
Resolution Based Explanations for Reasoning in
the Description Logic

Xi Deng, Volker Haarslev, and Nematollaah Shiri

Department of Computer Science and Software Engineering, Concordia
University, Montreal, Quebec, Canada

Abstract. With the increasing number of applications of description logics (DLs),
unsatisfiable concepts and inconsistent terminologies become quite common, es-
pecially when the knowledge bases are large and complex. Even for an experi-
enced knowledge engineer, it can be extremely difficult to identify and resolve the
origins of these unsatisfiabilities and inconsistencies. Thus it is crucial to provide
services to explain how and why a result is derived. Motivated by the possibilities
of applying resolution technique in first-order logic to construct explanations for
description logics, we extend our previous work and present an algorithm that
generates explanations for unsatisfiability and inconsistency reasoning in the de-
scription language . The main advantage of our approach is that it is inde-
pendent of any specific DL reasoners.

1 Introduction

In recent years, description logics (DLs) have found a wide range of appli-
cations in computer science, such as domain modeling, software engineer-
ing, configuration, and the semantic web [3]. With increasing complex ap-
plications, unsatisfiability and inconsistency become quite common. For
example, the DICE (Diagnoses for Intensive Care Evaluation) terminology
[17] contains more than 2400 concepts, out of which about 750 concepts
were unsatisfiable due to migration from other terminological systems.
Unsatisfiability and inconsistency may also arise due to unintentional de-
sign defects in the terminology or changes in the process of ontology evo-
lution. However, existing DL reasoners, such as Racer [7] and FaCT [10],
do not provide explanation services; they merely provide “Yes/No” answer

2 Xi Deng, Volker Haarslev, and Nematollaah Shiri

to a satisfiability or consistency query with no information about the rea-
sons. In addition to such answers, it is desirable that DL reasoners also
provide reasons for their answers and identify the sources of inconsisten-
cies to further help knowledge engineers and ontology developers. It is
therefore crucial and also challenging to provide explanation services as a
useful feature and facility for DL reasoners.

In our previous work [4], we proposed a framework of constructing ex-
planations for the description logic language using resolution proofs.
The approach works as follows:

1. Firstly, if a DL reasoner provides a negative answer to a satisfiability/
consistency query, i.e., a concept is unsatisfiable or a TBox/ABox is
inconsistent, the axioms and assertions in the knowledge base will be
translated into first-order formulae.

2. Then a resolution based automated theorem prover (ATP) is used to
generate the resolution proof, taking the translated formulae as inputs.

3. At last, the resolution proof is transformed into its corresponding
refutation graph [6]. Our algorithm traverses the graph and “reads”
the proof to generate explanations. Later, the clauses involved in each
traversal step are traced back to the contributing axioms/assertions in
the original DL knowledge base.

Our approach has two main advantages. The first is that it is independ-
ent of any specific DL reasoners. Most implemented DL reasoners use tab-
leau algorithms as the underlying reasoning calculus. Tableau rules are de-
signed to render the results faster but not necessarily easier for the users to
understand. Furthermore, some DL optimization techniques, such as ab-
sorption1, are adopted to make reasoning more efficient, however they may
make it more difficult for general users to understand if presented as ex-
planations. In order to give explanations, the internal reasoning procedures
should be tailored with performance penalties. Since the explanations are
constructed based on resolution proofs in our approach, no modification of
the internal of a DL reasoner is needed. This makes it possible to provide
explanations for any DL reasoner. The second advantage of our approach
of using resolution, compared to natural deduction proofs or tableau
proofs, is that it is more focused, as all the literals in the clauses involved
in a proof contribute to the proof. In other words, the resolution technique
filters and excludes from a proof, the axioms and assertions in the knowl-
edge base that are irrelevant to the query and hence unused in the process.

1 The basic idea of absorption is to transform a general axiom, e.g., , to the form

of a primitive definition , where A is an atomic concept name and D＇ is a non-
atomic concept.

Resolution Based Explanations for Reasoning in the Description Logic 3

Since for our explanation, we use a proof that is different from the
original proof, a question that may naturally arise at this point is concerned
with correctness of the explanation procedure. In this paper, our focus is to
study soundness and completeness of our algorithm. In order to guarantee
termination of the resolution procedure and hence our explanation tech-
nique, we adopt a structural transformation during translation.

