
Extended Query Facilities for Racer and an Application to

Software-Engineering Problems

Volker Haarslev2, Ralf Möller3,

Ragnhild Van Der Straeten4 and Michael Wessel◦

Concordia University2 Technical University of Hamburg-Harburg3

Montreal, Canada Hamburg-Harburg, Germany
haarslev@cs.concordia.ca r.f.moeller@tuhh.de

Vrije Universiteit Brussel4 University of Hamburg◦

Brussels, Belgium Hamburg, Germany
rvdstrae@vub.ac.be mwessel@informatik.uni-hamburg.de

Abstract

This paper reports on a pragmatic query language for Racer. The abstract syntax
and semantics of this query language is defined. Next, the practical relevance of
this query language is shown, applying the query answering algorithms to the
problem of consistency maintenance between object-oriented design models.

1 Motivation

Practical description logic (DL) systems such as Racer [3] offer a functional API
for querying a knowledge base (i.e., a tuple of T-box and A-box). For instance,
Racer provides a query function for retrieving all individuals mentioned in an A-
box that are instances of a given query concept. Let us consider the following A-
box: {has child(alice, betty), has child(alice, charles)}. If we are interested in finding
individuals for which it can be proven that a child exists, in the Racer system, the
function concept instances can be used. However, if we would like to find all tuples
of individuals x and y such that a common parent exists, currently, it is not possible
to express this in sound and complete DL systems such as, for instance, Racer. Other
logic-based representation systems, such as, e.g., LOOM [6], however, have offered
query languages suitable for expressing the second query right from the beginning.
In this paper we define syntax and semantics of a query language similar to that
of LOOM. Users of description logic systems such as Racer already demonstrated
the demand of such a query language for sound and complete DL systems [9], and
this paper evaluates the practical relevance of the current implementation for query
answering algorithms in Racer-1-7-19 using an application to software engineering
problems.

2 The New Racer Query Language - nRQL

In the following we describe the new Racer Query Language, also called nRQL (pro-
nounce: Nercle). We start with some auxiliary definitions:

Definition 1 (Individuals, Variables, Objects) Let I and V be two disjoint sets
of individual names and variable names, respectively. The set O =def V ∪I is the set
of object names. We denote variable names (or simply variables) with letters x, y, . . .;
individuals are named i, j, . . .; and object names a, b,

�

Query atoms are the basic syntax expressions of nRQL:

Definition 2 (Query Atoms) Let a, b ∈ O; C be an ALCQHIR+(D−) [4] concept
expression, R a role expression, P one of the concrete domain predicates offered by
Racer; f = f1 ◦ · · · ◦ fn and g = g1 ◦ · · · ◦ gm be feature chains such that fn and gm are
attributes (whose range is defined to be one of the available concrete domains offered
by Racer, or f, g are individuals from one of the offered concrete domains which means
that m,n = 1 and f1, g1 are 0-ary attributes). Then, the list of nRQL atoms is given
as follows:

• Unary concept query atoms: C(a)

• Binary role query atoms: R(a, b)

• Binary constraint query atoms: P (f(a), g(b))

• Unary bind-individual atoms: bind individual(i)

• Unary has-known-successor atoms: has known successor(a,R)

• Negated atoms: If rqa is a nRQL atom, then so is \(rqa), a so-called negation
as failure atom or simply negated atom.

�

We give some examples of the various atoms and assume throughout the paper that
betty ∈ I. Note that (woman u (¬mother))(betty) and woman(x) are unary con-
cept query atoms; has child(x, y) and has child(betty, y) are binary role query atoms;
string=(has father ◦ has name(x), has name(y)) as well as ≥(has age(x), 19) are
examples of binary constraint query atoms. Finally, \(woman(x)) is an example of a
negated atom. The rationale for introducing unary bind-individual and has-known-
successor atoms will become clear later. Both are related to effects caused by negated
atoms. We can now define nRQL queries:

Definition 3 (nRQL Query Bodies, Queries & Answer Sets) A nRQL Query
has a head and a body. Query bodies are defined inductively as follows:

• Each nRQL atom rqa is a body; and

• If b1 . . . bn are bodies, then the following are also bodies:

– b1 ∧ · · · ∧ bn, b1 ∨ · · · ∨ bn, \(bi)

We use the syntax body(a1, . . . , an) to indicate that a1, . . . , an are all the objects
(ai ∈ O) mentioned in body. A nRQL Query is then an expression of the form

ans(ai1 , . . . , aim)← body(a1, . . . , an),
ans(ai1 , . . . , aim) is also called the head, and (i1, . . . , im) is an index vector with ij ∈
1 . . . n. A conjunctive nRQL query is a query which does not contain any ∨ and \
operators.

