
An Ontology-based Approach for Traceability

Recovery

Yonggang Zhang, René Witte, Juergen Rilling, Volker Haarslev

Department of Computer Science and Software Engineering

Concordia University, Montreal, Canada

{yongg_zh, rwitte, rilling, haarslev}@cse.concordia.ca

Abstract.

Traceability links provide support for software engineers in understanding the

relations and dependencies among software artifacts created during the software

development process. In this research, we focus on re-establishing traceability links

between existing source code and documentation to support reverse engineering. We

present a novel approach that addresses this issue by creating formal ontological

representations for both the documentation and source code artifacts. These

representations are then aligned to establish traceability links at the semantic level. Our

approach recovers traceability links by utilizing the structural and semantic information

in various software artifacts and the linked ontologies are also supported by ontology

reasoners to infer implicit relations among these software artifacts.

Keywords: Traceability, Reverse Engineering, Ontology, Text Mining

1. Introduction

Traceability links help software engineers understand the relations and dependen-

cies among various software artifacts. However, it is a well known fact that even in

organizations and projects with mature software development processes, software

artifacts created as part of these processes end up to be disconnected from each other

[1,2]. This lack of traceability among software artifacts is caused by several factors,

including: (1) the fact that these artifacts are written in different languages (natural

language vs. programming language); (2) they describe a software system at different

abstraction levels (design vs. implementation); (3) the processes applied within an

organization that do not enforce maintenance of existing traceability links; and (4) a

lack of adequate tool support to create and maintain traceability.

 The missing traceability among software artifacts becomes a major challenge for

reverse engineering activities. As a result, during the reverse engineering of existing

software systems, reverse engineers have to spend a large amount of effort on synthe-

sizing and integrating information from various information sources to establish links

among these artifacts. The cost associated with this manual effort is the main motiva-

tion for existing research in providing automatic assistance in establishing and main-

taining traceability links among software artifacts [1].

2 Yonggang Zhang, René Witte, Juergen Rilling, Volker Haarslev

Software design documentation and source code are two of the major software arti-

facts typically used as part of reverse engineering. Existing source-document trace-

ability research [2, 3] mainly focuses on connecting documents and source code using

Information Retrieval (IR) techniques. However, these approaches typically ignore

structural and semantic information that can be found in both documents and source

code, limiting therefore both their precision and applicability.

In this paper, we present a novel approach that explicitly includes structural and

semantic information integration, by providing an ontological representation for both

types of software artifacts – source code and documentation. Instead of using simple

IR, we developed a Text Mining (TM) system for semantically analyzing documents.

The discovered concepts and concept instances from both source code and documents

are used to establish the links between these two software artifacts. In addition, the

formal ontological representation also allows us to take advantage of automated rea-

soning services provided by ontology reasoners to infer implicit relations (links) be-

tween these two types of artifacts.

Our research is significant for several reasons. Firstly, software artifacts other than

source code, such as documentation, contain rich semantic information that is not

used by existing reverse engineering tools. Introducing an ontological representation

for software documentation enables us to utilize Natural Language Processing (NLP)

techniques to “understand” parts of the semantics conveyed by these artifacts and to

establish additional traceability links among these artifacts.

Secondly, the uniform ontological representation for both source code and docu-

mentation allows us to share common concepts between different resources, easing

the integration of information by allowing for the recovery and establishment of

traceability links among documentation and source code artifacts.

Finally, representing software artifacts in a formal ontology allows programmers to

reason about various implicit relations between software artifacts. Taking advantage

of existing ontology-based knowledge representation techniques such as Description

Logics [4] and ontology reasoners [5], users can define new concepts and roles (types

of relations) for specific reverse engineering tasks and query the ontology using either

the pre- or user-defined vocabulary.

The remainder of the paper is organized as follows: in Section 2, we provide the

background of our research, including formal ontologies and text mining techniques.

Section 3 presents our ontology-based reverse engineering environment, which has

been utilized to provide ontological representations for both source code and docu-

mentation. In Section 4, a detailed discussion concerning recovering and maintaining

the traceability links between source code ontology and documentation ontology is

given, followed by an initial evaluation of our research in Section 5. Related work is

discussed in Section 6, and conclusions and future work are presented in Section 7.

 An Ontology-based Approach for Traceability Recovery 3

2. Background

In this section, we introduce the background of our research, including ontologies

and their formalisms – Description Logics, as well as text mining techniques and

ontology population approaches.