The rest of the paper is organized as follows. Sect.2 discusses related
work in explanations. In Sect.3, we introduce our explanation algorithm
and establish its soundness and completeness. Sect.4 includes an illustra-
tive example. Sect.5 includes concluding remarks and discusses some fu-
ture work.

2 Related Work

There have been several proposals to provide explanations for DL reason-
ing. The earliest work is [13] which provides an explanation facility for
subsumption and non-subsumption reasoning in CLASSIC [2]. CLASSIC
is a family of knowledge representation systems based on description lo-
gics. It allows universal quantification, conjunction and restricted number
restrictions. Since disjunction is not allowed in CLASSIC, explanations are
given based on structural subsumption comparisons. Lengthy explanations
are decomposed into smaller steps and a single step explanation is fol-
lowed by more detailed explanations. This work is extended in [1] by us-
ing sequent rules to explain subsumption in . The sequent rules are
modified to imitate the behavior of tableau calculus as well as the behavior
of human reasoning. In contrast to these works, [17] provides algorithms to
pinpoint unsatisfiable concepts and related axioms. This approach first ex-
cludes axioms which are irrelevant to the inconsistency and then provide
simplified definitions which highlight the exact position of the contradic-
tion. This work is extended in [16] to debug OWL ontologies. This ap-
proach consists of two parts: glass box and black box. Glass box relies on
information from internals of the reasoners. It traces back to the last clash
to give the source of inconsistency. Black box approach uses reasoners as
oracles and relies on the users to perform navigational search to show un-
satisfiability dependency. On the other hand, most existing explanation fa-
cilities in resolution based automated theorem proving transform the
proofs into natural language style explanations [11, 12, 14]. They are spe-
cifically designed to solve problems in theorem proving, particularly
mathematical theorems. They focus on proving conclusions using theo-
rems, lemmas and premises and in general not suitable for indirect proofs.

4 Xi Deng, Volker Haarslev, and Nematollaah Shiri

3 Preliminaries

3.1 Description Logics

Description logics are a family of concept-based knowledge representation
formalisms. It represents the knowledge of a domain by first defining the
relevant concepts of the domain. These concepts are then used to specify
properties of the objects and individuals in the domain. Typically a DL
language has two parts: terminology (TBox) and assertion (ABox). The
TBox includes intensional knowledge in the form of axioms whereas the
ABox contains the extensional knowledge that is specific to elements in
the domain, called individuals.

Among DL frameworks, (stands for Attribute language and
stands for Complement) has been considered as a basic DL language of in-
terests in numerous studies in DL. In and other DL languages as well,
basic descriptions are atomic concepts, designated by unary predicates, and
atomic roles, designated by binary predicates to express relationships be-
tween concepts. Arbitrary concept descriptions such as C and D are built
from atomic concepts and roles recursively according to the following
rules:

where A denotes an atomic concept and R denotes an atomic role. The in-
tersection (or union) of concepts, which is denoted (or), is
used to restrict the individuals to those that belong to both C and D (or ei-
ther C or D). The value restriction, denoted , requires that all the in-
dividuals that are in the relationship R with an individual of the value re-
striction belong to the concept C. The existential quantification, written

, defines that for all individuals of the existential quantification there
must exist an individual in the relationship R that belongs to the concept C.
The universal concept is a synonym of . The bottom concept
is a synonym of .

An interpretation defines a formal semantics of concepts and indi-
viduals in . It consists of a non-empty set , called the domain of the
interpretation, and an interpretation function, which maps every atomic

Resolution Based Explanations for Reasoning in the Description Logic 5

concept A to a set , and maps every atomic role R to a binary re-
lation . In addition, maps each individual name a to an
element . The interpretation is extended to concept descrip-
tions, as shown in Table 1.

 Table 1. Interpretations of constructors in .

Axioms express how concepts and roles are related to each other. Gen-
erally, an axiom is a statement of the form or , where C and
D are concept descriptions. An interpretation satisfies if .
It satisfies if .

