Obtaining More Answers From Information Integration Systems

Gosta Grahne and Victoria Kiricenko
Department of Computer Science, Concordia University
Montreal, Quebec, Canada H3G 1MS8
{grahne,kiricen}@cs.concordia.ca

Abstract

The current generation of rewriting-algorithms in source-centric (local-as-view) information in-
tegration systems all produce a reformulated query that retrieves what has been thought of as
”the best obtainable” answer, given the circumstances that the source-centric approach introduces
incomplete information into the virtual global relations. This ”best obtainable” answer does not
however allow partial information. We define the semantics of partial facts, and provide two meth-
ods for computing partial answers. The first method is tableau-based and is a generalization of the
”inverse-rules” approach. The second method is a generalization of the rewriting approach, and is
based on partial containment mappings introduced in the paper.

1 Introduction

Information Integration systems aim to provide a uniform query interface to multiple heterogeneous
sources. One of the ways to view these systems is to postulate a global schema (called a world view)
that provides a unifying data model for all the information sources (see e. g. [Len02]). A query processor
is in charge of reformulating queries written in terms of this global schema to queries on the appropriate
sources and assembling the answers into a global answer. Each source is modeled as a materialized view
defined in terms of the global relations, which are virtual.

To illustrate the problem with current information integration methodologies let us consider a simple
example. Suppose the global schema contains two relations:

Prof(Pname, Email, Office, Area), that is professor’s name, email, office number, and research area.
Dept(Pname, Dname), that is professor’s name and department.
The available sources are {S7, S, S3,S,}. These sources have the following definitions:
S1(Pname, Email) < Prof (Pname, Email, Office, Area)
Sa(Pname, Office) < Prof (Pname, Email, Office, Area)
S3(Pname, Area) < Prof (Pname, Email, Office, Area)
S4(Pname, Dname) <« Dept(Pname, Dname)

Suppose the user issues the query
Q(Pname, Email, Office, Area) «+ Prof (Pname, Email, Office, Area), Dept(Pname, compsci)

That is, the user is interested in obtaining all information available about professors in the compsci
department. Since the information integration system does not have a way to get tuples for the subgoal
Prof it would produce an empty rewriting and, thus, an empty answer for the user.

From the point of view of the user, it would be much more useful to get at least partial information
about professors in the compsci department. This is feasible, the query could be rewritten as union of
the following unsafe conjunctive queries.

Q1 (Pname, Email, X, Y) <« S1(Pname, Email), S4(Pname, compsci)
Q2(Pname, X, Office, Y) < Sa(Pname, Office), S4(Pname, compsci)
Q3(Pname, X, Y, Area) <« S3(Pname, Area), S4(Pname, compsci)

The unrestricted variables X and Y represent unknown values. The answer can then be presented to
the user as a table with some values missing, for example as the table below. (The contents of the table
will, obviously, depend on the data provided by the sources.)

| Pname | Email | Office | Area |
Murphy | murphy@cs.toronto.edu | L il
Murphy | L SF322 | L
Smith € € DB
Jones jones@cs.concordia.ca € L
Brown € € Al

This aspect of information integration has not been studied in the current literature despite it’s
importance especially in the case of the world wide web, where we can expect lots of partially overlapping
sources. In this paper we define answers containing null values, and we give two algorithms for computing
them. One algorithm is a generalization of the “inverse-rules” approach [DG97], and involves explicitly
computing a syntactic representation of the set of global databases implicitly defined by the sources.
The other algorithm is a generalization of the rewriting technique (see e.g. [LMSS95], [Ul97]). This
algorithm reformulates a query in terms of the source relations, and, thus, avoids inverting the entire
source collection.

2 Conjunctive Queries and Projection-Containment

Let rel be a countably infinite set {R, S, ..., R1,S1, Ra, Sa, ...} of relation names, let dom be a count-
ably infinite set of constants, and let var be a countably infinite set of variables. Constants will be
denoted by lower case letters and variables by upper case letters.

Associated with each relation name R is a positive integer arity (R), which is the arity of R. A fact
over R is an expression of the form R(aq,...,ar), where k = arity(R), and each a; is in dom.

