
An Ontology-based Approach to Software Comprehension
- Reasoning about Security Concerns

Yonggang Zhang, Juergen Rilling, Volker Haarslev

Computer Science and Software Engineering
Concordia University, Montreal, QC, Canada

{yongg_zh, rilling, haarslev}@cse.concordia.ca

Abstract
There exists a large variety of techniques to detect

and correct software security vulnerabilities at the
source code level, including human code reviews,
testing, and static analysis. In this article, we present a
static analysis approach that supports both the
identification of security flaws and the reasoning about
security concerns. We introduce an ontology-based
program representation that lets security experts and
programmers specify their security concerns as part of
the ontology. Within our tool implementation, we
support complex queries on the underlying program
model using either predefined or user-defined concepts
and relations. Queries regarding security concerns,
such as exception handling, object accessibility etc. are
demonstrated in order to show the applicability and
flexibility of our approach.

1. Introduction
Developers today not only develop but also inherit

systems that are intrinsically difficult to understand and
maintain because of their size and complexity, as well as
their evolution history [2, 3]. With applications that
become exposed to volatile environments with increased
security risks (e.g., distributed environments, web
centric applications, etc.), identifying these security
flaws in existing software systems becomes one of the
major activities in software maintenance phase.

In addition, software maintenance is a task not only
time consuming but also error prone. Changes made to
existing software systems may likely introduce new
security vulnerabilities that are typically caused by
“carelessness or lack of awareness about security
concerns” [14].

On top of various techniques to automatically
identify software vulnerabilities at the source code level,
manual code auditing is still considered a necessary
approach due to the fact that through manual auditing
one can identify security flaws that are otherwise
impossible to find automatically. However, manual

audits are significantly more expensive than automatic
analysis tools since programmers must first know what
the security flaw looks like and take time to understand
the code under review.

In this research, we present a novel ontology-based
program comprehension approach that allows security
experts, as well as programmers, to specify their
security concerns and identify security flaws based on
user-defined specifications. Using our approach,
auditors typically start with a hypothesis of what a
security flaw looks like, and then apply static code
reviewing to determine whether this security risk exists
in the code. The approach can be viewed as an iterative
comprehension process based on examining and refining
a hypothesis.

The remainder of the paper is organized as follows:
In section 2, we introduce background relevant to
ontology-based program comprehension. In section 3,
we introduce our SOUND tool and approach. Section 4
focuses on the use of our software ontology to support
reasoning about security concerns in the source code.
Section 5 discusses related work followed by
conclusions in section 6.

2. Ontology-based Program Comprehension
Model

There exists a significant body of research to model
program comprehension in terms of mental
representations and the process of creating them.
Bottom-up [1] theories consider that understanding a
program is constructed from source code reading and
then mentally chunking or grouping the statements or
control structures into higher level information, i.e. from
bottom up. Such information is further aggregated until
high-level abstraction of the program is obtained. Top-
down models [2], on the other hand, start the
comprehension process with a hypothesis concerning a
high-level abstraction, which then will be further refined,
leading to a hierarchical comprehension structure. The
understanding of the program is developed from the
confirmation or refutation of hypotheses.

However, it is unlikely that only one
comprehension model is exclusively used by software
engineers. It has been shown [3] that programmers often
switch between bottom-up and top-down models during
the comprehension process. In situations where the code
is unfamiliar to the programmer, a bottom-up model is
preferred; when knowledge of the program and
application domain is available, programmers tend to
adopt a top-down approach for the assimilation of their
program understanding [4].

Based on these models, various tools have been
developed to assist programmers during the
comprehension process. These tools range from
analyzing very low level source code entities such as
program dependencies graph or program slicing [5] etc
to tools that provide design level concepts such as
software architectures [7]. Common to all of these tools
is that they are trying to represent software in various
forms to facilitate the construction of mental models.