2.1 Ontology and Description Logics

Ontologies are often used as a formal and explicit way of specifying the concepts

and relationships in a domain of discourse. Meanwhile, Description Logics (DL) [4],

as a family of Knowledge Representation formalisms, has been long regarded as a

standard ontology language. DL is also a major foundation of the recently introduced

Web Ontology Language (OWL) recommended by the W3C [6]. DL represents the

knowledge of a domain by first defining the relevant concepts of the domain in a

taxonomy, and then using these concepts to specify properties of individuals occur-

ring in the domain. The use of DL allows us to formally characterize subsumption

relationships between concepts: A concept C is considered a sub-concept of D if all

instances of C are also instances of D.

Basic elements of DL are atomic concepts and atomic roles, which correspond to

unary predicates and binary predicates in First Order Logic. Complex concepts are

then defined by combining basic elements with several concept constructors. For

example, in the domain of software design technique and documentation structure,

having atomic concepts such as DesignPattern and Paragraph, as well as an atomic role

contains that describes a relation between these two concepts, a new concept Design-

PatternDoc can then be defined by a conjunction constructor and existential qualifier:

DesignPatternDoc ≡ Paragraph ⊓ ∃ contains.DesignPattern

Individuals existing in the domain and their relations can be specified as instances

of their corresponding concepts and roles. For example, the following DL expressions

define p as a paragraph instance, abstract_factory_pattern as a design pattern in-

stance, and the body of p contains abstract_factory_pattern.

p:Paragraph, abstract_factory_pattern:DesignPattern, (p, abstract_factory_pattern): contains

Having DL as the specification language for a formal ontology enables the use of

reasoning services provided by DL-based knowledge representation systems. Our

Racer system [5] is an ontology reasoner that has been highly optimized to support

very expressive DLs. Typical services provided by Racer include terminology infer-

ences (e.g., concept consistency, subsumption, classification, and ontology consis-

tency) and instances reasoning (e.g., instance checking, instance retrieval, tuple re-

trieval, and instance realization). For example, given the above concept definition of

DesignPatternDoc, as well as the assertions about instance p and ab-

stract_factory_pattern, the ontology reasoner can automatically infer that p is also an

instance of DesignPatternDoc.

For a more complete coverage of DLs and Racer, we refer the reader to [4, 5].

4 Yonggang Zhang, René Witte, Juergen Rilling, Volker Haarslev

2.2 Text Mining and Ontology Population

Text Mining (TM) is commonly known as a knowledge discovery process that

aims to extract non-trial information or knowledge from unstructured text. Unlike

Information Retrieval (IR) systems, TM does not simply return documents pertaining

to a query, but rather attempts to obtain semantic information from the documents

themselves, using techniques from Natural Language Processing (NLP). For exam-

ple, our TM subsystem obtains information about individual software entities men-

tioned in the documents, like the architecture, its components, and relationships with

packages or classes. These so-called Named Entities (NEs) are exported into the

documentation ontology, which can then be loaded into a visualization tool or a rea-

soning system like Racer.

We implemented our Text Mining subsystem based on the GATE (General Archi-

tecture for Text Engineering) framework [7], one of the most widely used NLP tools.

Within the text mining process, we make use of a number of standard NLP tech-

niques. These include first dividing the textual input stream into individual tokens

with a Unicode tokeniser, using a Sentence Splitter to detect sentence boundaries and

running a statistical Part-of-Speech (POS) tagger that assigns labels (e.g., noun, verb,

and adjective) to each word. Larger grammatical structures, Noun Phrases (NPs) and

Verb Groups (VGs), are created based on these tags using chunker modules.

Text mining results are exported by instantiating a pre-modeled ontology in a so-

called ontology population step. This facilitates linking results from document analy-

sis (represented by ontology instances) with source code analysis results (which are

also stored in an ontology). Details on this step are provided in Section 3.2.2.

An example system for ontology population from natural language texts is the KIM

platform described in [20]. For more details on these steps, we refer the reader to [7]

and the GATE user's manual.

3. Ontological Representation for Software Artifacts

Software artifacts such as source code or documentation typically contain knowl-

edge that is rich in structural and semantic information. This information is not used

by existing IR-based traceability research [2, 3]. On the other hand, formal ontologies,

as the successor of semantic networks, have been long regarded as standard tech-

niques to capture semantics in a domain of discourse. Providing uniform ontological

representations for various software artifacts enables us to utilize semantic informa-

tion conveyed by these artifacts and to establish their traceability links at semantic

level. In this section, we introduce our SOUND program comprehension environment

[8], which provides ontological support for various software maintenance tasks.

