
An ExpTime Tableau-based Decision Procedure
for ALCQI

Yu Ding and Volker Haarslev
Concordia University, Montreal, Canada

1 Motivation and Notions
The algebraic method, when used to deal with qualified number restrictions, is re-
alized by an atomic decomposition step that generates an exponential number of
sub-problems[HTM01]. It is not very clear this approach could lead to worst-case
optimal tableau-based decision procedures for the fundamental concept satisfia-
bility problem. Interestingly, it is known from practice that the algebraic method
has better run-time performance. So far the practical success however is confined
in DLs without inverse roles, and it is unclear how to use the algebraic method
for DLs having both Q and I. All these are baffling and beg for answers.

Firstly, we confirm that the algebraic method in general, according to the
well-known result on integer linear programming [Pap81], leads to a worst-case
ExpTime tableau-based decision procedure for the concept satisfiability prob-
lem. Secondly, we extends the algebraic method to DLs with inverse roles. To
realize two goals simultaneously, several ingredients must be prepared to form
a recipe. Naturally, the well-known global (sub)tableaux caching technique and
the atomic decomposition principle must be selected. But neither of the two is
directly applicable to DLs with inverse roles, extra ingredients are given below.

Tableau Structure: The tableau structure (TS) is a labeled graph. Each node
is labeled with a set of concepts, each edge is labeled with a role. Additionally,
(1) each node is labeled with (0 to many) algebraic objects1; (2) each edge is
associated with two variables, one for indicator and one for cardinality number.

Propositional Branch: This notion abstracts the execution of the u-rule
and the t-rule (common of tableau expansion rules for DLs in the ALC-family).

Cut Formulae: Given a concept E subject to concept satisfiability test w.r.t.
a GCI > v G in ALCQI, for each modal subformula (of E and G) of the form
∃./nR.C (where R is any role), > v C t C̃ t ∃≤0R−.> is a cut formula2.

Constraints Fine-Tuning:3 In the tableau structure, let x and y be neigh-
bors, x is completed and y is not completed, x has a R−-edge to y, we have:
– if ∃≤nR.C ∈ B(y) and C ∈ C(y), then ∃≤n−1R.C ∈ B′(y); else ∃≤nR.C ∈ B′(y);
– if ∃≥nR.C ∈ B(y) and C ∈ C(y), then ∃≥n−1R.C ∈ B′(y); else ∃≥nR.C ∈ B′(y);

where B(y) denotes the working propositional branch, and B′(y) its fine-tuning.
The adjustment of restrictions of a propositional branch at a node based on the
cut-sets (C(y), concepts from cut formulae) at its neighbors is called fine-tuning.

Atomic Decomposition and Integer Linear Programs: What is typical
of the algebraic approach is the building of one integer linear program from
the decomposition of role fillers for a group of (qualified) number restrictions.
1 Each object represents an integer program [A|B]x = b, where A is m × (2m − 1)

coefficient matrix, B is m×m matrix, b is a m-vector, s.t. x ≥ 0, integer.
2 It can be read in ALCQI as ∃≥1R−.> v C t C̃ or in ALCI as ∃R−.> v C t C̃.
3 Due to space limit, the fine-tuning shown here is correct only for tree structures.



The atomic decomposition forms all combinations4 about role fillers and their
negations. Each such combination is considered as a conjunction, and will be
formed as a successor node. The unsat. of one combination (i.e. one successor)
is reflected by setting the indicator variable to 0, which in turn might affect the
feasibility of the integer program at the fine-tuned working propositional branch.

2 A Short Description of the Decision Procedure

Decision Procedure: There are two major data structures: Nogood (for un-
sat caching across different tableau structures) and Witness (for static blocking
of tableau nodes within one tableau structure). The procedure starts building
a tableau structure (TS) from a root node labeled with the concept subject to
satisfiability test. It switches to explore a different TS if the current one can not
be saturated clash-free. When switching to explore another TS, at least one new
Nogood will be found. Thus, at most 2O(n) number of TSs will be explored5.

Complexity Analysis: Three factors are considered : (1) the maximum cost
per tableau node; (2) the maximum size of a tableau structure; (3) the maximum
number of tableau structures necessarily to form. We allow 2O(nc) cost per node
for some constant c, but require the size of each tableau structure be of 2O(n) and
only 2O(n) such tableau structures be formed. So, the total cost is 2O(nmax(1,c)).

Conclusion: For DLs with both inverse roles and (qualified) number restric-
tions, we have introduced restricted cut-formulae to guarantee the soundness of
the global (sub)-tableaux caching [DM99], and introduced the fine-tuning of qual-
ified number restrictions to adapt the algebraic method to DLs with inverse
roles. The former can be treated like GCIs; the latter can be integrated in the
tableau expansion rules as shown in [HTM01] for SHQ. Solving integer linear
program is known to be NP-complete, and so is the propositional satisfiability
problem. Both problems possibly appear simultaneously in each tableau node.
The decision procedure is designed to respect these facts. Further, the incon-
sistency propagation rules[DM99] are extended to work on tableau structures
labeled with algebraic objects. The decision procedure is a worst-case ExpTime
framework for SHOQ and SHIQ. Details and proofs are omitted. Comments
and references to important literature are regrettably impossible to give here.

References

[DM99] Francesco M. Donini and Fabio Massacci. Exptime tableaux for alc. Artificial
Intelligence, 124:87–138, 1999.

[HTM01] Volker Haarslev, Martina Timmann, and Ralf Möller. Combining tableaux
and algebraic decision procedures for dealing with qualified number restric-
tions in description logics. IJCAR-2001, pages 39–48, 2001.

[Pap81] Christos H. Papadimitriou. On the complexity of integer programming. J.
ACM, 28(4):765–768, 1981.

4 Regardless of the differences, the atomic decomposition and the integer linear pro-
grams have intricate connections to the choose-rule and ≤-rule.

5 To explore one TS, either DFS or BFS suffices. There is no assumption about the
order in which TSs are explored. The switching could be implemented either as
restarting or backjumping, or any sound method that shares previous computations.