While these tools are often quite successful in
achieving a specific program comprehension task, they
typically lack flexibility in supporting other
comprehension tasks. Also, most of these tools continue
to exist in isolation. Software maintainers have to use
these comprehension tools independently from each
other, therefore requiring additional efforts in manually
integrating the results from the different tools [8].
Another major shortcoming of these tools is that
analysis techniques supported are often neither intuitive
nor flexible enough from a maintainer’s perspective to
provide the required support to create an appropriate
mental model. This is mainly because the foundation
models for these tools do not correspond closely to a
programmer’s own mental programming model or to
his/her expertise. Programmers will have to adjust their
comprehension strategy to the model provided by the
tools.

An ontology is a description of the concepts and
relationships that can exist in a domain [10]. In
particular, in software program comprehension, a
ontology consists of vary concepts from programming
languages and techniques such as class, method,
algorithm etc. as well as a set of roles (relationships
between concepts) characterize the relations between
entities occurring in the software program, such as
define, implement, etc. Given the fact that a mental
model may take many forms, but its content normally
constitutes an ontology [9], an ontology-based approach
to program comprehension is then a straight forward
technique to bridge the gap between software
representations and mental model.

In this paper, we present a new perspective of
program comprehension, in which we specify it as an
iterative process of concept recognitions and
relationship discoveries in source code (Figure 1). Such

a process typically starts with an initial mental ontology
that represents a programmer’s knowledge about the
programming and application domain. By reading
source code and documents, instances of concepts and
relationships are identified, and new concepts are
discovered from the software artifacts. The result of
each of these iterations therefore includes the identified
instances of concepts in the program, as well as a richer
ontology containing the newly discovered knowledge,
i.e. a better mental model (the ontology and its instances)
is constructed.

Technical Knowledge &
Domain Knowledge

Software
Artifacts

Source Code
Documents

Software
Artifacts

Source Code
Documents

Assimilation
Concept Recognition
Relation Discovery

Assimilation
Concept Recognition
Relation Discovery

Mental Model
(Ontology)

Mental Model
(Ontology)

Programmer

Figure 1 – Ontology-based program comprehension

Concept Recognition – One can consider the
following example, in which a programmer might start
with a simple ontology about the Java language. Such an
ontology might include concepts like method, variable
and modifier. During code/documentation review, the
programmer tends to first recognize instances of these
existing concepts, due to their familiarity. In situations
where further analysis is required, for example to study
the accessibility of source code entities, programmers
would use additional concepts, such as public method or
private variable, to analyze the source code.

In some cases, new concepts may be learned from
the source code or documents. For example, a design
document may state that a class is a façade class. For a
programmer who is not familiar with such a concept,
further consultation of the documents or analysis of the
source code would be required, to understand that the
façade class is the public access point of a component.
As a result, the newly learned concepts will be used to
enrich the ontology.

Relationship Discovery – The comprehension
process also includes discovering properties of
identified entities, i.e. their relations with other entities.
Simple relationships, such as a variable is defined in a
class or a method calls another method, can be
recognized instantly. More implicit relations can be
constructed from these simple relations. For example, a
class C1 uses another class C2 if either a variable defined
in C1 has the type C2 or a method defined in C1 accesses
methods or fields defined in C2.

Result – The result of the ontology-based program
comprehension process is an ontology that captures

adequate concepts and relationships required for a
particular comprehension task, as well as a set of source
code entities and their relations corresponding to an
instance of that ontology. The ontology can therefore be
considered as the programmer’s current mental model of
a program. Such an ontology forms the basis for the next
iteration of the program comprehension.

3. SOUND – an Ontology-based Program
Comprehension Tool

As part of this research, we have developed a tool
for the support of our ontology based program
comprehension model. Our SOUND (Software
Ontology for UNDerstanding) tool is an Eclipse Plug-in
that provides ontology management and reasoning
service integration for the Eclipse IDE (Figure 2).