�

Before we consider atoms with variables, we define truth of ground query atoms. A
ground query atom does not reference any variables. To define truth of ground query
atoms, we will need the standard notion of logical implication or logical entailment.
We first start with positive atoms – atoms which are not negated:

Definition 4 (Entailment of Positive Ground Query Atoms) Let K be an
ALCQHIR+(D−) knowledge base. A knowledge base, KB for short, is simply a T-
box/A-box tuple: K = (T ,A).

A positive ground query atom rqa (i.e., rqa doesn’t reference variables and is not
negated) is logically entailed (or implied) by K iff every model I of K is also a model
of rqa. In this case we write K |= rqa. Moreover, if I is a model of K (rqa) we write
I |= K (I |= rqa).

We therefore have to specify when I |= rqa holds. In the following, if rqa references
individuals i, j, it will always be the case that i, j ∈ inds(A). From this it follows that
iI ∈ ∆I and jI ∈ ∆I , for any I = (∆I , ·I) with I |= K:

• If rqa = C(i), then I |= rqa iff iI ∈ CI .

• If rqa = R(i, j), then I |= rqa iff (iI , jI) ∈ RI .

• If rqa = P (f(i), g(j)), then I |= rqa iff
– ci = fI(iI),
– cj = gI(jI),
– (ci, cj) ∈ P I ; moreover,
– if f = f1 ◦ · · · ◦ fn, then we require that for all m ∈ 1 . . . n − 1 with

k = (f1 ◦ · · · ◦ fm)I(iI) there is some j ∈ inds(A) such that jI = k; and
analogously for g.

• If rqa = (i = j), then I |= (i = j) iff iI = jI .

• If rqa = has known successor(i, R), then I |= rqa iff for some j ∈ inds(A):
I |= R(i, j).

�

It is important to note that the properties of roles and concepts referenced in the query
atoms are defined in the knowledge base K. For example, if the role has descendant

has been declared as transitive in K, then has descendant will be transitive in the
queries as well, since in models of K has descendantI = (has descendantI)+ must
hold. If has father is declared as a feature, then it will behave as a feature in
the queries as well. Also note that, according to Definition 2, atoms of the form
rqa = (i = j) are not really query atoms. However, these atoms are used to replace
bind individual atoms, see below.

The complex semantic condition enforced on the binary constraint query atoms
such as rqa = P (f(i), g(j)) with f = f1 ◦ · · · ◦fn and g = g1 ◦ · · · ◦gm makes it possible

to substitute such an atoms with the conjunction f1(i, i1) ∧ · · · ∧ fn−1(in−2, in−1) ∧
g1(j, j1) ∧ · · · ∧ gm−1(jm−2, jm−1) ∧ P (fn(in−1), gm(jm−1)).

Now that we have defined truth of of positive ground query atoms, we can define
truth of arbitrary ground query atoms:

Definition 5 (Truth of Ground Query Atoms) Let rqa be a ground query atom.
Let K = (T ,A) be a knowledge base (T-box/A-box tuple). A ground atom rqa

is either TRUE in K (we write K |=NF rqa) or FALSE in K (we write K 6|=NF).
The relationship |=NF resp. trueness of ground query atoms is inductively defined as
follows:

• If rqa is positive (does not contain “\”): K |=NF rqa iff K |= rqa

• Otherwise: K |=NF \(rqa) iff K 6|=NF rqa
�

It is important to note that for each query body or atom q, q is TRUE iff \(q) is FALSE,
and vice versa. Note that this does not hold for the usual entailment relationship. For
example, consider the A-box {woman(betty)}. Given K =def (∅,A), woman(betty)
is TRUE, and mother(betty) is FALSE, since we cannot prove that betty is a mother.
Thus, \(mother(betty)) is TRUE. In contrast, ¬mother(betty) is obviously FALSE.
Moreover, (mothert¬mother)(betty) = >(betty) is not the same as (mother(betty))∨
(¬mother(betty)).