3.1 Overview

In order to utilize the structural and semantic information in various software arti-

facts, we have developed an ontology that captures major concepts and relationships

in the software domain. An ontology-based program comprehension environment –

 An Ontology-based Approach for Traceability Recovery 5

SOUND (Software Ontology for UNDerstanding) [8] has been developed to extract

concept instances and their relations from source code and documents. The SOUND

environment facilitates reverse engineers in both discovering concepts and relations

within a software system, as well as automatically inferring implicit relations among

different artifacts (Figure 1).

Source Code OntologySource Code Ontology

Software Ontology

Racer – Ontology ReasonerRacer – Ontology Reasoner

Documentation OntologyDocumentation Ontology

Text Mining SystemText Mining System

Eclipse IDE

Query Interface
nRQL/Javascript

Query Interface
nRQL/Javascript

Ontology
Management

Ontology
Management

SOUND Plug-in
Ontology Browser

Document Navigator

Ontology Browser
Document Navigator

Figure 1 – Overview of SOUND Environment

Instances of concepts and roles in the software ontology can be populated by our

Eclipse plug-in or text mining system. The discovered instances from different

sources can be automatically linked through ontology alignment [9]. Based on the

software ontology, users can define new concepts/instances for particular reverse

engineering tasks through an ontology management interface. The ontological reason-

ing services within the SOUND environment are provided by our ontology reasoner –

Racer [5].

3.2 Software Ontology

The software ontology in our system consists of two sub-ontologies: 1) The source

code ontology represents the syntactic and semantic information of source code; 2)

the documentation ontology represents semantic information extracted from software

documentation.

3.2.1 Source Code Ontology

The source code ontology has been designed to formally specify major concepts of

Object-Oriented Programming languages. In our implementation, this ontology is

further extended with additional concepts and roles needed for some specific lan-

guages (in our case, Java). Table 1 shows part of the taxonomy of the source code

ontology.

6 Yonggang Zhang, René Witte, Juergen Rilling, Volker Haarslev

Within this ontology, various roles are defined to characterize the relationships

among concepts. For example, two instances of SourceObject may have a definedIn rela-

tion indicating one is defined in the other; or an instance of method may read an in-

stance of Field indicating the method may read the field in the body of the method.

Using DL, if a role R is defined as a transitive role, and if instances of the role

(a,b)∈R and (b,c)∈R are specified, then (a,c)∈R is also implied. Transitive roles are espe-

cially useful for specifying part-of relations between source code entities (through

definedIn role), inheritance relations between classes (through hasSuperType role), and

indirect calling relations (through indirectCall role).

Table 1 – Concept Names in the Source Code Ontology

Concept Name Description and Examples

Thing everything, top concept

JavaThing things in Java

SourceThing things in source code

SourceAction actions in source – declaration, invocation, etc.

SourceObject objects in source

Package Java packages – java.lang

SourceFile Java source files – String.java

Class Java classes – String

Comment inline comments – /**…*/

Variable variables – System.out, temp

Field class variable – System.out

LocalVariable local variable – temp

Member class member

Field class variable – System.out

Method class method – print(…)

Type types in Java – int, float, String

PrimaryType primary types in Java – int, …

Class abstract types – String

Concepts in the source code ontology typically have a direct mapping to source

code entities, and thus instances of these concepts can be automatically recognized by

our SOUND plug-in, by utilizing the JDT compiler provided by Eclipse. The SOUND

plug-in also identifies instances of roles (i.e., relations between source code entities)

by statically analyzing the source code.

3.2.2 Documentation Ontology

The documentation ontology consists of a large body of concepts that are expected

to be discovered in software documents. These concepts are based on various pro-

gramming domains, including programming languages, algorithms, data structures,

and design decisions such as design patterns and software architectures.

 An Ontology-based Approach for Traceability Recovery 7

OntologyOntology

TextText

GATE

Named Entity
Transducer

Named Entity
Transducer

JAPE GrammarsJAPE Grammars

OntogazetteerOntogazetteer

Gazetteer listsGazetteer lists

Named Entities

<?xml ……………..
….
………>

<?xml ……………..
….
………>

XML

<…………………>
<rdf:RDF………….
………………..
………>

<…………………>
<rdf:RDF………….
………………..
………>

OWL

WebWeb

GrOWLGrOWL

RacerRacer

Figure 2 – Text Mining and Ontology Population Process

The documentation ontology governs the identification of relevant named entities.