The basic inference services in TBoxes include satisfiability, subsump-
tion, equivalence, and disjointness. A concept in a TBox T is said to be sat-
isfiable w.r.t T if there exists an interpretation that is a model of T. A
model for T is an interpretation that satisfies it. The other three inference
services can all be reduced to (un)satisfiability. Another important reason-
ing service in TBoxes is to check whether a TBox T is consistent, i.e.,
whether there exists a model for T. The basic reasoning tasks in ABoxes
are instance check, realization, and retrieval. The instance check verifies if
a given individual is an instance of a specified concept. The instance reali-
zation computes the most specific concepts that an individual is an in-
stance of. The instance retrieval returns all the individuals in the knowl-
edge base that are instances of a given concept. An ABox A is consistent
w.r.t a TBox T, if there is an interpretation that is a model of both A and T.
Similar to the inference services in TBoxes, the other three inference ser-
vices in ABoxes can also be reduced to the consistency problem of
ABoxes. Further details of description logics can be found in [3].

6 Xi Deng, Volker Haarslev, and Nematollaah Shiri

3.2 Resolution

We assume that the readers are familiar with standard definitions of
first-order logic (FOL) and clausal theorem proving. Resolution is one of
the most widely used calculi for theorem proving in first-order logic. Reso-
lution proves a theorem by negating the statement to be proved and adding
this negated goal to the sets of axioms that are known to be true. It then
uses the following inference rules to show that this leads to a contradiction.

Positive factoring:
C ∨ A ∨B

 Cσ ∨ Aσ
where σ = MGU(A, B),

Resolution:

 C ∨A D ∨¬ B

Cσ ∨ Dσ

where σ = MGU(A, B).
Resolution is sound and complete: if a set of clauses is saturated up to

redundancy by the inference rules, then it is satisfiable if and only if it
does not contain the empty clause.

4 Preprocessing

In [4], the translation between DL and FOL is straightforward based on the
semantics of DL. For , concepts can be translated into the first order
predicate logic over unary and binary predicates with two variables, say x,
y, which is denoted as . Table 2 shows such a translation from into

. An atomic concept A is translated into a predicate logic formula
with one free variable x such that for every interpretation , the set of ele-
ments of satisfying is exactly . Similarly, a role name R can be
translated into binary predicate . An individual name a is translated
into a constant a. However, in order to guarantee complete and terminating
reasoning, a simple direct translation based on the standard first order logic
semantics is not appropriate. Hence we adopt the structural transformation
as shown in [8, 15].

Resolution Based Explanations for Reasoning in the Description Logic 7

Table 2 . Translation from into

The structural transformation is a kind of conjunction normal form

transformation of first-order predicate logic formulae by replacing the sub-
formulae with some new predicates and adding a suitable definition for
these predicates. We choose the structural transformation because: Firstly,
it would avoid the exponential blow up of the size of the clauses. Consider
the axiom , where E and F are complex concept descriptions. If n is
the number of clauses generated by E and m is the number of clauses gen-
erated by F then the above formula generates n×m clauses. The reason for
the exponential explosion is the duplication of subformulae obtained by
the exhaustive application of the distributivity law. If we replace F by a
fresh concept, say C, then the above axiom transforms into two:
and . The number of clauses generated by these two axioms is n+m.
Secondly, it helps to preserve original structures of DL axioms after first-
order logic formulae are transformed into their conjunction normal forms.
Consider the axiom , without this transformation, the LHS
and RHS of this axiom are distributed into four clauses, making it difficult
to generate explanations.

A formal definition of the transformation is shown below.
Definition 1 C is a qualified concept expression if and only if C is of the

form with and D is an arbitrary concept.
Definition 2 [15] A position is a word over the natural numbers. The set

pos(ϕ) of positions of a given formula ϕ is defined as follows: (i) the
empty word ε ∈pos(ϕ) (ii) for 1≤ i ≤ n, i.p∈pos(ϕ) if ϕ = ϕ 1 • … •
ϕ n and p∈pos(ϕ i) where • is a first-order operator. If p∈pos(ϕ),ϕ |i.p

=ϕ i|p where ϕ = ϕ 1 • … • ϕ n. We write ϕ [φ]p for ϕ |p = φ . With

8 Xi Deng, Volker Haarslev, and Nematollaah Shiri

ϕ [p/φ] where p∈pos(ϕ) we denote the formula obtained by replacing
ϕ |p withφ at position p in ϕ . The polarity of a formula occurring at posi-
tion π in a formula ϕ is denoted by Pol (ϕ ,π) and defined as: Pol (ϕ ,ε)
= 1; Pol (ϕ , π.i) = Pol (ϕ ,π) if ϕ |π is a conjunction, disjunction, formula
starting with a quantifier or an implication with i = 2; Pol (ϕ , π.i) = -Pol
(ϕ ,π) if ϕ |π is a formula starting with a negation symbol or an implica-
tion with i = 1 and, Pol (ϕ , π.i) = Pol (ϕ ,π) if ϕ |π is an equivalence.