JDT
Java Development

Tools

JDT
Java Development

Tools

Eclipse IDE

Workbench
Project Management

Workbench
Project Management

Core Ontology
Source Code

Core Ontology
Source Code

Software Ontology

Racer
Ontology Reasoner

Racer
Ontology Reasoner

Ontology
Management

Ontology
Management

Query/Reasoning
DLs, JavaScript

Query/Reasoning
DLs, JavaScript

SOUND Plug-in

Figure 2 – SOUND tool overview

The software ontology consists of a core source
code ontology and a set of user-defined concepts and
relations. The core ontology, which is extracted from
Eclipse, has a direct mapping to the Java source code.
The ontology management interface provides
functionalities such as defining concepts/relations,
specifying instances, and browsing the current ontology.
An ontology reasoner – Racer [11] is used to provide
reasoning services on the software ontology.

3.1 Description Logics and Racer
Introducing tool support for ontology-based

program comprehension benefits programmers during
the mapping of mental concepts to source code entities,
and it also allows users to take advantage of the existing
expressiveness of ontology languages and reasoners.
They allow users to construct complex concepts and
queries to derive implicit facts from the ontology.

In order to precisely characterize concepts and their
relations in our software ontology, an ontology language
with well-defined semantics is essential. Description
Logics (DLs) have been long regarded as standard

ontology languages. DL is also a major foundation of
the recently introduced Web Ontology Language (OWL)
recommended by the W3C [20]. DLs, a family of
knowledge representation formalisms, represent the
knowledge of an application domain by first defining
the relevant concepts of the domain and then using these
concepts to specify properties of objects and individuals
occurring in the domain [12].

Basic elements of DLs are atomic concepts and
atomic roles, which correspond to unary predicates and
binary predicates in First Order Logic. More complex
concepts are then defined by combing basic elements
with several concept constructors. For example, having
atomic concepts in Java language, such as Method and
Exception, as well as a atomic role throw, which
indicates a method may throw an exception, a new
concept MethodThrowException can be then defined as –

MethodThrowException ≡ Method ⊓ ∃throw.Exception

For a more complete and detailed coverage of DLs,
we refer the reader to [12].

Combined with state-of-the-art ontology reasoners,
such as Racer [11], various kinds of queries concerning
the software ontology can be answered. Racer is a
knowledge representation system that has been highly
optimized for very expressive Description Logics.
Typical reasoning services (types of queries) [13]
provided by Racer includes –

• Concept consistency – is the set of instances
described by a given concept empty?

• Concept subsumption – is there a subset
relationships between the set of instances described
by two concepts?

• Ontology consistency – find all inconsistent
concepts names in the ontology.

• Classification – determine all the subsumption
relationship between concepts in the ontology.

Given a set of facts in the domain as instances of
concepts and roles in ontology, Racer can answer
following types of queries –

• Consistency checking – are the restrictions in the
ontology too strong with respect to the facts?

• Instance checking – is a specified individual in the
domain an instance of a given concept description?

• Instance retrieval – retrieve all instances of a given
concept description.

• Tuple retrieval – retrieve tuples of instances that
satisfy given constraints.

• Instance realization – compute the most specific
concept of an individual.

• etc.

3.2 Core Ontology
Having a sufficiently expressive ontology language,

such as Description Logics in our case, one can design a
core ontology to capture major concepts of Object
Oriented Program languages. This core ontology can
then be further extended with some Java specific
concepts and roles. Figure 3 shows major concepts used
in our core ontology.
The use of DLs allows us to formally characterize
subsumption relationship between concepts. A concept
C is considered as a sub-concept of D if all instances of
C are also instances of D. Therefore, if an individual is
specified as a Method in our ontology, it will be
automatically recognized as a Member, and further, as a
SourceObject.

Figure 3 – Concept names in core ontology

Within our core ontology many roles are also
defined to specify the relationships between various
concepts. Part of the role names are shown in Table 1

Table 1 – Role names in core ontology

Role Name Description
definedIn SourceObject A is defined in another

SourceObject B
hasSuper Class A has super class Class B
call Method A calls Method B
read Method A read Variable B
write Method A write Variable B
readField Method A read a Field B, sub-role or read
writeField Method A write a Field B, sub-role of write
hasModifier SourceObject A has a Modifier B – such as

public, protected, private, etc.
throws Method A throws an Exception B

We further enriched the vocabulary by providing
for each role in our ontology also its corresponding
inverse. For example, the inverse role of hasSuper is
hasSub, i.e. if class C1 hasSuper class C2, then C2 also
hasSub class C1. Similarly, if method M write a variable
V, then V is writtenBy M.