With each concept in the ontology, a gazetteer list of terms is connected, which al-

lows an OntoGazetteer NLP component to semantically tag individual words in the

document, linking them to one (or multiple) point(s) in the ontology. Complex named

entities can then be detected in another step using a cascade of finite-state transducers

implementing custom grammars written in the JAPE language, which is part of

GATE. For example, we can find through the OntoGazetteer that the word layer can

be part of an architectural description. The NP analysis step will mark up the text

fragment the controller layer as a single noun phrase, with layer being the head noun

and controller a modifier, specifying exactly what layer is meant. By combining the

syntactical with the semantic information, we can detect named entities, which corre-

spond to ontology concepts. In another step, we determine relationships between

detected entities, e.g., class belongs_to layer. This is again achieved with a combina-

tion of two techniques: A number of pre-defined patterns are detected using additional

JAPE grammar rules. Additionally, we compute predicate-argument structures using

the SUPPLE parser that allow us to determine subject-object-predicate relationships,

which are further filtered using the documentation ontology, restricting the syntacti-

cally possible relations to semantically valid ones.

In a final step, the analysis results are exported. Besides storing the marked-up

documents as XML files, we can add detected instances and relations (i.e., object

properties) to a pre-defined ontology in an ontology population step. For example,

each detected textual entity of the semantic type method becomes an instance of the

ontology class Method. This requires an additional normalization step prior to export,

as textual descriptions for the same semantic entity can differ. For example, a method

named “myMethod” can be referred to in a text as “the myMethod method pro-

vides...”, “myMethod provides...”, or even “this method provides”. Automatic nor-

malization ensures that only a single instance myMethod is created in the ontology in

this case, while still referring to the various textual references. Additionally, docu-

ment-specific information is recorded as well, e.g., in which sentence an entity was

found. An example for the documentation ontology with populated instances is shown

in Figure 6.

8 Yonggang Zhang, René Witte, Juergen Rilling, Volker Haarslev

3.3 Query Interface

Users of our SOUND environment can use the Racer query language nRQL [10] to

retrieve instances of concepts and roles in the ontology. An nRQL query uses arbi-

trary concept names and role names in the ontology to specify properties of the result.

In a query, variables can be used to bind to instances that satisfy the query.

However, the use of nRQL queries is still largely restricted to users with a high

mathematical/logical background due to nRQL's syntax, which, although compara-

tively straightforward, is still difficult for programmers to understand and even more

difficult to apply. To bridge this gap between practitioners and Racer, we have used

an additional scripting language – JavaScript as a query language. We introduce a set

of built-in functions and classes in the JavaScript interpreter – Rhino*, to simplify

user querying on the ontology for users.

Within the JavaScript interpreter, we provide a set of logic functions for formulat-

ing complex concepts. Using these logic functions, users can construct their own

concepts. For example, the concept ClassMember discussed in Section 2.1, can be

specified using the build-in functions as:

ontology.define_concept(“DesignPatternDoc”, AND(“Paragraph, EXIST(“contains”, “DesignPattern”)))

Two classes, Query and Result, are provided to assist users in composing queries

and manipulating the results. Users can arbitrarily use the vocabulary in the ontology

to retrieve instances with specified properties. The typical procedure of composing a

query is as follows: (1) query variables are declared; (2) restrictions that apply to the

variables are specified using concepts, roles, and instances in the ontology; and (3) the

query is submitted to the built-in JavaScript object called “ontology”.

The result of the query is a set of tuples that satisfy the specified restrictions. For

example, the following query/script retrieves all paragraphs that contain design pat-

tern instances from the documentation ontology:

var disign_pattern_doc = new Query(); // create an new query
disign_pattern_doc.declare(“P”, “DP”); // declare two query variables in the query
disign_pattern_doc.restrict(“P”, “Paragraph”); // restrict P to be bound to a paragraph instance
disign_pattern_doc.restrict(“DP”, “DesignPattern”); // restrict DP to be bound to a design pattern instance
disign_pattern_doc.restrict(“P”, “contains”, “DP”); // restrict P contains DP
disign_pattern_doc.retrieve(“P”); // the query will only retrive instances of P
var result = ontology.query(disign_pattern_doc); // perform the query

The query first declares two variables M and P, and then specifies that P shall be

bound to an instance of Paragraph, and DP to an instance of DesignPattern. The third

restriction specifies that P and DP shall have a contains relation. The next statement

states that this query only retrieves instances bound to P.