In order to check whether K |=NF rqa, we can use the basic consistency checking
and A-box retrieval methods offered by Racer. The symbol “|=NF ” shall remind the
reader of the employed “Negation as Failure” semantics (i.e., suppose rqa is positive,
then K |=NF \(rqa) iff K 6|= rqa, which means \(rqa) is TRUE in K, see below for
examples).

The truth definition of ground atoms can be extended to complex ground query
bodies in the obvious way (i.e., K |=NF b1∧· · ·∧bn iff ∀bi : K |=NF bi, and analogously
for ∨ and \).

Having defined truth of ground query atoms and bodies, we can specify the se-
mantics of queries which are not ground, but first we need one more piece of notation.
The rationale behind the next definition is best understood with an example: con-
sider the query ans(betty) ← woman(betty). The answer to this query should either
be ∅ (in case K 6|= woman(betty)), or {(betty)} (in case K |= woman(betty)). A rea-
sonable statement is that ans(betty) ← \(woman(betty)) should be the complement
query of ans(betty) ← woman(betty). The latter one should therefore return the set
{ (i) | i ∈ inds(A) }, probably without {(betty)} (note that inds(A) returns the set
of all individuals mentioned in the A-box A). Thus, within \(woman(betty)), betty

behaves in fact like a variable. To capture this behavior, we replace the individuals in
the atoms with representative variables and use (in)equality statements as follows:

Definition 6 (α-Substitution) Let rqa be an atom that contains at most one “\”
(note that rqa = \(\(rqa))). Denote the set of mentioned individuals in rqa as
inds(rqa). Then, α(rqa) is defined as follows:

• If inds(rqa) = ∅, then α(rqa) =def rqa.

• If rqa = bind individual(i), then α(rqa) =def xi = i

• If rqa = \(bind individual(i)), then α(rqa) =def xi 6= i

• If rqa is not a bind-individual atom, then

– If rqa is positive and inds(rqa) = {i, j} (possibly i = j), then α(rqa) =def

rqa[i←xi,j←xj] ∧ (xi = i) ∧ (xj = j).
– If rqa = \(rqa′) is negative and inds(rqa) = {i, j} (possibly i = j), then

α(rqa) =def \(rqa
′

[i←xi,j←xj]
) ∨ (xi 6= i) ∨ (xj 6= j).

�

Note that rqa[i←xi,j←xj] means “substitute i with xi, and j with xj”. For example,
α(R(i, j)) = R(xi, xj) ∧ (xi = i) ∧ (xj = j), but α(\(R(i, j))) = \(R(xi, xj)) ∨ (xi 6=
i) ∨ (xj 6= j). We extend the definition of α to query bodies in the obvious way.
However, we need to bring the bodies into negation normal form (NNF) first, such
that “\” appears only in front of atoms. This is simply done by applying DeMorgan’s
Law to the query body (from the given semantics it follows that \(A∧B) ≡ \(A)∨\(B),
\(A ∨ B) ≡ \(A) ∧ \(B), \(\(A)) ≡ A). The semantics of a nRQL query can now be
paraphrased as follows:

Definition 7 (Semantics of a Query) Let ans(ai1 , . . . , aim)← body(a1, . . . , an) be
a nRQL query q such that body is in NNF. Let β(ai) =def xai

if ai ∈ I, and ai oth-
erwise; i.e., if ai is an individual we replace it with its representative unique variable
which we denote by xai

. Let K be the knowledge base to be queried, and A be its
A-box. The answer set of the query q is then the following set of tuples:

{ (ji1 , . . . , jim) | ∃j1, . . . , jn ∈ inds(A),∀m,n,m 6= n : jm 6= jn,

K |=NF α(body)[β(a1)←j1,...,β(an)←jn] }

Finally, we state that {()} =def TRUE and {} =def FALSE.
�

Note that we assume the unique name assumption (UNA) for the variables here.
However, the implemented query processing engine also offers non-UNA variables
(originally meant for breaking up feature chains). For reasons of brevity we decided
not to include them in the formal definition here.

Let us briefly discuss some “pathological examples” which explain why we included
bind-individual and has-known-successor atoms into nRQL.