 One of the advantages of using the Racer system is
the ability to define transitive roles. If a role R is defined
as a transitive role, and if (a,b)∈R and (b,c)∈R are
specified, then (a,c)∈R also holds. Transitive roles are
especially useful for specifying part-of relation between
source code elements (through definedIn role),
inheritance relation between classes (through hasSuper
role), and indirect calling relations (through indirectCall
role).

It is also possible to define subsumption
relationships between roles. If role R is a sub-role of S,
then if (a,b)∈R, then (a,b)∈S also holds. For example, in
our core ontology, readField is a sub-role of read, let M
and F are instance of Method and Field respectively, and
if relation (M,F)∈readField is discovered, then (M,F)∈read
will be automatically recognized by Racer.

 Concepts in the core ontology typically have a
direct mapping to source code elements, and thus
instances of these concepts can be automatically
discovered by a Java compiler provided by Eclipse – the
JDT (Java Development Tools). Instances of roles are
obtained by static analysis of source code. The
advantages of static the source code analysis over
dynamic analysis include its light weight and its
claiming about all possible program executions rather
than being limited to several test cases [14]. However,
one major drawback is that many relations discovered
are only potential relations. For example, static analysis
might report a method calls another method based on the
source code, but that invocation might never happen
because of the program’s run-time configuration.

3.3 Query Interface
As part of our tool, users can use a expressive query

language provided by Racer – nRQL[19] to retrieve
instances of concepts and roles in the ontology. An
nRQL query uses arbitrary concept and role names in
the ontology to specify the properties of the result, in
which query variables can be used to bind to instances
that satisfy the query.

However, the use of nRQL is still much restricted to
users with high mathematical background because
Description Logics formulae, although comparatively
straightforward, are still difficult for programmers to
understand and even more difficult to create. To bridge
this gap between practitioners and Description Logics
systems, we have utilized a script language – JavaScript

as the query language, and provided a set of build-in
functions and classes in the JavaScript interpreter
Rhino* to simplify user querying on the software
ontology.

Some of the built-in functions for formulating
complex concepts are summarized in Table 2, in which
C and R are string parameters that denote concept and
role names respectively.

Table 2 – Build-in functions
AND (C1, C2, …) conjunction of C1, C2, …
OR(C1, C2, …) disjunction of C1, C2, …
NOT(C) negation of C
EXIST(R, C) concepts that exist a relation R

whose filler is type of C
KNOWN(R) concepts that have explicit specified

relation R
Users can construct their own concepts using these

build-in functions. The concept MethodThrowException,
discussed in section 3.1, can for example be specified as

AND(“Field”, EXIST(“throw”, “Exception”))

Two classes – Query and Result are provided to
assist users in composing queries and manipulating
results. Table 3 shows the major functions provided by
the Query class.

Table 3 – Methods of build-in class Query

declare(var1, var2, ….)
Declare query variables in the query, which will be bound
to instances that satisfy the restriction.

restrict(var, C)
Specify a concept restriction to the query result – the
query variable has to be an instance of C

restrict(var, R, object)
Specify a relation restriction to the query result – the
query variable has an R relation with the object. The
object can be either a variable or an instance.

not_concept(var, C)
Specify a negated concept restriction – the query variable
must NOT be an instance of C

no_relation(var, R, object)
Specify a negated relation restriction – the query variable
has NO explicit R relation with the object.

retrieve(var1, var2, ….)
Specify the result will only include instances bound to
specified query variables