Definition 3 Let ϕ be a formula and φ = ϕ |π be a subformula of ϕ at
position π. For position q which is just one position below π , the DL
counterpart of ϕ |q is a qualified concept expression. Let x1,…, xn be the free
variables in φ and let R be a new predicate. Then the formula

ϕ [π / R(x1,…, xn)] ∧ ϕ
πDef

is a structural transformation of ϕ at position π. The formula ϕ
πDef is a

polarity dependent definition of the new predicate R:
 ϕ

πDef = ∀ x1,…, xn [R(x1,…, xn) → φ] if Pol (ϕ ,π) = 1
 ∀ x1,…, xn [φ → R(x1,…, xn)] if Pol (ϕ ,π) = -1

It is easy to see the following result after structural transformation.
Definition 4 There are four types of clauses after normalization:
1. Xi
2. Xi ∨R(x, f(x))

3. Xi ∨Y

4. Xi ∨¬ R(x, y) ∨Z
 where Xi ∈{Ci(x), ¬ Ci(x)}, Y ∈{D(f(x)), ¬ D(f(x))} and Z ∈{D(y), ¬
D(y)}.

Specifically, clause type (1) is translated from axiom , and both C
and D are complex concepts. Type (2) and (3) are translated from axioms

 or . Type (4) is translated from axioms
or .

The correctness of the translation is proved as follows.
Theorem 1 Let T be a TBox in and C be a named concept in T. T

is consistent. Let θ (T) and θ (C(a)) be the resulting set of FOL formulae of
T and C(a) after the translation, a being a newly introduced individual.
Then C is unsatisfiable if and only if the empty clause is derived under
resolution given θ (T) U θ (C(a)).

Resolution Based Explanations for Reasoning in the Description Logic 9

Proof. As mentioned in [8], the structural transformation does not affect
satisfiability, it is easy to see T and θ (T) are equisatisfiable. Since T is
consistent as the known fact, θ (T) is also consistent. Since C is unsatisfi-
able, C does not admit any instance, i.e., C(a) is false. Hence θ (T) U θ
(C(a)) is inconsistent. According to the refutational completeness of reso-
lution, the empty clause can be derived. Similarly, we can prove that if the
empty clause is derived for θ (T) U θ (C(a)), C is unsatisfiable. ■

We can also easily prove the following result.
Theorem 2 Let T be a TBox and A be an ABox (either T or A can be

empty). Let θ (T) and θ (A) be the resulting set of FOL formulae of T and A
after the translation. Then T U A is inconsistent if and only if the empty
clause is derived under resolution given θ (T) U θ (A).

5 The Algorithm to Generate Explanations

Our approach uses a refutation graph [6] to reconstruct the resolution
proof in order to support explanation. Generally speaking, a refutation
graph is a graph whose nodes are literals (grouped together in clauses) and
its edges connect complementary nodes/literals which correspond to the
resolution steps in the resolution proof. In a refutation graph, complemen-
tary literals between input clauses are directly visible. We give the funda-
mental definition about refutation graphs as below. Further details can be
found in [4]. The algorithm of transforming a resolution proof to its refuta-
tion graph is shown in Fig.1.

Definition 5 A refutation graph is a quadruple G = (L; C; ML; K),
where L is a finite set of literal nodes in G. C is a partition of the set of lit-
eral nodes. Its members are clause nodes in G. ML is a mapping from L to a
set of literals. The set of links K is a partition of a subset of L. There are no
pure literal nodes in a refutation graph, i.e., every literal node belongs to
some link in K.

Input: a resolution proof Output: its corresponding refutation graph

For all the steps in the resolution proof
 For all the literals that are involved in a step

 If its literal node does not exist
 create its corresponding clause (literal) node and add it into the refutation graph
 add a link between the literal nodes that are resolved (factored) together
Return the refutation graph

Fig. 1. The Transformation Algorithm.

10 Xi Deng, Volker Haarslev, and Nematollaah Shiri

The main idea of explanations based on the refutation graph is to start
from a literal node (or nodes) and traverse the graph. After the traversal is
completed, each clause node involved in each step is translated into an en-
try in an explanation list consisting of its source axioms in DL. After some
clean-up, e.g., deleting duplicate line, this explanation list can be further
transformed into natural language style explanations.

