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Abstract. With the increasing number of applications of description logics (DLs), 
unsatisfiable concepts and inconsistent terminologies become quite common, es-
pecially when the knowledge bases are large and complex. Even for an experi-
enced knowledge engineer, it can be extremely difficult to identify and resolve the 
origins of these unsatisfiabilities and inconsistencies. Thus it is crucial to provide 
services to explain how and why a result is derived. Motivated by the possibilities 
of applying resolution technique in first-order logic to construct explanations for 
description logics, we extend our previous work and present an algorithm that 
generates explanations for unsatisfiability and inconsistency reasoning in the de-
scription language . The main advantage of our approach is that it is inde-
pendent of any specific DL reasoners.  

1 Introduction 

In recent years, description logics (DLs) have found a wide range of appli-
cations in computer science, such as domain modeling, software engineer-
ing, configuration, and the semantic web [3]. With increasing complex ap-
plications, unsatisfiability and inconsistency become quite common. For 
example, the DICE (Diagnoses for Intensive Care Evaluation) terminology 
[17] contains more than 2400 concepts, out of which about 750 concepts 
were unsatisfiable due to migration from other terminological systems. 
Unsatisfiability and inconsistency may also arise due to unintentional de-
sign defects in the terminology or changes in the process of ontology evo-
lution. However, existing DL reasoners, such as Racer [7] and FaCT [10], 
do not provide explanation services; they merely provide “Yes/No” answer 
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to a satisfiability or consistency query with no information about the rea-
sons. In addition to such answers, it is desirable that DL reasoners also 
provide reasons for their answers and identify the sources of inconsisten-
cies to further help knowledge engineers and ontology developers. It is 
therefore crucial and also challenging to provide explanation services as a 
useful feature and facility for DL reasoners. 

In our previous work [4], we proposed a framework of constructing ex-
planations for the description logic language  using resolution proofs. 
The approach works as follows:  

1. Firstly, if a DL reasoner provides a negative answer to a satisfiability/ 
consistency query, i.e., a concept is unsatisfiable or a TBox/ABox is 
inconsistent, the axioms and assertions in the knowledge base will be 
translated into first-order formulae. 

2. Then a resolution based automated theorem prover (ATP) is used to 
generate the resolution proof, taking the translated formulae as inputs. 

3. At last, the resolution proof is transformed into its corresponding 
refutation graph [6]. Our algorithm traverses the graph and “reads” 
the proof to generate explanations. Later, the clauses involved in each 
traversal step are traced back to the contributing axioms/assertions in 
the original DL knowledge base. 

Our approach has two main advantages. The first is that it is independ-
ent of any specific DL reasoners. Most implemented DL reasoners use tab-
leau algorithms as the underlying reasoning calculus. Tableau rules are de-
signed to render the results faster but not necessarily easier for the users to 
understand. Furthermore, some DL optimization techniques, such as ab-
sorption1, are adopted to make reasoning more efficient, however they may 
make it more difficult for general users to understand if presented as ex-
planations. In order to give explanations, the internal reasoning procedures 
should be tailored with performance penalties. Since the explanations are 
constructed based on resolution proofs in our approach, no modification of 
the internal of a DL reasoner is needed. This makes it possible to provide 
explanations for any DL reasoner. The second advantage of our approach 
of using resolution, compared to natural deduction proofs or tableau 
proofs, is that it is more focused, as all the literals in the clauses involved 
in a proof contribute to the proof. In other words, the resolution technique 
filters and excludes from a proof, the axioms and assertions in the knowl-
edge base that are irrelevant to the query and hence unused in the process.  

                                                      
1 The basic idea of absorption is to transform a general axiom, e.g., , to the form 

of a primitive definition , where A is an atomic concept name and D＇ is a non-
atomic concept. 
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Since for our explanation, we use a proof that is different from the 
original proof, a question that may naturally arise at this point is concerned 
with correctness of the explanation procedure. In this paper, our focus is to 
study soundness and completeness of our algorithm. In order to guarantee 
termination of the resolution procedure and hence our explanation tech-
nique, we adopt a structural transformation during translation. 

The rest of the paper is organized as follows. Sect.2 discusses related 
work in explanations. In Sect.3, we introduce our explanation algorithm 
and establish its soundness and completeness. Sect.4 includes an illustra-
tive example. Sect.5 includes concluding remarks and discusses some fu-
ture work. 