Suppose we want to know for which individuals we have explicitly modeled children
in the A-box. For this purpose, the query ans(x)← has know successor(has child, x)
can be used, but also the query ans(x) ← has child(x, y). However, now
suppose we want to retrieve the A-box individuals which do not have a child. The
query ans(x) ← \(has child(x, y)) cannot be used, since first the complement of
has child(x, y) is computed, and then the projection to x is carried out. Thus,
ans(x)← \(has known successor(x, has child)) must be used. Please note that this
query is not equivalent to ans(x)← \(∃has child.>(x)). To see why, suppose we want
to query for mothers not having any explicitly modeled children in the A-box. Ob-
viously, these mothers cannot be retrieved with ans(x) ← \(∃has child.>(x)), since
motherhood implies having a child. But this child need not be explicitly modeled in the

A-box. Thus, the query ans(x)← mother(x)∧\(has known successor(x, has child))
must be used. The syntax ans(x) ← mother(x) ∧ has child(x, NIL), which we bor-
rowed from the query language of the LOOM system, is also understood by Racer.

We already mentioned that individuals appearing within negated query atoms
turn into variables. Suppose ans(eve) ← mother(eve) returns ∅. Thus, the query
ans(eve)← \(mother(eve)) will return the complement set w.r.t. all mentioned A-box
individuals, e.g. {(eve)(doris)(charles)(betty)(alice)}. But sometimes, this behavior
is unwanted: in this case we can add the additional conjunct bind individual(eve).
We then get {(eve)} for ans(eve)← bind individual(eve) ∧ \(mother(eve)).

3 An Example from Software Engineering

In [9], we plead for state-of-the-art DL tools having an extensive query language to
be able to maintain consistency between object-oriented design models.

The de facto modeling language for the analysis and design of object-oriented soft-
ware applications is UML [7]. The visual representation of this language consists of
several diagram types. Those diagrams represent different views on the system under
study. We deliberately confine ourselves to three kinds of UML diagrams: class dia-
grams representing the static structure of the software application, sequence diagrams
representing the behavior of the software application in terms of the collaboration
between different objects, and state diagrams modeling the behavior of one single
object.

State-of-the-art CASE tools have little support for maintaining the consistency be-
tween those different diagrams within the same version of a model or between different
versions of a model.

Based on a detailed analysis of all the UML concepts appearing in class, sequence
and state diagrams, several consistency conflicts are identified and classified. For an
overview of this classification, we refer to [8].

In our approach the relevant subset of the UML metamodel, defining class, state
and sequence diagrams, is translated into T-box axioms. As such the different user-
defined UML diagrams are translated into A-box assertions. Based on two illustrative
consistency conflicts, we argued in [9] that checking for inconsistencies demands an
extensive query language. This would allow us to specify UML models and consistency
rules in a straightforward and generic way.

The classless instance conflict, described in [9] is repeated here and the infinite
containment conflict is introduced.

3.1 Classless instances

The first conflict appears if there are instances in a sequence diagram which do not
have any associated class. An example of this conflict is shown in Figure 1, where
the object anATM is an instance of ATM in the sequence diagram on the right side
of Figure 1 but this class does not appear in the class diagram on the left side of the
same figure.
Classes in a class diagram are represented by the concept class in our T-box and an

1..1
 *

anATM : ATM

checkIfCashAvailable

ejectCard

dispenseCard

Session
 Transaction
 aSession : Session

Figure 1: Classless instances conflict

instance by the concept object . instance of specifies that an object is an instance of
a certain class. has classmodel is a role that contains the associated class diagram of
a class. The query language of Racer can now be used to find all the classes that have
no related class diagram:

ans(x)

← class(x) ∧ object(y) ∧ instance of(y, x) ∧

\(has known successor(x, has classmodel))

This yields the correct result, i.e. the individual ATM bound to the variable x:
{(ATM)}

3.2 Infinite containment

This conflict arises when the composition and inheritance relationships between classes
in class diagrams form a cycle and combined with a composition relation, define a class
whose instances will, directly or indirectly, be forced to contain at least one instance
of the same class, causing an infinite chain of instances.

An example of this conflict is shown in Figure 2, where the class ASCIIPrintingATM
is transitively a subclass of ATM and there exists a composition relation controls be-
tween those two classes. This composition indicates that every instance of ATM con-
trols at least one instance of ASCIIPrintingATM . However, an instance of
ASCIIPrintingATM is also an instance of ATM and as such must again control a
different instance of ASCIIPrintingATM due to the antisymmetric property of a com-
position relation. (The composition relation is indicated by a black diamond.)