Let R = {R1, Rz, ..., Ry} be a set of relation names. A finite set of relation names will sometimes
also be called a schema. A database d over R is a finite set of facts, each fact being over some R; € R.

An atom over a relation name R is an expression of the form R(ey,...,ex), where k = arity(R), and
each e; is either a constant in dom or a variable in var.

A conjunctive query ¢ (over R) has the form

head(p) < body (),

where body(y) is a set of atoms by, bs, ..., by, each over a relation name in R, and head(yp) is an atom
over an answer relation name not in R. We assume that all variables occurring in head(y) also occur
in body(p), i. e. that the query ¢ is safe. The variables occuring in head(y) are the distinguished
variables of the query, and all the others are existential variables.

A conjunctive query ¢ can be applied to a database d over R, resulting in a set of facts

o(d) = {o(head(y)) : o(body(p)) C d for some valuation o}.

A waluation o, is formally a finite partial mapping from var Udom to dom that is the identity on
dom. Valuations, like X; — a;, for ¢ € [1,p], will usually be given in the form {X;/a1,...,X,/ap}.
The identity on constants is omitted in this notation.

The notion of query containment enables comparisons between different reformulations of queries.
We can broaden query containment as follows.

Let ¢ and @2 be conjunctive queries. A query ¢ is said to be p-contained in ¢9, denoted 1 C,, 2,
if and only if there exists a conjunctive query ¢, where ¢ is equivalent to m(¢) (7 is relational
projection), for some list L of columns in head(¢) taken in the original order, such that for all databases
d, ¢(d) C p2(d). Note that p-containment is a generalization of query containment since L can be the
list of all columns in ;.

Testing p-containment of conjunctive queries

The classical notion of a containment mapping can be generalized to define p-containment mappings.
A p-containment mapping from a conjunctive query s to a conjunctive query ¢; is a mapping pu, from
variables of @9 to variables and constants of ¢1, such that

L. p(body(p2)) € body(¢1), and
2. for every variable X in head(p;) there is a variable Y in head(ips), such that u(Y) = X.
Consider the following example
p1=Q1(X) — R(X,Y),5(Y,Y), T(Y, Z)
p2 = Q2(A, B) < R(A, B),S(B,C)

There is a p-containment mapping u = {4/X, B/Y,C/Y} from @2 to ¢;.
We can now use p-containment mappings to test p-containment of conjunctive queries.

Theorem 1 A query y1 is p-contained in a query w2 if and only if there is a p-containment mapping
from s to 1.

Proof.

Let u be a p-containment mapping from ¢s to @1, and let d be an arbitrary database. A fact t;
in p1(d) is generated by some valuation o. Then o o p is a valuation that generates the corresponding
fact t2 in @o(d). To see that this is indeed so, let b € body(pz2). Then o o u(b) = o(c) € d, for some
¢ € body(p1). Therefore, o o u(b) € d. From requirement 2 of a p-containment mapping it follows that
o o p(head(p2)) = mr (0 o u(head(p1))), where L is a list of variables in head(y2) in the original order.
Thus, p1 S, 2.

Let ¢1 C, 2. Let d be the canonical database that is the “frozen” body(y1). By the definition
of p-containment there exist a conjunctive query 1, such that ¥(d) C pa(d) and ¢1 = 7 (v) for
some ordered list L of columns in head(y). Obviously, ¢1(d) contains a fact ¢1, which is the “frozen”
head(y1). Since ¢; = (1) there must be a fact t2 in ¢(d), such that 7 (t2) = ¢;. Since ¥(d) C p2(d),
we have ty € p2(d).

Let o be a valuation that generates the fact t9 in po(d). Let p be the the “freezing” mapping, which
also is a valuation that generates the fact ¢; in ¢1(d). Then p~! oo is a p-containment mapping from
pato 1.

To see that this is indeed so note two things. First, that each subgoal b € body(¢2) is mapped by
o to some fact in d, which is a frozen version of some subgoal ¢ € body (1), so p~! o o maps b to the
unfrozen fact, that is to c itself.