2 Related Work 

There have been several proposals to provide explanations for DL reason-
ing. The earliest work is [13] which provides an explanation facility for 
subsumption and non-subsumption reasoning in CLASSIC [2]. CLASSIC 
is a family of knowledge representation systems based on description lo-
gics. It allows universal quantification, conjunction and restricted number 
restrictions. Since disjunction is not allowed in CLASSIC, explanations are 
given based on structural subsumption comparisons. Lengthy explanations 
are decomposed into smaller steps and a single step explanation is fol-
lowed by more detailed explanations. This work is extended in [1] by us-
ing sequent rules to explain subsumption in . The sequent rules are 
modified to imitate the behavior of tableau calculus as well as the behavior 
of human reasoning. In contrast to these works, [17] provides algorithms to 
pinpoint unsatisfiable concepts and related axioms. This approach first ex-
cludes axioms which are irrelevant to the inconsistency and then provide 
simplified definitions which highlight the exact position of the contradic-
tion. This work is extended in [16] to debug OWL ontologies. This ap-
proach consists of two parts: glass box and black box. Glass box relies on 
information from internals of the reasoners. It traces back to the last clash 
to give the source of inconsistency. Black box approach uses reasoners as 
oracles and relies on the users to perform navigational search to show un-
satisfiability dependency. On the other hand, most existing explanation fa-
cilities in resolution based automated theorem proving transform the 
proofs into natural language style explanations [11, 12, 14]. They are spe-
cifically designed to solve problems in theorem proving, particularly 
mathematical theorems. They focus on proving conclusions using theo-
rems, lemmas and premises and in general not suitable for indirect proofs. 
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3 Preliminaries 

3.1 Description Logics 

Description logics are a family of concept-based knowledge representation 
formalisms. It represents the knowledge of a domain by first defining the 
relevant concepts of the domain. These concepts are then used to specify 
properties of the objects and individuals in the domain. Typically a DL 
language has two parts: terminology (TBox) and assertion (ABox). The 
TBox includes intensional knowledge in the form of axioms whereas the 
ABox contains the extensional knowledge that is specific to elements in 
the domain, called individuals. 

Among DL frameworks,  (  stands for Attribute language and  
stands for Complement) has been considered as a basic DL language of in-
terests in numerous studies in DL. In  and other DL languages as well, 
basic descriptions are atomic concepts, designated by unary predicates, and 
atomic roles, designated by binary predicates to express relationships be-
tween concepts. Arbitrary concept descriptions such as C and D are built 
from atomic concepts and roles recursively according to the following 
rules: 

                     
where A denotes an atomic concept and R denotes an atomic role. The in-
tersection (or union) of concepts, which is denoted  (or ), is 
used to restrict the individuals to those that belong to both C and D (or ei-
ther C or D). The value restriction, denoted , requires that all the in-
dividuals that are in the relationship R with an individual of the value re-
striction belong to the concept C. The existential quantification, written 

, defines that for all individuals of the existential quantification there 
must exist an individual in the relationship R that belongs to the concept C. 
The universal concept  is a synonym of . The bottom concept  
is a synonym of .  

An interpretation  defines a formal semantics of concepts and indi-
viduals in . It consists of a non-empty set , called the domain of the 
interpretation, and an interpretation function, which maps every atomic 
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concept A to a set , and maps every atomic role R to a binary re-
lation . In addition,  maps each individual name a to an 
element . The interpretation  is extended to concept descrip-
tions, as shown in Table 1. 

 

                       

                          Table 1. Interpretations of constructors in . 

Axioms express how concepts and roles are related to each other. Gen-
erally, an axiom is a statement of the form  or , where C and 
D are concept descriptions. An interpretation   satisfies  if . 
It satisfies  if . 

The basic inference services in TBoxes include satisfiability, subsump-
tion, equivalence, and disjointness. A concept in a TBox T is said to be sat-
isfiable w.r.t T if there exists an interpretation  that is a model of T. A 
model for T is an interpretation that satisfies it. The other three inference 
services can all be reduced to (un)satisfiability. Another important reason-
ing service in TBoxes is to check whether a TBox T is consistent, i.e., 
whether there exists a model for T. The basic reasoning tasks in ABoxes 
are instance check, realization, and retrieval. The instance check verifies if 
a given individual is an instance of a specified concept. The instance reali-
zation computes the most specific concepts that an individual is an in-
stance of. The instance retrieval returns all the individuals in the knowl-
edge base that are instances of a given concept. An ABox A is consistent 
w.r.t a TBox T, if there is an interpretation that is a model of both A and T. 
Similar to the inference services in TBoxes, the other three inference ser-
vices in ABoxes can also be reduced to the consistency problem of 
ABoxes. Further details of description logics can be found in [3]. 
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3.2 Resolution 