The typical procedure of querying the ontology is as
follows: (1) query variables are declared, (2) restrictions
are specified, and (3) queries are submitted to the built-
in ontology object that represents the software ontology.
The query results are a set of tuples that satisfy the
specified restrictions. An alternative to defining a new
concept MethodThrowException is the following query
script that directly retrieves all methods that may throw
exceptions –

* available online at http://www.mozilla.org/rhino/

var method_throw_exception = new Query();
method_throw_exception.declare(“M”, “E”);
method_throw_exception.restrict(“M”, “Method”);
method_throw_exception.restrict(“M”, “Exception”);
method_throw_exception.restrict(“M”, “throw”, “E”);
method_throw_exception.retrieve(“M”, “E”);
var result = ontology.query(method_throw_exception);

By introducing the scripting language, users can
benefit from both the declarative semantics of
Description Logics as well as the fine-grained control
ability of procedural languages. It must be noted that
users are not limited to the set of predefined scripts; they
can extend the scripting library depending on the
comprehension task and the vocabulary of the ontology.
For example. the following script

for(i = 0; i < result.size(); i++){
 out.println(“Method “ + result.get(i, “M”) + “ throws “ + result.get(i, “E”);
}

will print out a detailed report of the above query result.

In Figure 4, we illustrate a typical query-answer
scenario using our SOUND tool.

Figure 4 – The SOUND scripting and querying interface

4. Reasoning about Security Concerns
In what follows, we discuss how our ontology-

based comprehension approach can be applied to
provide programmers or security experts with the ability
to query and reason about different security concerns.

4.1 Object Accessibility
Typical Object Oriented Programming languages

provide object modifiers such as public, private, and
protected to restrict the accessibility of objects and
method. However, improper use of these access
modifiers may cause security risks. For example,

making class variables (fields) public may cause
vulnerable data exposure and may cause undetermined
behaviors if the public field has not been initialized.

Within our ontology, we provide a set of atomic
concepts and roles to facilitate querying and reasoning
about such security concerns. The following scenario
illustrates how our approach can facilitate security
experts or programmers in identifying potential
vulnerabilities caused by unexpected object accessibility.

The user first creates a basic scenario for the code
auditing task by defining a public field as a field that has
public modifier. This new concept, for example called
PublicField, can be defined in our tool by using the
native Description Logic formula:

PublicField ≡ Field ⊓ ∃ hasModifier.PublicModifier

or alternatively, by using our scripting interface:

var SecurityConcern1 = new Query();
SecirityConcern1.declare(“F”, “MP”);
SecurityConcern1.restrict(“F”, “Field”);
SecurityConcern1.restrict(“MP”, “PublicModifier”);
SecurityConcern1.restrict(“F”, “hasModifier”, “MP”);
SecurityConcern1.retrieve(“F”);
var result = ontology.query(SecurityConcern1);

In this scenario, allowing public and non-final fields
in the code (indicating value of the field can be modified
out side the class it defined) might be a security risk.
Therefore, SecurityConcern1 can be further refined by
adding the following statements:

SecurityConcern1.restrict(“MF”, “FinalModifier”);
SecurityConcern1.no_relation(“F”, “hasModifier”, “MF”);

In order to extend the query for more specific tasks,
such as: Retrieve all public data of Java package
“user.pkg1” that may potentially be accessed (read or
write) by package “user.pkg2”, users can further refine
the previous query by adding –

SecurityConcern1.restrict(“F”, “definedIn”, “user.pkg1”);
SecurityConcern1.restrict(“M”, “Method”);
SecurityConcern1.restrict(“M”, “definedIn”, “user.pkg2”);
SecurityConcern1.restrict(“M”, “access”, “F”);

It should be noted that fields or methods in Java are
defined in classes, and classes are defined in packages.
The ontology reasoner will automatically determine the
transitive relation definedIn between the concepts
Field/Method and Package. In addition, read and write
relations between method and field are modeled in our
ontology by the readField and writeField roles, which are
sub-role of access. The ontology reasoner is also capable
of providing automatically reasoning on this kind of
classification.