Second, note that those variables in head(y3) that are also in head(p;) are mapped by o to constants
in the fact ¢1, which is the frozen head(y;), so that all of the head variables in ¢; are covered. Thus p~to
o maps corresponding variables in head(y2) to the unfrozen head(y;). Thus, p~!oo is a p-containment
mapping from @9 to ;. [|

3 Source Collections and Tableaux

Let loc be a countably infinite set {V, V1, Va, ...} of local relation names. The local relation names have
arities, and atoms over local relation names are defined in the same way as atoms over relation names
in rel. To distinguish between relations (relation names) in rel and in loc we will henceforth call the
former global relations (relation names).

A source S is a pair (¢, v), where ¢ is a conjunctive query and v is a finite set of facts over head(yp).
A source collection S is a finite set of sources. The (global) schema of S, denoted sch(S) is the set
consisting of all the global relation names occurring in the bodies of the defining conjunctive queries of
the sources in S. The description of S, denoted desc(S) is obtained from S by dropping the extension
from every pair in S. In other words, a source collection S has two “schemas,” sch(S) which is the
“global world view” and desc(S), which describes the defining views. The extension of a source collection
S, denoted ext(S), is the union of all facts in sources in S.

A source collection S defines a set of possible databases, denoted poss(S), as follows:

poss(8) = {d over sch(S) : v; C p;(d) for all sources S; = (¢;,v;) in S}.

Note that poss(S) is infinite. We will now consider the problem of finitely representing an infinite set
of databases. For this we invoke the venerable tableau.

Sets of databases and tableaux

In order to reason about tableaux we have to define a few concepts that are applicable to sets of global
databases represented by tableaux.

Let X and) be two enumerable sets of global databases over R. We say that X’ and) are coinitial
if they have the same C-minimal elements. Coinitiality is denoted X ~).

Let € be the set of all queries expressible in a query language that we by abuse of notation also call
Q). Then X and) are said to be Q-equivalent, denoted X =g Y, if for all queries Q) € Q we have

N @@ = Q.

dex dey

The intuition behind Q-equivalence is that X and) are indistinguishable as far as the certain infor-
mation derivable by queries in () are conserned. Thus, if a user can only pose queries in €2, he cannot
distinguish between X and).

The following lemma is proved in the seminal paper [IL84].

Lemma 1 Let Q be a monotone query language. If X = Y, then X =q Y. []

Of particular interest to us is of course choosing 2 to be the set of all unions of conjunctive queries,
which, it goes without saying, is a monotone query language.

We now define tableaux [Men84], which are intended to concisely and finitely represent a large or
infinite set of possible instances.

Let R ={R1, Ra,...,R,} be a set of relation names. A tableau T over R is a finite set of atoms
over the R;’s. Note that the same variable might appear in several atoms in 7.

A tableau T over schema R represents a set of databases over R. This set is denoted rep(T'), and it
is defined by

rep(T) = {d : there is a valuation o such that o(T) C d}.

The definition says that a database d is represented by a tableau T, if there is a valuation ¢ such that
when all variables in T are replaced by their image under o, the set of facts thus obtained is a subset
of d.

In order to compare tableaux, we need the concept of substitution. A substitution is a valuation,
except that we allow variables to be mapped into variables, not only constants. Thus, a substitution

is a function from (a subset of) dom U var to dom U var, keeping in mind that constants have to be
mapped to themselves.

Given two atoms ¢t and u over the same relation name, we say that ¢ is subsumed by u, denoted
t <gup u, if there is a substitution 6, such that 6(u) = t. A tableau T is subsumed by a tableau U
denoted T <gup, U, if for every atom ¢t € T there is an atom u € U, such that t <g,p u, A tableau T is
subsumtion equivalent to a tableau U denoted T =g, U, if T <gup U and U <gp, T,

The following little lemma gives a semantic characterization of subsumption equivalence.

Lemma 2 Let Q) be a set of all projection queries. Then rep(T) =q rep(U) if and only if T =¢up U. W

In other words, if T and U are subsumption equivalent, then for any subset of the columns, T" and
U contain the same facts over these columns. Compared to letting Q2 be the set of all (unions of)
conjunctive queries, subsumption equivalence cannot account for repeated variables. Such repeated
variables might allow the user to infer more certain information using subsequent joins. We will return
to this point in the conculding section.