We assume that the readers are familiar with standard definitions of 
first-order logic (FOL) and clausal theorem proving. Resolution is one of 
the most widely used calculi for theorem proving in first-order logic. Reso-
lution proves a theorem by negating the statement to be proved and adding 
this negated goal to the sets of axioms that are known to be true. It then 
uses the following inference rules to show that this leads to a contradiction. 

Positive factoring: 
C ∨ A ∨B 

 
                                                Cσ ∨ Aσ 
where σ = MGU(A, B), 
 
Resolution: 

 C  ∨A      D  ∨¬ B 

 
Cσ ∨ Dσ 

where σ = MGU(A, B). 
Resolution is sound and complete: if a set of clauses is saturated up to 

redundancy by the inference rules, then it is satisfiable if and only if it 
does not contain the empty clause. 

4 Preprocessing 

In [4], the translation between DL and FOL is straightforward based on the 
semantics of DL. For , concepts can be translated into the first order 
predicate logic over unary and binary predicates with two variables, say x, 
y, which is denoted as . Table 2 shows such a translation from  into 

. An atomic concept A is translated into a predicate logic formula  
with one free variable x such that for every interpretation , the set of ele-
ments of  satisfying  is exactly . Similarly, a role name R can be 
translated into binary predicate . An individual name a is translated 
into a constant a. However, in order to guarantee complete and terminating 
reasoning, a simple direct translation based on the standard first order logic 
semantics is not appropriate. Hence we adopt the structural transformation 
as shown in [8, 15].  
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Table 2 . Translation from  into  
 
The structural transformation is a kind of conjunction normal form 

transformation of first-order predicate logic formulae by replacing the sub-
formulae with some new predicates and adding a suitable definition for 
these predicates. We choose the structural transformation because: Firstly, 
it would avoid the exponential blow up of the size of the clauses. Consider 
the axiom , where E and F are complex concept descriptions. If n is 
the number of clauses generated by E and m is the number of clauses gen-
erated by F then the above formula generates n×m clauses. The reason for 
the exponential explosion is the duplication of subformulae obtained by 
the exhaustive application of the distributivity law. If we replace F by a 
fresh concept, say C, then the above axiom transforms into two:  
and . The number of clauses generated by these two axioms is n+m. 
Secondly, it helps to preserve original structures of DL axioms after first-
order logic formulae are transformed into their conjunction normal forms. 
Consider the axiom  , without this transformation, the LHS 
and RHS of this axiom are distributed into four clauses, making it difficult 
to generate explanations.  

A formal definition of the transformation is shown below.  
Definition 1 C is a qualified concept expression if and only if C is of the 

form  with  and D is an arbitrary concept. 
Definition 2 [15] A position is a word over the natural numbers. The set 

pos(ϕ ) of positions of a given formula ϕ  is defined as follows: (i) the 
empty word ε ∈pos(ϕ ) (ii) for 1≤  i ≤  n, i.p∈pos(ϕ ) if ϕ  = ϕ 1 • … • 
ϕ n and p∈pos(ϕ i) where • is a first-order operator. If p∈pos(ϕ ),ϕ |i.p 

=ϕ i|p where ϕ  =  ϕ 1 • … • ϕ n. We write ϕ [φ ]p for ϕ |p = φ . With 
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ϕ [p/φ ] where p∈pos(ϕ ) we denote the formula obtained by replacing 
ϕ |p withφ  at position p in ϕ . The polarity of a formula occurring at posi-
tion π  in a formula ϕ  is denoted by Pol (ϕ ,π) and defined as: Pol (ϕ ,ε ) 
= 1; Pol (ϕ , π.i) = Pol (ϕ ,π) if ϕ |π is a conjunction, disjunction, formula 
starting with a quantifier or an implication with i = 2; Pol (ϕ , π.i) = -Pol 
(ϕ ,π) if ϕ |π  is a formula starting with a negation symbol or an implica-
tion with i = 1 and, Pol (ϕ , π.i) = Pol (ϕ ,π) if ϕ |π  is an equivalence. 