4.2 Exception Handling
Exceptions correspond to events that can occur

during the execution of a program that disrupt the
normal flow of instructions. In Java, when an error

occurs within a method, the method may throw an
exception object that contains run-time information
associated with the error. The caller method can then
catch that exception and perform recovering from the
error. While exception handling mechanisms have
greatly simplified error management, security concerns
still may arise – an unhandled exception may cause
programs to fail. Even worse, if such an exception
occurs during file access, it may cause unexpected data
exposure.

In Java, a method may arbitrarily throw a
RuntimeException in its sub classes without necessarily
being caught. For example, the get method of
java.util.ArrayList in the Java JDK might throw an
IndexOutOfBoundsException without forcing the caller
method to catch that exception. Although runtime
exceptions rarely occur, there are potential situations in
particular in multi-thread programs, when an object in
one thread accesses the ArrayList object and at the same
time its content may be modified by another thread.
Therefore, this situation might lead to an unhandled
exception. In the following example, we illustrate how
our tool can be used to identify these types of problems
caused by unhandled exceptions.

The following query retrieves all methods that may
throw a RutimeException object:

var SecurityConcern2 = new Query();
SecurityConcern2.restrict(“M”, “Method”);
SecurityConcern2.restrict(“E”, “Exception”);
SecurityConcern2.restrict(“M”, “throw”, “E”);
SecurityConcern2.restrict(“E”, “hasSuper”, “java.lang.RuntimeException”);
SecurityConcern2.retrieve(“M”);
var result = ontology.query(SecurityConcern2);

The first two restrictions in the above
SecurityConcern2 query state that M and E are a
Method and an Exception respectively. The third
restriction states that method M throws an Exception E,
and the last restriction expresses that E is a subclass of
java.lang.RuntimeException. It has to be noted that the
hasSuper role in our ontology represents the inheritance
relation between two classes. The transitivity of this role
will be automatically handled by the ontology reasoner.

For the next level of analysis, we restrict the query
further to only retrieve those methods that may invoke
method M, we can add

SecurityConcern2.restrict(“Caller”, “Method”);
SecurityConcern2.restrict(“Caller”, “invoke”, “M”);

and change the retrieval statement to –

SecurityConcern2.retrieve(“Caller”, “M”);

More interesting results can be obtained by using
the Negation As Failure (NAF) semantics provided by
nRQL. For example, in order to ensure all runtime
exception thrown by M are handled (caught) by its
Caller, we could add one new restriction –
SecurityConcern2.no_relation(“Caller”, “catch”, “E”);

This restriction will return the complementary
(NAF) of Callers that catch exception E. In combination
with other restrictions, the ontology reasoner will then
retrieve each method that does not catch runtime
exceptions a caller may throw. It also has to be pointed
out that by applying negated restrictions potential
performance issue may be introduced, thus their
frequent use are not encouraged [19].

4.3 Security Enforcement
Many security flaws are preventable through

security enforcement. Common vulnerabilities such as
buffer overflows, accessing un-initialized variables, or
leaving temporary files in the disk could be avoided by
programmers with strong awareness of security
concerns.

In order to deliver more secure software, many
development teams have guidelines for coding practice
to enforce security. Our tool supports developers and
security experts to enforce or validate whether these
programming guidelines are followed. For example, to
prevent access to un-initialized variables, a general
guideline could be: all fields must be initialized in the
constructors. The following query can retrieve all
classes that did not follow this specific guideline.