Representing poss(S) by a tableau

Now the set poss(S) can be conveniently represented by a tableau over schema sch(S), denoted T'(S),
such that rep(T) = poss(S). To construct T we shall follow the approach in [GM99]. We define a
function, which we by abuse of notation also denote T', from sources with defining view ¢, where the
body of ¢ consists of atoms over relation names in R, to tableau over R. We also need an auxiliary
function refresh, that, when applied to a set of atoms, replaces all variables with fresh ones. Given a
source S = (p,v), we set

T(S) = U {refresh(o(body(¢))) : o(head(p)) = u for some valuation o}.
uev
For example, if S = (V(X,Z) — R(X,Y),S(Y,Z),{V(a,b),V(c,d)}), then T(S) = {R(a, Y1), S(Y1,b),
R(c,Y3),S(Y2,d)}, where Y1 and Ys are fresh variables. When there are several sources in S we set

7(S) = |J 1(9).

ses
The tableau constructed by the function 7" has the following desirable property.
Theorem 2 rep(T'(S)) = poss(S).

Proof. Let d € rep(T(S)). To prove that d € poss(S) we need to show that for all sources S; = (¢;,v;)
in S, we have v; C ¢;(d). Since d € rep(T(S)) there is a valuation ¢ such that o(T(S)) C d. Let
Si = (p;,v;) be an arbitrary source in S, and let ¢ be an arbitrary fact in v;. Then there must
be a substitution 0, such that t = §(head(p;)) and all facts in 8(body(y;)) are in T'(S). It follows
that 6(c(body(¢;))) C d and, consequently, 0(c(head(y;))) € d. Since O(c(head(y;))) = t, we have
v; € @;(d) as desired.

For inclusion in the other direction, let d € poss(S). From construction of T'(S) it immediately
follows that there is a valuation ¢ such that o(T'(S)) C d and, thus, that d € rep(T'(S)). [|

4 Querying Source Collections

Let S be source collection, and ¢ a conjunctive query, such that the body of ¢ consists of atoms over
relation names in sch(S). Now ¢ applied to S defines the ezact answer:

@(S) = {p(d) : d € poss(S)}.

The definition essentially says that since the source collection corresponds to a set of databases, the
answer should also correspond to a set, obtained by evaluating the query pointwise.

Computing the exact answer from the tableau

Now since we are able to construct a database template T representing all databases in poss(S) it is
natural to extend the standard query evaluation mechanism to operate on database templates.

Let T be a tableau over R. Given a conjunctive query ¢ over R, our evaluation @ (which is basically
the “naive evaluation” of [IL84]) is as follows. Recall that a substitution is a valuation, except that
variables can be mapped into variables, not only constants. Then

P(T) = {0(head(p)) : 8(body(p)) C T for some substitution 6}.

For example, let ¢ = Q(X,Y,Z) «— R(X,Y),S(Y,Z) and T = {R(a,b), R(d, X),S(b,c),S(X,e),
S(Y, /)}. Then F(T) = {Q(a,b,), Q(d, X, c)}.

Clearly, if our definition of ¥ is semantically meaningful, then we should expect that it approximates
the information given by ¢(S) in some natural sense. Indeed, our extended semantics has the following

property:
Theorem 3 rep(p(T)) =~ ¢(rep(T)).

Proof. Let d be a C-minimal element in rep(@p(7)). Then there exist a valuation o such that
o(@p(T)) = d. Let t be an arbitrary fact in d. Then there is a fact u € ¢(T) such that o(u) = ¢, and
there is a substitution 6 such that §(body(y)) € T and u = 0(head(p)).

Let o’ be an extension of o that maps every variable that is in T but not in $(T) to a distinct
new constant. Since 6(body(p)) C T, we have o'6(body(y)) C o'(T). It now follows that ¢ =
o' (6(head(p))) € ¢(o’(T)). Note that ¢/ (T) is a C-minimal element in rep(7"). From the monotonicity of
¢ it follows that ¢(o’(T)) is a C-minimal element in p(rep(T)). We have established that d C ¢(co’(T))

That concludes the proof that any C-minimal element d in rep(@(T)) is in p(rep(T)).