The scriptable query language allows users to benefit from both the declarative

semantics of Description Logics as well as the fine-grained control abilities of proce-

dural languages.

*
 available online at http://www.mozilla.org/rhino/

 An Ontology-based Approach for Traceability Recovery 9

4 Linking Software and Documentation Ontology

Having both source code and documents represented in the form of an ontology al-

lows us to link instances from source code and documentation using existing ap-

proaches from the field of ontology alignment [9]. Ontology alignment techniques try

to align ontological information from different sources on conceptual or/and instance

levels. Since our documentation ontology and source code ontology share many con-

cepts from the programming language domain, such as Class or Method, the problem of

conceptual alignment has been minimized. This research therefore focuses more on

matching instances that have been discovered both from source analysis and text

mining.

Our text mining system can additionally take the results of the source code analysis

as input when detecting named entities. This allows us directly connect instances from

the source code and document ontologies. For example, our source code analysis tool

may identify c1 and c2 as classes, and this information can be used by the text mining

system to identify named entities – c’
1 and c’

2 and their associated information in the

documents (Figure 3). As a result, source code entities c1 and c2 are now linked to

their occurrences in the documents (c
’
1 and c

’
2), as well as other information about the

two entities mentioned in the document, such as design patterns, architectures, etc.

Class

Method

Variable

Design Pattern

Paragraph

Sentence

m1
m1

c2
c2c1

c1

c’1c’1 m’1m’1

dp1
dp1

c’2c’2

s1
s1

p1
p1

Documents Source Code

Documentation

Ontology

Source Code

Ontology

Class

Method

Variable

c3
c3

Figure 3 – Linking Instances from Source Code and Documentation

After source code and documentation ontology are linked, users can perform onto-

logical queries on either documents or source code regarding properties of c1 or c2.

For example – retrieve document passages that describe both c1 and c2, or retrieve

design pattern descriptions referring to the class that contains the class currently ana-

lyzed. Note that the alignment process might also identify inconsistencies – the

documentation might list a method for a different class, for example – which are de-

tected through the alignment process and registered for further review by the user.

10 Yonggang Zhang, René Witte, Juergen Rilling, Volker Haarslev

c4
c4

c2
c2

c1
c1

c’1c’1
c’2c’2

s1
s1

dp1
dp1

Documents Source Code

c3
c3

c’3c’3

s2
s2 sn

sn

contributes

…

Figure 4 – Retrieve Implicit Information from Documents

In addition, users can always manually define new concepts/instances and relations

in both ontologies to establish the links that cannot be detected by the automated

alignment. For example, as Figure 4 shows, the text mining system may detect an

instance of DesignPattern – dp1 and users can create the relations between the pattern

and classes that are contributed the pattern (e.g., c1, c2, and c3) through our query

interface. The newly created links then become an integrated part of the ontology, and

can be used to, for example, retrieve all documents related to the pattern (i.e., s1, s2,

…, sn).

Design Pattern

Creational Pattern

Visitor Pattern

Architecture

Documents Documentation Ontology

Figure 5 – Classification of Documentation based on Ontology

Furthermore, documents can not only be linked to source code, but also to design-

level concepts that relate to particular reverse engineering tasks. For example, in

contrast to the serialized view of software documents, i.e., sentence by sentence, or

paragraph by paragraph, the formal ontological representation of software documenta-

tion also provides the ability to create hierarchical documentation views. Using the

classification service of the ontology reasoner, one can classify document pieces that

related to a specific concept or a set of concepts (Figure 5). For example, the Visitor

Pattern [11] documents can be considered as all text paragraphs that describe/contain

information related to concept Visitor pattern. The following new concept VisitorPattern-

Doc can be used to retrieve paragraphs that related visitor pattern. Similarly, a new

concept HighlevelDoc can be also defined to retrieve all documents that contains high

level design concept Architecture or DesignPattern. The ontology reasoner can automati-

cally classify documents according to these concept definitions.

VisitorPatternDoc ≡ Paragraph ⊓ ∃ contains.Visitor

 An Ontology-based Approach for Traceability Recovery 11

HighlevelDoc ≡ DocumentFile ⊓ ∃ contains.(Architecture ⊔ DesignPattern)

5. Evaluation

As part of this research, we have extended our SOUND environment by several on-

tology alignment rules to link the documentation ontology and source code ontology.