The direct subclass relationship is represented by the direct subclass role which is a
sub role of a transitive subclass role. A class involved in an association, is linked to this
association by the role has association through an association end. An association end
has an aggregation kind which can be empty or an aggregation or a composite. This
knowledge is represented by the role has aggregation and by the concepts aggregation
and composition . An association has two or more association ends, the role ends links
the association to its ends. Each association end has a multiplicity, this is expressed by
the has multiplicity role. A multiplicity has a range (has range) and this range has a
lower and upper bound. These bounds are represented by concrete domain attributes
lower and upper which have type integer .

The following query, expressed in nRQL, returns classes which are related by

ATM
 PrintingATM
 ASCIIPrintingATM

-atmend
 1
 -asciiend
1..*

controls

Figure 2: Infinite containment conflict

inheritance and by a composition relation introducing an infinite containment conflict:

ans(x, y)

← subclass(x, y) ∧ has association(y, end1) ∧

has aggregation(end1, aggreg) ∧ composition(aggreg) ∧

ends(assoc, end1) ∧ ends(assoc, end2) ∧ has association(x, end2) ∧

has multiplicity(end2,m2) ∧ has range(m2, r2) ∧ (∃(lower).≥1)(r2)

The result of this query asked to the A-box containing the example of Figure 2 is the
answerset {(ASCIIPRINTINGATM ,ATM)}.

With the current nRQL implementation, the answer sets of the queries are correct
and delivered within reasonable time limits. Remark however, that this is not a mass
data application, which makes this query facility suitable for our purposes.

4 Related Work, Discussion & Conclusion

For querying OWL semantic web repositories, the query language OWL-QL [2] has
been proposed, which is the successor of the DAML+OIL query language DQL. Since
OWL is basically a very expressive description logic, the proposed query language is
relevant in our context as well.

An OWL-QL query is basically a full OWL KB together with a specification which
of the referenced URIs in the query “body” (called query pattern in OWL terminol-
ogy) are to be interpreted as variables. Variables come in three forms: must-bind,
may-bind, and do-not bind variables. OWL-QL uses the standard notion of logical en-
tailment: query answers can be seen as logically entailed sentences of the queried KB.
Unlike in nRQL, variables cannot only be bound to constants resp. explicitly modeled
A-box individuals, but also to complex OWL terms which are meant to denote the log-
ically implied domain individual(s) from ∆I . Thus, if variables in the query patterns
are substituted with answer bindings, the resulting sentences are logically entailed by
the queried KB. For must-bind variables, bindings have to be provided. May-bind
variables may provide bindings or not, and do-not-bind variables are purely existen-
tially quantified (“existential blanks in the query”). Moreover, OWL-QL queries are
full OWL KBs, and this implies that not only extensional queries like in nRQL must
be answered, but also “structural queries” are possible, such as “retrieve the subsum-
ing concept names of the concept name father”. Similar functions are also offered by
Racer’s API, but are not available in nRQL.

However, nRQL is not really a subset of OWL-QL. In OWL-QL, neither negation
as failure nor disjunctive A-boxes can be expressed. Moreover, binary constraint query

atoms of nRQL as well as negated has-known-successor query atoms “are missing” in
OWL-QL. The latter ones have in fact been requested by the first users of the nRQL
implementation. This clearly indicates that a limited kind of autoepistemic or closed-
world query facilities should be present in a DL query language. Negation as failure
atoms are useful to measure the completeness of the current modeling in an A-box,
and this is demanded by users. Thus, it might be more convincing to use a different
semantics for “logical implication of queries” in the first place. Such a notion has
been given in terms of the so-called K-operator [1], which has been used for the query
language ALCK. Roughly speaking, one could state that already concept instances
uses the K-operator in front of the concept whose instances are to be retrieved. A
more detailed analysis of these relationships is left for future work.

Horrocks and Tessaris [5] also consider conjunctive queries for DL systems. They
use two kinds of variables. Must-bind variables are called distinguished variables;
they are bound to explicitly mentioned A-box individuals, like in nRQL. Similarly
to the don’t-bind variables in OWL-QL, the non-distinguished variables are treated
as “existential blanks”. Only bindings of distinguished variables are listed in the
answerset of a query. Considering DLs of less expressivity than OWL, they observe
that the non-distinguished variables of a query can in fact be removed by using a
rolling-up technique without affecting logical entailment. For example, the query
ans(x) ← R(x, y) ∧ C(y) (were only x is distinguished) would be rolled-up into the
query ans(x)← ∃R.C(x). They also observe that for a DL which has the tree-model
property and which does not offer inverse roles, a variable participating in a join must
in fact be a distinguished variable; e.g. the variable y in ans(x)← R(x, y) ∧R(z, y).