Definition 3 Let ϕ  be a formula and φ  = ϕ |π  be a subformula of ϕ  at 
position π. For position q which is just one position below π , the DL 
counterpart of ϕ |q is a qualified concept expression. Let x1,…, xn be the free 
variables in φ  and let R be a new predicate. Then the formula 

ϕ [π / R(x1,…, xn)] ∧ ϕ
πDef  

is a structural transformation of ϕ  at position π. The formula ϕ
πDef  is a 

polarity dependent definition of the new predicate R: 
    ϕ

πDef =     ∀ x1,…, xn [R(x1,…, xn) → φ ] if Pol (ϕ ,π) = 1 
                      ∀ x1,…, xn [φ → R(x1,…, xn)]  if Pol (ϕ ,π) = -1 

It is easy to see the following result after structural transformation. 
Definition 4 There are four types of clauses after normalization: 
1. Xi 
2. Xi ∨R(x, f(x)) 

3. Xi ∨Y 

4. Xi ∨¬ R(x, y) ∨Z 
    where Xi ∈{Ci(x), ¬ Ci(x)}, Y ∈{D(f(x)), ¬ D(f(x))} and Z ∈{D(y), ¬ 
D(y)}. 

Specifically, clause type (1) is translated from axiom , and both C 
and D are complex concepts. Type (2) and (3) are translated from axioms 

 or . Type (4) is translated from axioms  
or .  

The correctness of the translation is proved as follows. 
Theorem 1 Let T be a TBox in  and C be a named concept in T. T 

is consistent. Let θ (T) and θ (C(a)) be the resulting set of FOL formulae of 
T and C(a) after the translation, a being a newly introduced individual. 
Then C is unsatisfiable if and only if the empty clause is derived under 
resolution given θ (T) U  θ (C(a)). 
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Proof. As mentioned in [8], the structural transformation does not affect 
satisfiability, it is easy to see T and θ (T) are equisatisfiable. Since T is 
consistent as the known fact, θ (T) is also consistent. Since C is unsatisfi-
able, C does not admit any instance, i.e., C(a) is false. Hence θ (T) U  θ 
(C(a)) is inconsistent. According to the refutational completeness of reso-
lution, the empty clause can be derived. Similarly, we can prove that if the 
empty clause is derived for θ (T) U  θ (C(a)), C is unsatisfiable.  ■ 

We can also easily prove the following result. 
Theorem 2 Let T be a TBox and A be an ABox (either T or A can be 

empty). Let θ (T) and θ (A) be the resulting set of FOL formulae of T and A 
after the translation. Then T U A is inconsistent if and only if the empty 
clause is derived under resolution given θ (T) U  θ (A).  

5 The Algorithm to Generate Explanations 

Our approach uses a refutation graph [6] to reconstruct the resolution 
proof in order to support explanation. Generally speaking, a refutation 
graph is a graph whose nodes are literals (grouped together in clauses) and 
its edges connect complementary nodes/literals which correspond to the 
resolution steps in the resolution proof. In a refutation graph, complemen-
tary literals between input clauses are directly visible. We give the funda-
mental definition about refutation graphs as below. Further details can be 
found in [4]. The algorithm of transforming a resolution proof to its refuta-
tion graph is shown in Fig.1. 

Definition 5 A refutation graph is a quadruple G = (L; C; ML; K), 
where L is a finite set of literal nodes in G. C is a partition of the set of lit-
eral nodes. Its members are clause nodes in G. ML is a mapping from L to a 
set of literals. The set of links K is a partition of a subset of L. There are no 
pure literal nodes in a refutation graph, i.e., every literal node belongs to 
some link in K.  
 

Input: a resolution proof       Output: its corresponding refutation graph 
 

For all the steps in the resolution proof 
   For all the literals that are involved in a step 

            If its literal node does not exist 
  create its corresponding clause (literal) node and add it into the refutation graph 
        add a link between the literal nodes that are resolved (factored) together 
Return the refutation graph 
 

Fig. 1. The Transformation Algorithm.  
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The main idea of explanations based on the refutation graph is to start 
from a literal node (or nodes) and traverse the graph. After the traversal is 
completed, each clause node involved in each step is translated into an en-
try in an explanation list consisting of its source axioms in DL. After some 
clean-up, e.g., deleting duplicate line, this explanation list can be further 
transformed into natural language style explanations.  