The implementation is based on the Eclipse platform. An initial evaluation has been

performed on a large open source Geographic Information System (GIS) – uDig*. The

uDig system is a set of Eclipse plug-ins that provides geographic information man-

agement integration for the Eclipse platform. The uDig documents used in the study

consist of a set of JavaDoc files and a requirement analysis document.
†

* http://udig.refractions.net/confluence/display/UDIG/Home
† http://udig.refractions.net/docs/

Links between the uDig implementation and its documentation are recovered by

first performing source code analysis to populate the source code ontology. The re-

sulted ontology contains instances of Class, Method, Field, etc, and their relations such as

inheritance, invocation, etc. Our text mining system takes the identified class names,

method names, and field names as input to populate the documentation ontology.

Through this text mining process, a large number of Java language concept instances

are discovered in the documents, as well as design level concept instances such as

design patterns or architecture styles [12]. The ontology alignment rules are then

applied to link both the documentation ontology and the source code ontology. Part of

our initial result is shown in Figure 6, and the contents of the related sentences are:

Sentence_2544: “For example if the class FeatureStore is the target class and the

object that is clicked on is a IGeoResource that can resolve to a FeatureStore then a

FeatureStore instance is passed to the operation, not the IGeoResource”.

Sentence_712: “Use the visitor pattern to traverse the AST”

Documentation Ontology Source Code Ontology

Figure 6 – Linked Source Code and Documentation Ontology

12 Yonggang Zhang, René Witte, Juergen Rilling, Volker Haarslev

Figure 6 shows that in the uDig documents, our text mining system was able to dis-

cover that a sentence (sentence_2544) contains both class instance

_4098_FeatureStore and _4100_IGeoResource. Both of these instances can be linked

to the instances in source code ontology – org.geotools.data.FeatureStore and

net.refractions.udig.catalog.IGeoResource, respectively. In addition, in another sen-

tence (sentence_712), a class instance (_719_AST) and a design pattern instance

(_718_visitor_pattern) are also identified. Instance _719_AST can then be linked in a

similar manner to the net.refractions.udig.catalog.util.AST interface in the source

code ontology.

After the source code ontology and documentation ontology are linked, queries re-

garding the source code entities, design level concepts, and their occurrences in

documents can be performed using the reasoning services provided by out ontology

reasoner – Racer. For example, during the comprehension of the class FeatureStore, a

reverse engineer may want to study the classes that are related to FeatureStore.

Within the source code ontology, a query similar to the following script (Script 1) can

be performed to retrieve all classes that contain methods that have called class Fea-

tureStore.

var query = new Query(); // define a new query
query.declare(“M1”, ”M2”, “C”); // declare three query variables
query.restrict(“M1”, “Method”); // M1 is a method
query.restrict(“M2”, “Method”); // M2 is also a method
query.restrict(“C”, “Class”); // C is a class
query.restrict(“M1”, “definedIn”, “C”); // M1 is defined in C
query.restrict(“M2”, “definedIn”, “org.geotools.data.FeatureStore”); // M2 is defined in FeatureStore
query.restrict(“M1”, “calls”, “M2”); // M1 calls M2
query.retrieve(“C”); // this query only retrieve C
var result = ontology.query(query); // perform the query

Script1 – Query on Source Code Ontology

Unfortunately, the class IGeoResource, which has a documented relation with Fea-

tureStore (Figure 6), will not be returned by such a query, because IGeoResource has

no explicit invocation relations with FeatureStore in the uDig implementation. In

addition to these types of source code queries, the reverse engineer can perform que-

ries that are across the boundaries between source code and documentation. Such

type of queries are enabled due to the already established links between the source

code and documentation ontology. For example, the following query (Script 2) re-

trieves all classes that occur in the same sentences as class FeatureStore. At this time,

class IGeoResource will be returned because both classes occur in sentence_2544.

The retrieved classes as well as the associated sentences therefore provide additional

information useful for reverse engineers to understand the class FeatureStore.

var query = new Query(); // define a new query
query.declare(“S”, “C”); // declare two query variables
query.restrict(“S”, “Sentence”); // S is a Sentence
query.restrict(“C”, “Class”); // C is a Class
query.restrict(“S”, “contains”, “org.geotools.data.FeatureStore”); // S contains FeatureStore
query.restrict(“S”, “contains”, “C”); // S also contains C
query.retrieve(“C”, “S”); // retrieve C and the sentence S
var result = ontology.query(query); // perform the query