The traversal algorithms of unsatisfiability reasoning can be described
as follows: Start from the literal node corresponding to the unsatisfiable
concept, follow the links to its complementary literal nodes Li, i = 1, …, n.
For each of the literal nodes that are in the same clause node as Li, follow
its untraversed link. Stop when there is no untraversed link left. The algo-
rithm to explain the inconsistency reasoning is similar to the unsatisfiabil-
ity case, except that the traversal will begin with one of the literal nodes
involved in the first step of the resolution proof.

The pseudo code of the algorithm is shown in Fig.2. It uses a stack,
called SOT, which includes the literal nodes which are yet to be traversed.

Input: a refutation graph Output: an explanation list

If it is an unsatisfiable problem
 start from the unsatisfiable concept C
 else start from a concept C involved in the first step of the resolution proof
SOT ← the associated literal node of C
For all the literal nodes Li in SOT
 mark Li as “traversed”
 put the corresponding DL axiom of Li into the explanation list
 For all the links that are adjacent to Li

 If the link was created from a factoring step
 mark the literal node at the opposite side of the link as “traversed”
 else
 For all the literal nodes Lk that in the same clause node as the opposite side of the link

SOT ← Lk
 Remove Li from SOT
Return the explanation list

Fig. The Traversal Algorithm.

Theorem 3 The unsatisfiability and inconsistency traversal algorithms
are complete and can terminate with an explanation.

Proof. Termination: In each step of the traversal, we decrease the num-
ber of literal nodes that remain untraversed, since once a literal node is
traversed, it will not be traversed again. As the number of literal nodes in a
refutation graph is finite, the traversal algorithm will terminate.

Resolution Based Explanations for Reasoning in the Description Logic 11

Completeness: The completeness in our case means that at the end of
the algorithm, no literal node is left untraversed. That we cannot reach a
blocked situation follows from the fact that every literal node in the refuta-
tion graph has a complementary literal node connected by a link, i.e., every
literal node is reachable through other nodes. ■

6 Example

To help understand the algorithms, we show an example KB as follows:

After being fed into Racer, HappyPerson is reported to be unsatisfiable.
We set KB to be as below and show it to be inconsistent.

where a is a fresh individual.
Since Axiom 1, 2, 3, 5 and 6 contain qualified concept expressions. But

as the structural transformation does not either decrease the number of the
clauses or simplify the explanations for 1, 3, 5 and 6, we only show how it
is converted to FOL formulae based on structural transformation for axiom
2. We introduce new names Q for this subconcept and get

By applying unit resolution to this clause set and by converting the reso-

lution proof to its refutation graph in our prototype system, we get the
graph as shown in Fig.3.

12 Xi Deng, Volker Haarslev, and Nematollaah Shiri

Fig.3. The Refutation Graph of the Example.

By applying the algorithm to explain unsatisfiable concepts, we get an

explanation list as follows:

It reads as: if a is a HappyPerson, then it can either be a Doctor or has a
child which is Q (PhD and not Poor). First, if it is a Doctor, then all its de-
gree is MD and it is a Physician. Every Physician has a BS degree, how-
ever, BS is disjoint with MD. So there is a contradiction within the branch
of Doctor. Secondly, if a has a child which is a PhD and not poor, since
every child of a HappyPerson is Married and every married PhD is poor,
then a's child must be poor, which is a contradiction. So a cannot be a
HappyPerson.

Resolution Based Explanations for Reasoning in the Description Logic 13

7 Conclusions and Future Work

In this paper, we presented a sound and complete algorithm based on reso-
lution proofs for explaining DL reasoning. We have implemented a proto-
type system based on the algorithm to explain unsatisfiability and inconsis-
tency queries w.r.t TBoxes/ABoxes in . This system uses Racer as the
DL reasoner and Otter [18] as the resolution based ATP. As input the sys-
tem accepts problem descriptions in the KRSS syntax. All the components
are implemented in Java. As experiments show, our approach is suitable
for small knowledge bases but, without any further refinements, it would
generate long and complex explanations. Besides, although there is a reso-
lution decision procedure based on the use of a particular selection func-
tion for [5], which can decide satisfiability in ExpTime, with large
and complicated examples, first-order resolution based provers will choke
on such input, especially when considering to extend to include num-
ber restrictions or transitive roles. To ensure that the first-order prover will
finish, more sophisticated translations and resolution technique should be
used.