The traversal algorithms of unsatisfiability reasoning can be described 
as follows: Start from the literal node corresponding to the unsatisfiable 
concept, follow the links to its complementary literal nodes Li, i = 1, …, n. 
For each of the literal nodes that are in the same clause node as Li, follow 
its untraversed link. Stop when there is no untraversed link left. The algo-
rithm to explain the inconsistency reasoning is similar to the unsatisfiabil-
ity case, except that the traversal will begin with one of the literal nodes 
involved in the first step of the resolution proof. 

The pseudo code of the algorithm is shown in Fig.2. It uses a stack, 
called SOT, which includes the literal nodes which are yet to be traversed. 

 
 
Input: a refutation graph      Output: an explanation list 

 
If it is an unsatisfiable problem 
   start from the unsatisfiable concept C 
   else start from a concept C involved in the first step of the resolution proof 
SOT ← the associated literal node of C  
For all the literal nodes Li in SOT 
   mark Li as “traversed” 
   put the corresponding DL axiom of Li into the explanation list 
   For all the links that are adjacent to Li  

      If  the link was created from a factoring step 
           mark the literal node at the opposite side of the link as “traversed” 
    else 
    For all the literal nodes Lk that in the same clause node as the opposite side of the link 

SOT  ← Lk 
   Remove Li from SOT 
Return the explanation list 

Fig. The Traversal Algorithm.  

Theorem 3 The unsatisfiability and inconsistency traversal algorithms 
are complete and can terminate with an explanation. 

Proof. Termination: In each step of the traversal, we decrease the num-
ber of literal nodes that remain untraversed, since once a literal node is 
traversed, it will not be traversed again. As the number of literal nodes in a 
refutation graph is finite, the traversal algorithm will terminate. 
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Completeness: The completeness in our case means that at the end of 
the algorithm, no literal node is left untraversed. That we cannot reach a 
blocked situation follows from the fact that every literal node in the refuta-
tion graph has a complementary literal node connected by a link, i.e., every 
literal node is reachable through other nodes. ■ 

6 Example  

To help understand the algorithms, we show an example KB as follows: 
 

            
  

After being fed into Racer, HappyPerson is reported to be unsatisfiable. 
We set KB to be as below and show it to be inconsistent. 

 
 

 
where a is a fresh individual.  
Since Axiom 1, 2, 3, 5 and 6 contain qualified concept expressions. But 

as the structural transformation does not either decrease the number of the 
clauses or simplify the explanations for 1, 3, 5 and 6, we only show how it 
is converted to FOL formulae based on structural transformation for axiom 
2. We introduce new names Q for this subconcept and get 

 

                       
By applying unit resolution to this clause set and by converting the reso-

lution proof to its refutation graph in our prototype system, we get the 
graph as shown in Fig.3.  
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Fig.3. The Refutation Graph of the Example. 

 
By applying the algorithm to explain unsatisfiable concepts, we get an 

explanation list as follows: 
 

          
 

It reads as: if a is a HappyPerson, then it can either be a Doctor or has a 
child which is Q (PhD and not Poor). First, if it is a Doctor, then all its de-
gree is MD and it is a Physician. Every Physician has a BS degree, how-
ever, BS is disjoint with MD. So there is a contradiction within the branch 
of Doctor. Secondly, if a has a child which is a PhD and not poor, since 
every child of a HappyPerson is Married and every married PhD is poor, 
then a's child must be poor, which is a contradiction. So a cannot be a 
HappyPerson. 
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7 Conclusions and Future Work 

In this paper, we presented a sound and complete algorithm based on reso-
lution proofs for explaining DL reasoning. We have implemented a proto-
type system based on the algorithm to explain unsatisfiability and inconsis-
tency queries w.r.t TBoxes/ABoxes in . This system uses Racer as the 
DL reasoner and Otter [18] as the resolution based ATP. As input the sys-
tem accepts problem descriptions in the KRSS syntax. All the components 
are implemented in Java. As experiments show, our approach is suitable 
for small knowledge bases but, without any further refinements, it would 
generate long and complex explanations. Besides, although there is a reso-
lution decision procedure based on the use of a particular selection func-
tion for  [5], which can decide satisfiability in ExpTime, with large 
and complicated examples, first-order resolution based provers will choke 
on such input, especially when considering to extend  to include num-
ber restrictions or transitive roles. To ensure that the first-order prover will 
finish, more sophisticated translations and resolution technique should be 
used. 
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