Script 2 – Query on Documentation Ontology

 An Ontology-based Approach for Traceability Recovery 13

The linked source code and documentation ontologies also provide us with the ca-

pability to combine semantic information from both software implementation and

documentation. For example, our text mining system has detected that class AST is

potentially a part of a Visitor pattern (Figure 6). In order to retrieves all documented

information related to the detected pattern, the following query (Script 3) can be used

to retrieve all text paragraphs that describe the sub classes of AST.

 var query = new Query(); // define a new query
 query.declare(“P”, “C”); // declare two query variables
 query.restrict(“P”, “Paragraph”); // P is a paragraph
 query.restrict(“C”, “Class”); // C is a class
 query.restrict(“C”, “hasSuper”, “net.refractions.udig.catalog.util.AST”); // C is a sub-class of AST
 query.restrict(“P”, “contains”, “C”); // P contains C
 query.retrieve(“P”); // this query only retrieve P
 var result = ontology.query(query); // perform the query

Script 3 – Query Across the Source Code and Documentation Ontology

This query utilizes both, the programming language semantics, such as the inheri-

tance relation between query variable C and the class AST, and the structural informa-

tion of documentation, such as the containing relation between P and C. The result of

this query therefore contains all text paragraphs that describe the sub classes of AST,

i.e. the Vistor pattern. It has to be noted that the role contains is a transitive relation to

describe the document structure. The ontology reasoner can automatically resolve the

transitivity from Paragraph to Sentence, and from Sentence to Class.

In this section, we presented an initial evaluation of recovering traceability links

between source code and documentation on a large open source software system. We

have demonstrated the use of automated reasoning to retrieve documented informa-

tion with regard to a specific reverse engineering task and infer implicit relations in

the linked ontologies.

6. Related Work and Discussions

There exists some research in recovering traceability links between source code

and design documents using Information Retrieval techniques. The IR models used

include traditional vector space and probabilistic models [2] and advanced latent

semantic indexing model [3]. In contrast with these IR approaches, our work also

utilizes structural and semantic information in both the documentation and the source

code by means of text mining and source code parsing. This additional information

allows us to recover links that would not be discovered using traditional IR tech-

niques.

Very little previous work exists on text mining software documents. Most of this

research has focused on analysing texts at the specification level, e.g., in order to

automatically convert use case descriptions into a formal representation [13, 14] or

detect inconsistent requirements [15]. In contrast, we aim to support the complete

software documentation life-cycle, from white papers, design and implementation

documents to in-line code texts (e.g., JavaDoc). To the best of our knowledge, there

14 Yonggang Zhang, René Witte, Juergen Rilling, Volker Haarslev

has been so far no attempt to automatically cross-link entities (e.g., methods, design

patterns, architectures) detected by text mining software documents with correspond-

ing entities found by source code analysis, which is an important contribution of our

work.

Existing research on applying Description Logics or formal ontology in software

engineering have been addressed in early works of the LaSSIE [16] and CBMS [17]

systems. Compared with our approach, these systems are however much more re-

stricted by the expressiveness of their underlying ontology languages. In addition,

these systems also lack the support of optimized DL reasoners, such as Racer in our

case.

In our previous work, we have already demonstrated the ontological model of

source code and documentation supporting various reverse engineering tasks, such as

program comprehension, architectural analysis [8], and security analysis [18]. In

another work, we have examined the requirements for software reverse engineering

repositories [19], where we focused on dealing with incomplete and inconsistent

knowledge on software artifacts obtained from different sources (e.g., conflicting

information delivered by source code and document analysis).

7. Conclusions and Future Work

The presented research addresses an important issue in the reverse engineering

domain, the recovery and maintenance of traceability links among existing documents

and source code artifacts. We present a novel approach that provides formal ontologi-

cal representations for both source code and document artifacts. The ontologies cap-

ture structural and semantic information conveyed in these artifacts, and therefore

allow us to recover the traceability links between software implementation and docu-

mentation at semantic level.

In addition, utilizing state-of-the-art ontology reasoners such as Racer, our ap-

proach also allows inferring implicit relations between discovered concept instances.

The linked ontologies provide the capability to perform queries across the boundary

between programming language and natural language.

Furthermore, our documentation ontology identifies a large number of design-level

concept instances such as design patterns and architectural styles. These identified

instances are linked to source code entities, and therefore allows users to discover

relations between source code and its design information at different levels abstrac-

tion.

As part of our future work, we will be exploring a hierarchical linking strategy,

starting from code, including inline comments (like JavaDoc), over implementation,

design, and specification documents to domain-specific knowledge, to allow us to

offer a truly holistic process for an automated support of traceability links.