Acknowledgments

This work was supported in part by Natural Sciences and Engineering Re-
search Council (NSERC) of Canada, by Genome Quebec, and by ENCS
Concordia University.

References

1. Borgida A, Franconi E, Horrocks I, McGuiness DL and Patel-Schneider PF
(1999) Explaining subsumption. In Proceedings of 1999 International
Workshop on Description Logics. CEUR-WS.org, pp 37-44

2. Brachman RJ, McGuiness DL, Patel-Schneider PF, Resnick LA (1990) Living
with CLASSIC: when and how to use a KL-ONE-like language. In Sowa J
(ed) Principles of semantic networks. Morgan Kaufmann, San Mateo, US, pp
401--456

3. Baader F, Nutt W (2003) Basic description logic. In Baader F, Calvanese D,
McGuinness DL, Nardi D, and Patel-Schneider PF (eds) The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, Cambridge, pp 5-44

14 Xi Deng, Volker Haarslev, and Nematollaah Shiri

4. Deng X, Haarslev V, Shiri N (2005) A framework for explaining reasoning in
description logics. In Proceedings of the AAAI Fall Symposium on Explana-
tion-aware Computing. AAAI Press, Menlo Park, US, pp 55-61

5. De Nivelle H, De Rijke M (2003) Deciding the guarded fragments by resolu-
tion. J Symbolic Computation 35(1):21-58

6. Eisinger N (1991) Completeness, confluence, and related properties of clause
graph resolution. Morgan Kaufmann San Francisco, US

7. Haarslev V, Möller R (2001) Racer system description. In T Nipkow R Gori, A
Leitsch (eds) Proceedings of International Joint Conference on Automated
Reasoning (IJCAR). Springer-Verlag, London, UK, pp 701-705

8. Hustadt U, Motik B, Sattler U (2005) Data complexity of reasoning in very ex-
pressive description logics. In Proceedings of Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann, San Fran-
cisco, US, pp 466-471

9. Hustadt U, Schmidt RA (1999) Issues of decidability for description logics in
the framework of resolution. In Caferra R and Salzer G (eds) Automated De-
duction in Classical and Non-Classical Logics. Springer-Verlag, London, UK,
pp 191-205

10. Horrocks I (1998) The FaCT system. In De Swart H (ed) Automated Resoning
with Analytic Tableaux and Related Methods: International Conference Tab-
leaux. Springer-Verlag, Berlin, Germany, pp 307-312

11. Huang X (1994) Reconstructing proofs at the assertion level. In Bundy A (ed)
Proceedings of 12th Conference on Automated Deduction. Springer-Verlag,
London, UK, pp 738-752

12. Lingenfelder C (1996) Transformation and structuring of computer generated-
proofs. Ph.D. thesis, University of Kaiserslautern

13. McGuinness DL and Borgida A (1995) Explaining subsumption in description
logics. In Proceedings of the tenth International Joint Conference on Artificial
Intelligence (IJCAI). Morgan Kaufmann, San Francisco, US, pp 816-821

14. Meier A (2000) TRAMP: Transformation of machine-found proofs into natu-
ral deduction proofs at the assertion level. In McAllester D (ed) Proceedings
of the 17th Conference on Automated Deduction (CADE). Springer-Verlag,
Berlin, Germany, pp 460-464

15. Nonnengart A, Rock G, Weidenbach C (1998) On generating small clause
normal forms. In Kirchner C and Kirchner H (eds) Proceedings of the 15th In-
ternational Conference on Automated Deduction. Springer-Verlag, London,
UK, pp 397-411

16. Parsia B, Sirin E, Kalyanpur A (2005) Debugging OWL ontologies. In The
14th Interntional World Wide Web Conference (WWW). ACM Press, New
York, US, pp 633-640

17. Schlobach S and Cornet R (2003) Non-standard reasoning services for the de-
bugging of description logic terminologies. In Proceedings of the eighteenth
International Joint Conference on Artificial Intelligence (IJCAI). Morgan
Kaufmann, San Francisco, US, pp 355-362

18. WosMcCune M and Wos L (1997) Otter - the CADE-13 competition incar-
nations. J Automated Reasoning 18(2):211-220