In nRQL, the variables are always distinguished. The query ans(x, y)← R(x, y)∧
C(y) yields ∅ over the A-box {∃R.C(k)}. However, ans(x) ← (∃R.C)(x) could be
used instead. Obviously, a rolling-up procedure could be implemented as an addi-
tional front-end processor for nRQL as well. However, another side-effect caused
by the distinction of two kinds of variables is that the generation of answer tu-
ples can no longer be understood as a simple projection. For example, the query
ans(x)← R(x, y)∧C(y) returns {(k)} if x is distinguished and y is non-distinguished,
but its result is, un-intuitively, not the projection of ans(x, y) ← R(x, y) ∧ C(y) to
x, since this yields ∅ (note that x, y must be both distinguished, since they appear
in ans). Even ans(x) ← C(x) returns ∅ (like concept instances(C)), and this holds
for the query language in [5] as well. For OWL-QL, however, a possible binding for
x might be the concept C u ∃R−1.{k}. It should be noted that the nRQL query pro-
cessing engine as well as the whole pragmatic approach for querying DL A-boxes is
not dependent on any specific DL system. The same query processing engine would
in fact also run with any other DL system offering A-boxes, probably without binary
constraint query atoms in case the DL system does not provide concrete domains.
The nRQL engine is implemented using the documented API of Racer only, and it is
therefore a true “add on” whose implementation does not require any reference to the
internal data structures or reasoning algorithms of Racer.

Since the beginning of the Racer endeavor, users were asking for more expressive
querying facilities. The presented nRQL is a first step towards satisfying these needs.
We substantiated this thesis by presenting an application from the realm of model-

based software engineering, for which it is crucial that expressive query languages are
available. The new query language is an integral part since Racer-1-7-16.

References

[1] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf.
Adding epistemic operators to concept languages. In Bernhard Nebel, Charles
Rich, and William Swartout, editors, KR’92. Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Third International Conference, pages
342–353. Morgan Kaufmann, San Mateo, California, 1992.

[2] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL - a language for deductive query
answering on the semantic web. Technical Report KSL-03-14, Knowledge Systems
Lab, Stanford University, CA, USA, 2003.

[3] V. Haarslev and R. Möller. Racer system description. In International Joint Con-
ference on Automated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy.,
2001.

[4] V. Haarslev, R. Möller, and M. Wessel. The description logic ALCNHR+ extended
with concrete domains: A practically motivated approach. In R. Goré, A. Leitsch,
and T. Nipkow, editors, Proceedings of the International Joint Conference on Au-
tomated Reasoning, IJCAR’2001, June 18-23, 2001, Siena, Italy, Lecture Notes
in Computer Science, pages 29–44. Springer-Verlag, June 2001.

[5] Ian Horrocks and Sergio Tessaris. Querying the semantic web: a formal approach.
In Ian Horrocks and James Hendler, editors, Proc. of the 13th Int. Semantic Web
Conf. (ISWC 2002), number 2342 in Lecture Notes in Computer Science, pages
177–191. Springer-Verlag, 2002.

[6] Robert MacGregor and David Brill. Recognition algorithms for the LOOM clas-
sifier. In Proc. of the 10th Nat. Conf. on Artificial Intelligence (AAAI’92), pages
774–779. AAAI Press/The MIT Press, 1992.

[7] Object Management Group. Unified Modeling Language specification version 1.5.
formal/2003-03-01, March 2003.

[8] Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, and Viviane Jonckers.
Using description logic to maintain consistency between UML models. In Perdita
Stevens, Jon Whittle, and Grady Booch, editors, UML 2003 - The Unified Mod-
eling Language. Model Languages and Applications. 6th International Conference,
San Francisco, CA, USA, October 2003, Proceedings, volume 2863 of LNCS, pages
326–340. Springer, 2003.

[9] Ragnhild Van Der Straeten, Jocelyn Simmonds, and Tom Mens. Detecting in-
consistencies between UML models using description logic. In Diego Calvanese,
Giuseppe De Giacomo, and Enrico Franconi, editors, Proceedings of the 2003 Inter-
national Workshop on Description Logics (DL2003), Rome, Italy September 5-7,
2003, volume 81 of CEUR Workshop Proceedings, pages 260–264, 2003.