ACKNOWLEDGEMENTS
Qiangqiang Li contributed to the text mining system.

 An Ontology-based Approach for Traceability Recovery 15

REFERENCES

[1] P. Arkley, P. Mason, and S. Riddle, “Position Paper: Enabling Traceability,” Proceedings

of the 1st International Workshop on Traceability in Emerging Forms of Software Engi-

neering, Edinburgh, Scotland (September 2002), pp. 61–65.

[2] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Information retrieval models for

recovering traceability links between code and documentation”. In Proceedings of IEEE

International Conference on Software Maintenance, San Jose, CA, 2000

[3] A. Marcus, J. I. Maletic, “Recovering Documentation-to-Source-Code Traceability Links

using Latent Semantic Indexing”. In Proceedings of 25th International Conference on

Software Engineering, 2002

[4] F. Baader et al., “The Description Logic Handbook”, Cambridge Univ. Press, 2003.

[5] V. Haarslev and R. Möller, “RACER System Description”, In Proc. of International Joint

Conference on Automated Reasoning, IJCAR'2001, Italy, Springer-Verlag, pp. 701-705.

[6] OWL Web Ontology Language Reference, W3C Recommendation, 10 February 2004,

URL: http://www.w3.org/TR/owl-ref/

[7] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. “GATE: A Framework and

Graphical Development Environment for Robust NLP Tools and Applications.” Proceed-

ings of the 40th Anniversary Meeting of the Association for Computational Linguistics

(ACL'02). Philadelphia, July 2002.

[8] Y. G. Zhang, R. Witte, J. Rilling, and V. Haarslev, “Ontology-based Program Compre-

hension Tool Supporting Website Architectural Evolution”, Proceedings of the 8th IEEE

International Symposium on Web Site Evolution, 2006

[9] N. F. Noy and H. Stuckenschmidt, “Ontology Alignment: An annotated Bibliography –

Semantic Interoperability and Integration” Schloss Dagstuhl, Germany, 2005

[10]

V. Haarslev, R. Möller, and M. Wessel, “Querying the Semantic Web with Racer +

nRQL”, In Proc. of the KI-2004 International Workshop on Applications of Description

Logics (ADL'04), Ulm, Germany, September 24, 2004.

[11] E.Gamma, R.Helm, R.Johnson, and J.Vlissides “Design Patterns – Elements of Reusable

Object-Oriented Software”, Addison-Wesley, 1994

[12]

M. Shaw and D. Garlan, “Software Architecture: Perspectives on an Emerging Disci-

pline”, Prentice Hall Publisher, 1996.

[13] V. Mencl. “Deriving Behavior Specifications from Textual Use Cases”. Proc. of Work-

shop on Intelligent Technologies for Software Engineering (WITSE'04), Austria, 2004.

[14] M.G. Ilieva and O. Ormandjieva. “Automatic Transition of Natural Language Software

Requirements Specification into Formal Presentation”. 10th Intl. Conf. on Applications

of Natural Language to Information Systems (NLDB), Alicante, Spain, 2005.

[15] L. Kof. “Natural Language Processing: Mature Enough for Requirements Documents

Analysis?” 10th Intl. Conf. on Applications of Natural Language to Information Systems

(NLDB), Alicante, Spain, June 15-17, 2005.

[16] P.Devanbu, R.J.Brachman, P.G.Selfridge, and B.W.Ballard, “LaSSIE: a Knowledge-

based Software Information System”, Com. of the ACM, 34(5):36–49, 1991.

[17] C.Welty, “Augmenting Abstract Syntax Trees for Program Understanding”, Proceedings

of The 1997 International Conference on Automated Software Engineering. IEEE Com-

puter Society Press. P. 126-133. November, 1997.

[18] Y.G.Zhang, J.Rilling, V.Haarslev, “An ontology based approach to software comprehen-

sion – Reasoning about security concerns in source code”. In Proc. of 30th Int. Computer

Software and Applications Conference, 2006.

[19] Ulrike Kölsch and René Witte, “Fuzzy Extensions for Reverse Engineering Repository

Models”. 10th Working Conference on Reverse Engineering (WCRE), Canada, 2003.

[20] Kiryakov A., Popov B., Terziev I., Manov D., and Ognyanoffe D. "Semantic Annotation,

 Indexing, and Retrieval". Journal of Web Semantics, vol. 2(1), 2005.