For inclusion in the other direction let d be a C-minimal element in ¢(rep(T)). Then there is a
valuation o, such that d = ¢(o(T)). Let ¢ be an arbitrary tuple in d. Then there is a valuation p, such
that ¢ = p(head(p)) and all facts in p(body(¢)) are in o(T). Now we have two cases to consider.

Case 1: The valuation o is one-to-one. Then there is an inverse 0!, and hence o~ (p(body(i))) C
o~ Yo(T)) = T, and consequently o~ 1(t) = o~ (p(head(y))) is in P(T). Since o(P(T)) € rep(p(T)), it
follows that ¢t € o(@(T)) € rep(@(T)). Likewise, if ¢’ is any other tuple in d = ¢(o(T)), it is generated
by some valuation p’, and we have o=1(t') = 0=1(p'(head(y))) € @(T'). Therefore d C o (H(T)).

Case 2: There is (at least one) pair of distinct variables X and Y in T, such that o(X) = o(Y).
If 0(X) = p(U), and o(Y) = p(W), for U # W, then the valuation w, that is like c=% o p, except
w(U) =X, and w(V) =Y, gives us w(body(¢)) C T, and o~ 1(t) = w(head(y)) € §(T). Consequently
t=o(o~1(1) € 0(3(T)).

Suppose then that o(X) = o(Y) = p(W), and that there are (at least) two occurrences of W in
body(¢). Consider now the valuation o’ that is exactly like o, except it maps Y to a fresh constant, say
a. Clearly t ¢ ¢(c’(T)), and any fact in ¢(o’(T")) is also in ¢(o(T)) (because there is an embedding of
o’'(T) into o(T).) Therefore we have a contradiction to the assumption that ¢ belonged to a C-minimal
element of ¢(rep(T)). [|

As a consequence we now have a method for computing an ~-approximation of ¢(S).
Corollary 1 rep(p(T(S))) = ¢(S).

In other words, first invert the source extensions through their definitions, then apply the @-evaluation
of the user query ¢ on the resulting tableau. The result of the evaluation is another tableau, which the
user perceives as a relation with nulls.

The problem of computing exact answer to a user query was not addressed in the literature except
for a brief discussion in [GM99], instead all of the algorithms are aimed at computing the possible or,
most commonly, certain answer.

The possible answer can be defined as ¢*(S) = (J{¢(d) : d € poss(S)}. The certain answer can be
defined as ¢*(S) = [{¢(d) : d € poss(S)}. Given the exact answer that is obviously most informative
of all answers, we can obtain the possible answer and the exact answer as follows.

Lemma 3 ¢.(S) = Nrep(p(T(S))), and ©*(S) =~ Urep(p(T(S))). [|

However, computing @(7'(S)) might involve a lot of redundant work, since it amounts to constructing
the tableau corresponding to the entire ext(S), whereas the global relations that are in body(y) might
be mentioned in only few source definitions. Furthermore, the query might have selections and joins
that could be computed directly at the sources.

Computing the exact answer directly on the source collection

In view-centric information integration systems a query processor is in charge of reformulating queries
written in terms of this global schema to queries on the appropriate sources. This process is also known
as query rewriting. We can extend the notion of rewriting to p-rewriting.

To this end we need a few concepts. The expansion of a query ¢ over desc(S), denoted P, is
obtained from ¢ by replacing all the sources in ¢ with their definitions. Existential variables in a source
definition are replaced by fresh variables in ¢**P.

Let S be a source collection and ¢ be a conjunctive query over desc(S). The query v is a p-contained
rewriting of ¢ using S if P C,, p. Let 9 be a p-contained rewriting of ¢. We define the ¢-evaluation
of ¢, denoted v, as follows

¥y (S) = {ou(head(p)) : o(body (1)) C ext(S)},
where p is a p-containment mapping from ¢ to P, o is a valuation we extend to o, by setting

(X) = o(u(X)), if u(X) occurs in head ()

Tn 1 a fresh variable, otherwise

Note that it is possible that there is more than one p-containment mapping from ¢ to ¥*P. However,
as formalized in the following Lemma, choosing one mapping over the other does not affect ¢, (S).