SecurityConcern3.restrict(“F”, “Field”);
SecurityConcern3.restrict(“I”, “Constructor”);
SecurityConcern3.restrict(“C”, “Class”);
SecurityConcern3.restrict(“F”, “definedIn”, “C”);
SecurityConcern3.restrict(“I”, “definedIn”, “C”);
SecurityConcern3.no_relation(“I”, “writeField”, “F”);
SecurityConcern3.retrieve(“C”, “I”);

In Java, all classes without a constructor will have a
no-argument constructor by default. These classes
therefore can be initialized by any part of the program.
A good security enforcement guideline is that each class
has to provide at least one constructor. These classes
without any constructors can be retrieved by the
following script

SecurityConcern4.restrict(“C”, “Class”);
SecurityConcern4.not_concept(“C”, KNOWN(“hasConstructor”));
SecurityConcern4.retrieve(“C”);

The next example demonstrates how our tool can
enforce the following security practice: all methods
should take the responsibility to close the file(s) they
have opened. Such a guideline can be enforced by
defining two new concepts such as FileOpenMethod and
FileCloseMethod. These new concepts correspond to
methods that are used to open or close files. Those
methods have to be specified as instances of two
concepts respectively. In a typical Java program, such
methods include:

FileOpenMethod = {
java.io.File.createNewFile(),

java.io.File.createTempFile(),
java.io.FileInputStream.FileInputStream(), …}

and

FileCloseMethod = {
java.io.FileInputStream.close(),
java.io.Writer.close(), …}.

Based on these new two concepts, the following
query script shown in SecurityConcern5 can be applied
to detect potential methods that only invoke a file open
method, but not a corresponding file close method.

SecurityConcern5.restrict(“M”, “Method”);
SecurityConcern5.restrict(“O”, “FileOpenMethod”);
SecurityConcern5.restrict(“C”, “FileCloseMethod”);
SecurityConcern5.restrict(“M”, “Invoke”, “O”);
SecurityConcern5.no_relation(“M”, “Invoke”, “C”);
SecurityConcern5.retrieve(“M”);

SecruityConcern5 also exposed some of the
limitations of our ontology-based approach. At the
current stage, the ontology language lacks the ability to
represent temporal properties in the domain such as
sequence of actions. This might lead to situations where
multiple occurrences of a relation are only captured
once. In the SecurityConcern5 (file open/close) query,
methods that invoke file open methods twice but call the
corresponding close method only once are also returned.
Furthermore, because our ontology is based on static
source code analysis, the query cannot ensure the file
open/close methods are actually invoked or the proper
sequence (first open then close) is followed during
execution.

However, from a code auditing and program
comprehension perspective, our tool still provides
valuable information to help auditors or security experts
to identify flaws with regarding to specified security
concerns.

5. Related Works
Existing research on applying Description Logics or

formal ontology in software engineering have been
addressed in early works of the LaSSIE [15] and CBMS
[16] systems. Compared with our approach, these
systems are however much more restricted by the
expressiveness of their underlying ontology languages.
In addition, these systems also lack the support of
optimized DL reasoners, such as Racer in our case.

 Unlike previous works that utilize only informal
ontologies for tool integration [6] and software artifact
organization [10], a formal ontology allows us to bring
automated reasoning through DL theorem provers to the
field of program comprehension, which is a significant
improvement for the software engineering.

Various static analysis approaches for detecting
security vulnerabilities have been reviewed in [16],
ranging from lexical, syntactical, and even binary code

flaw searching tools to more advanced model
verification approaches. Techniques for source code
querying and searching are typically limited by their
expressiveness and do not provide reasoning capabilities.
Other static analysis approaches include program
verifiers that are normally very expensive and difficult
to use [14]. Our approach benefits from both the
expressiveness of the ontology language and the
reasoning capabilities of reasoner. The ease-of-use issue
is also addressed by providing a scriptable and flexible
query language. Our approach distinguishes itself from
other techniques by facilitating a representation that
attempts to match closely the mental model a
programmer creates during a comprehension task with
the underlying source code model used to facilitate tool
support.

6. Conclusion and Future Work
During security analysis of a complex system,

rigorous code review can only reduce the number of
flaws, not eliminate every single one [15]. Currently,
programmers are lacking tool support that not only can
detect software vulnerabilities but also facilitate
reasoning about their specific security concerns. In this
paper, we have presented a novel approach in which
source code under review is represented by an ontology
model, and security concerns can be specified as part of
this ontology. Through integration with a state-of-the-art
ontology reasoner, security flaws can be identified and
more implicit facts concerning the flaws can be derived.
It is in particular the flexibility and adaptability of our
approach that support an iterative comprehension
process in which security concerns in the ontology can
be further enriched and reused later for specific tasks.

