) and top search
has traversed the children of a concept E and E has become the parent of D, C



Table 1. Characteristics of the used test ontologies.
Ontology DL language No. of named concepts

Embassi-2 ALCHN 657
Embassi-3 ALCHN 1,121

Galen SHN 2,730
Galen1 ALCH 2,730
Galen2 ELH 3,928

FungalWeb ALCHIN (D) 3,603
Umls-2 ALCHIN (D) 9,479

Tambis-2a ELH 10,116

is inserted by thread#1 as a new child of E. In line 6 of Algorithm 2 top search is
iteratively repeated for the concept new as long as consistent in top search finds
a discrepancy between the captured and current successors of the parents of the
newly inserted concept new. After finishing top and bottom search, Algorithm
2 checks again in lines 27-28 whether top search needs to be repeated due to
newly added nodes. If any of the newly added children of D would subsume C
and become a parent of C, the repeated execution of top search would find this
subsumption. This contradicts our assumption.

Case II: bottom search incomplete for C: After C has been pushed
up the tree IT as far as possible by bottom search (executed by thread#1)
and bottom search has traversed the parents of a concept E and E has become
a child of C, D is inserted by thread#2 as a new parent of E. In line 16 of
Algorithm 2 bottom search is iteratively repeated for the concept new as long
as consistent in bottom search finds a discrepancy between the captured and
current predecessors of the children of the newly inserted concept new. After
finishing top and bottom search, Algorithm 2 checks again in lines 32-33 whether
bottom search needs to be repeated due to newly added nodes. If C would
subsume any of the newly added parents of D and it would become a child of
C, the repeated execution of bottom search would find this subsumption. This
contradicts our assumption.

3 Evaluation

The Parallel TBox Classifier has been developed to speed up the classification
time especially for large ontologies by utilizing parallel threads sharing the same
memory. The benchmarking can be configured so that it runs various experiments
over ontologies. We evaluated it with a collection of 8 mostly publicly available
ontologies. Their name, size in number of named concepts, and used DL is shown
in Table 1. As mentioned in the previous section, two parameters influence the
parallel TBox classification, namely number of tasks/concepts per thread and
number of threads; the number of tasks/concepts per thread was set to 5 and
number of threads to 2 in our empirical experiments.

To better compare the performance between the sequential and parallel case,
we assume that every subsumption test runs in time t1 and in the sequential and
parallel case the same amount of time is used for an executed subsumption test.



Table 2. Subsumptions tests and their ratio for the test ontologies.
Embassi-2 Embassi-3 Galen Galen1

Subs. Tests in sequent. 154,034 420,912 2,706,412 2,688,107
Subs. Tests in thread#1 76,267 217,324 1,363,321 1,367,302
Subs. Tests in thread#2 77,767 214,633 1,354,297 1,348,281

Worst Case Ratio 50.48% 51.63% 50.37% 50.86%

Overhead 1.64% 2.62% 0.41% 1.02%

Galen2 FungalWeb Umls-2 Tambis-2a

Subs. Tests in sequent. 5,734,976 4,996,932 87,423,341 36,555,225
Subs. Tests in thread#1 2,929,276 2,518,676 44,042,203 18,342,944
Subs. Tests in thread#2 2,893,716 2,490,329 44,025,988 18,261,532

Worst Case Ratio 51.07% 50.40% 50.37% 50.17%

Overhead 1.53% 0.24% 0.73% 0.13%

Subsumption tests can be expensive and, hence, are preferred to be avoided by
optimization techniques such as pseudo model merging [12].

Ratio =
MaxOfSubsTests

TSTs
(1)

Overhead =
TSTp − TSTs

TSTs
(2)

The ratio illustrated in Equation 1 uses TSTs, the number of times a sub-
sumption test was computed in the sequential case, and MaxOfSubsTests, the
maximum number of subsumption tests performed in all threads. Similarly,
Equation 2 defines the overhead (where the index p refers to the parallel case).

Table 2 shows an excellent performance increase and a surprisingly small
overhead when using the Parallel TBox Classifier. Using two threads the maxi-
mum number of subsumption test for all ontologies could be reduced to roughly
one half compared to the sequential case. The overhead as defined in Equation
2 varies between 0.13% and 2.62%. The overhead is mostly determined by the
quality of the told subsumers and disjoints information, the imposed order of
traversal within a partitioning, and the division of the ordered concept list into
partitions. In general, one should try to insert nodes as close as possible to their
final order in the tree using a top to bottom strategy.