Lemma 4 Let ¢, and ¢ be conjunctive queries, such that ¢*P C ¢, and let p1 and pg be containment
mappings from ¢ to ¢=P. Then for all source collections S, {o,, (heady) : o, (¢) C ext(S)} =
{0, (head) : 0,,,(p) C ext(S)}, up to renaming of the fresh variables.

Now we can define ¢(S) as
2(8) = e () : v S, 0},
and state the following important result:

Theorem 4 $(S) =z (T(S)).

Proof. Let ¢t be an arbitrary atom in @(S). Then there was conjunctive query ¢ (over desc(S)) in the
union of maximally-contained p-rewritings of ¢ and a (-evaluation of v, using a valuation o, such that
t = o, (head(y)), and o(body(¥)) C ext(S), where 1 is a containment mapping from ¢ to ¥,

Since o(body(¢)) C ext(S), it means that all atoms in o(body (¥ **P)) are in T'(S) (with fresh existen-
tial variables). Since u is a containment mapping from ¢ to %P, we have that o(u(body(¢))) C T(S).
Thus o(p(head(y))) € @(T(S)). Now o(u(head(y))) is equal to o,(head(yp)), except for positions
that don’t occur in head(), these have been replaced by fresh variables in o, (head(y)). If we now
define a substitution 6 that maps each of these fresh variables to the variable or constant in the cor-
responding position in o(u(head(y))), we get that (o (n(head(y)))) = o, (head(y)), and consequently
ou(head(p)) <eup o(u(head(yp))). This means that @(S) <qup @(T'(S)).

For the proof of inclusion in the other direction, let ¢ be an arbitrary atom in $(T'(S)). Suppose
body () consists of atoms by, bs,...,b,. Then there is a substitution 6, such that 0(b;) € T(S),
for all i € {1,...,n}. But each atom 6(b;) is in T'(S) because there is a source S;; = (¢i,,vi;), a
valuation o, and a fact t;; € v;;, such that t;; = 0, (head(y;,)) and 0(b;) € refresh(o;, (body(¢i;)))-
If we take ¢ to be the query with body(v) = o1, (head(y1,)), 02, (head(pz;)),...,0n; (head(py,)), and
head(y)) = (01, Uoa, U---Uoy,)(head(p)), we have a containment mapping (namely 6), from ¢ to
1e®P. Consequently ¢ will be an element in the union of queries @, and obviously 1) generates the fact
t when applied to S. Since t < ¢, we have established that ¢(S) <gup p(T). []

In the next section we give an algorithm that, for a given conjunctive query ¢, computes a finite
union of conjunctive queries equivalent to .

5 The P-bucket Algorithm

Since we generalized the notion of containment mapping to p-containment mapping it is only natural
that any rewriting algorithm, which is based on containment mappings, can be extended to produce
p-rewriting.

The following algorithm is a straightforward modification of bucket algorithm [LRO96] and, there-
fore, we call it p-bucket algorithm. Given a query ¢ the p-bucket algorithm proceeds in two steps. In
the first step, the algorithm creates a bucket for each subgoal in ¢. Then the buckets are populated
by source atoms (subgoals) that are relevant to answering the particular subgoal. More specifically,
consider a bucket for a subgoal b, of ¢, and a source S; = (¢;,v;). If body(y) contains a subgoal b,
such that there is a (most general) unifier 6 for b, and b,,, then 0(head(y;)) is put in the bucket of
subgoal b,. In case the subgoal b, unifies with more than one subgoal in a source S; the bucket of b,
will contain multiple occurrences of unified head(y;).

In the second step, the algorithm considers query rewritings that are conjunctive queries, each
consisting of one conjunct from every bucket. The head of each rewriting is the projection of variables
that are in the body of this rewriting, if the projection results in an empty list the rewriting is discarded.
For each rewriting, the algorithm checks whether it’s expansion is p-contained in the query. If so, the
rewriting is added to the answer. Though not required, a check can be added to determine that the
resulting rewriting is not redundant. Hence, the result of algorithm is a union of conjunctive rewritings.