Several limitations of our ontology-based approach
are also discussed, including the missing support for the
representation of temporal properties of the domain and
potential performance issue on very complex queries.
These drawbacks will be addressed in our future work.
We also plan to provide a more comprehensive set of
predefined queries to capture knowledge of security
experts.

REFERENCES
[1] B. Shneiderman, “Software Psychology: Human Factors

in Computer and Information Systems”. Winthrop
Publishers Inc. 1980.

[2] R. Brooks, “Towards a theory of the comprehension of
computer programs”. International Journal of Man-
Machine Studies, 18:543-554, 1983.

[3] A. von Mayrhauser and A. M. Vans, “Program
comprehension during software maintenance and
evolution”. IEEE Computer, pp 44-55, Aug. 1995.

[4] S. Letovsky, “Cognitive processes in program
comprehension”. In Empirical Studies of Programmers,

pp58-79, Ablex Publishing Corp. 1986.
[5] M. Weiser, “Program Slicing”, IEEE Transactions on

Software Engineering, 10(4):352-357, June 1984.
[6] D. Jin and J. R. Cordy. “A Service Sharing Approach to

Integrating Program Comprehension Tools”. In
Proceedings of the European Software Engineering
Conference, Helsinki, Finland, 2003.

[7] M. Shaw and D. Garlan, “Software Architecture:
Perspectives on an Emerging Discipline”, Prentice Hall
Publisher, 1996.

[8] J. Ebert, B. Kullbach, and A. Winter. “GraX – An
Interchange Format for Reengineering Tools”. In Proc.
Of the 6th Working Conference on Reverse
Engineering, 1999.

[9] P. N. Johnson-Laird. “Mental models: towards a
cognitive science of language, inference, and
consciousness”. Cambridge, Mass. : Harvard University
Press, 1983.

[10] T. R. Gruber. “Toward principles for the design of
ontologies used for knowledge sharing”. Presented at
the Padua workshop on Formal Ontology, 1993.

[11] V. Haarslev and R. Möller, “Description of the RACER
System and its Applications”, In proceedings of the
International Workshop on Description Logics,
Stanford, USA, 2001.

[12] F. Baader et al., “The Description Logic Handbook”,
Cambridge University Press, 2003.

[13] R. Möller and V. Haarslev, “Description Logics for the
Semantic Web: Racer as a Basis for Building Agent
Systems”, In: KI – Zeitschrift für Künstliche Intelligenz
(special issue on Semantic Web), No.3, July 2003.

[14] D. Evans and D. Larochelle, “Improving Security Using
Extensible Lightweight Static Analysis”, IEEE
Software, Vol 19, No. 1, Jan/Feb 2002.

[15] U. Lindqvist and E. Jonsson, “A Map of Security Risks
Associated with Using COTS”, IEEE Computer, Vol
31, Issue 6, June 1998.

[16] B. Chess and G. McGraw, “Static Analysis for
Security”. IEEE Security & Privacy, Vol2, No. 6, Nov
2004.

[17] P. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W.
Ballard, “LaSSIE: a Knowledge-based Software
Information System”, Communications of the ACM,
34(5):36–49, 1991.

[18] C. Welty, “Augmenting Abstract Syntax Trees for
Program Understanding”, Proceedings of The 1997
International Conference on Automated Software
Engineering. IEEE Computer Society Press. P. 126-133.
November, 1997.

[19] V. Haarslev, R. Möller, and M. Wessel, “Querying the
Semantic Web with Racer + nRQL”, In Proc. of the KI-
2004 International Workshop on Applications of
Description Logics (ADL'04), Ulm, Germany,
September 24, 2004.

[20] OWL Web Ontology Language Reference, W3C
Recommendation, 10 February 2004, URL:
http://www.w3.org/TR/owl-ref/