4 Conclusion

In this paper, we described an architecture for parallelizing well-known algo-
rithms for TBox classification. Our work is targeted for ontologies where inde-
pendent partitions cannot be easily constructed; therefore we did not use the
previously mentioned modularity approaches in our system. The first experi-
mental evaluation of our techniques shows very promising results because the
overhead for ensuring completeness is surprisingly small. In our next steps we
plan to extend our tests with different configurations of threads and partition
sizes and a larger variety of test ontologies. We intend to feed recorded runtimes
for performing single subsumption tests into our simulator in order to make the
computation of the overhead more accurate. We also plan to implement and test
our approach in a multi-core and multi-processor environment.



References

1. Aslani, M., Haarslev, V.: Towards parallel classifcation of TBoxes. In: Proc. of the
2008 Int. Workshop on Description Logics, Dresden, Germany, May 13-16 (2008)

2. Baader, F., Franconi, E., Hollunder, B., Nebel, B., Profitlich, H.: An empirical anal-
ysis of optimization techniques for terminological representation systems or: Mak-
ing KRIS get a move on. Applied Artificial Intelligence. Special Issue on Knowledge
Base Management 4(2), 109–132 (1994)

3. Bergmann, F., Quantz, J.: Parallelizing description logics. In: Proc. of 19th Ann.
German Conf. on Artificial Intelligence. pp. 137–148. LNCS, Springer-Verlag (1995)

4. Cuenca Grau, B., Halaschek-Wiener, C., Kazakov, Y.: History matters: Incremen-
tal ontology reasoning using modules. In: Proc. of the 6th Int. Semantic Web Conf.
(ISWC 2007), Busan, South Korea, Nov. 11-15 (2007)

5. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for
modularity of ontologies. In: In Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2007), Busan, South Korea, Nov. 11-15. pp. 298–303 (2007)

6. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Ma, L., Schonberg, E.,
Srinivas, K.: Scalable semantic retrieval through summarization and refinement.
In: 21st Conf. on Artificial Intelligence (AAAI). pp. 299–304. AAAI Press (2007)

7. Eyal, A., Mcllraith, S.: Partition-based logical reasoning for first-order and propo-
sitional theories. Artifical Intelligence 162(1-2), 49–88 (2005)

8. Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: The summary
Abox: Cutting ontologies down to size. In: Proc. of Int. Semantic Web Conf.
(ISWC). LNCS, vol. 4273, pp. 343–356. Springer-Verlag (2006)

9. Guo, Y., Heflin, J.: A scalable approach for partitioning OWL knowledge bases.
In: Proc. 2nd Int. Workshop on Scalable Semantic Web Knowledge Base Systems,
Athens, USA. pp. 47–60 (2006)

10. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge
bases: A practical case study. In: Proc. of the 17th Int. Joint Conf. on Artificial
Intelligence, IJCAI-01, Aug. 4-10, Seattle, USA. pp. 161–166 (2001)

11. Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval.
Journal of Automated Reasoning 41(2), 99–142 (2008)

12. Haarslev, V., Möller, R., Turhan, A.Y.: Exploiting pseudo models for TBox and
ABox reasoning in expressive description logics. In: Proc. of the Int. Joint Conf.
on Automated Reasoning, June 18-23, 2001, Siena, Italy. pp. 61–75 (2001)

13. Liebig, T., Müller, F.: Parallelizing tableaux-based description logic reasoning.
In: Proc. of 3rd Int. Workshop on Scalable Semantic Web Knowledge Base Sys-
tems (SSWS ’07), Vilamoura, Portugal, Nov 27. LNCS, vol. 4806, pp. 1135–1144.
Springer-Verlag (2007)

14. Shan, H., Singh, J.P.: Parallel tree building on a range of shared address space
multiprocessors: Algorithms and application performance. In: 12th Int. Parallel
Processing Symposium (IPPS ’98), March 30 - April 3, 1998, Orlando, Florida,
USA. pp. 475–484 (1998)

15. Shearer, R., Horrocks, I.: Exploiting partial information in taxonomy construction.
In: Proc. of the 8th International Semantic Web Conference (ISWC 2009) (2009)

16. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reasoning
using MapReduce. In: International Semantic Web Conference. pp. 634–649 (2009)