Theorem 5 The union of all rewritings produced by the p-bucket algorithm relative to a query ¢ is
equivalent to the union of all p-contained rewritings of .

Proof. (Sketch.) The p-bucket algorithm produces only semantically correct rewritings since it tests
for p-containment of each of candidate solutions.

For the proof that the output of the algorithm contains all semantically correct rewritings we have to
proove that if there exists a p-rewriting 1 of a given conjunctive query ¢ then there will be a p-rewriting
X in the output of the p-bucket algorithm, such that ¢ C,, x.

It has been known since Chandra and Merlin’s paper [CM77] that every conjunctive query has a
unique (up to renaming of variables) minimal equivalent query that can be obtained by deletion of zero
or more atoms. Let us call the minimal equvalent of ¥ ,,;, and the minimal equvalent of X Xmin.
Since 1 is a p-rewriting of ¢ P C,, ¢ and consequently ., P Cp, @. It is easy to see that ¢,
cannot have more subgoals than ¢ becuase each subgoal of 9, covers atleast one subgoal of ¢. We
now have two cases: either 1,,;, has the same nubmer of subgoals as ¢, or ¥,,;, has fewer subgoals
then .

If ¥in has the same number of subgoals as ¢ then each subgoal of i,,;, would be placed in the
corresponding bucket by the first phase of p-bucket algorithm. In the second phase the algorithm
produces cross-product of the contents of all buckets and, thus, it would produce x that has all of ¥,

subgoals. Then the algorithm would compute the head(x) that would be the longest possible list of
varables of the head(y). Therefore, the p-bucket algorithm would produce x such that ¥, Cp -

If ¥y has fewer subgoals then ¢ then each subgoal of ¥, would be placed in the corresponding
bucket by the first phase of p-bucket algorithm. In the second phase the algorithm produces cross-
product of the contents of all buckets and, thus, it would produce x that has all of ,,;, subgoals plus
some redundant subgoals. Then the algorithm would compute the head(x) that would be the longest
possible list of varables of the head(yp). Therefore, the p-bucket algorithm would produce x such that
wmin gp Xmin-

The equivalence of the claim of the theorem now follows from the characterization of equivalence of
unions of conjunctive queries given in [SY80]. []

We illustrate the algorithm with the example given in the introduction. The first step of the
algorithm will construct and populate two buckets, one for each of the subgoals in the query:

S1(Pname, Email)
Sa(Pname, Office)
S3(Pname, Area) S4(Pname, Dname)

The second step of the algorithm produces the following p-rewritings:
Q1(Pname, Email) < S;(Pname, Email), S4(Pname, compsci)
Q2(Pname, Office) «— Sy(Pname, Office), S4(Pname, compsci)
Q3(Pname, Area) « Ss(Pname, Area), S4(Prof, compsci)

Note that the second step of the algorithm can be easily modified to insert the fresh variables represent-
ing unknown values in the head of the rewritings. The result of the algorithm can then be presented to
the user as a table with nulls as in the example in the introduction.

6 Summary

For an illustrative example, let S consist of a single source with definition V (D, A,C) «— R(D, A, B),
S(B,C) and extension {V(c,a,a),V(d,a,b)}.

e poss(S) is equal to the closure under supersets of {{R(c,a,ao),S(ag,a), R(c,a,ap),S(ao,a)},
{R(¢,a,ap),S(agp,a), R(c,a,a1),S(a1,a)},...}, where ag,as,... is an enumeration of dom.

e T(S) ={R(c,a,X),S(X,a),R(d,a,Y),S(Y,b)}. It is easy to see that rep(T(S)) = poss(S).
Consider now p = Q(W, X, Z) — R(W,X,Y),S(Z, X).
o We have ¢(S) = o(T(S)) = {Q(c,a,X),Q(d,a,X)}. Let’s call this tableau T.

o The p-bucket algorithm will produce the rewriting ¢» = Q(W, X, E) «— V(W, X,Y), where E is a
fresh variable. Consequently, ©(S) =sup (S) = {Q(c,a,X),Q(d,a,Y)}. We call this tableau U

o Note that T' =g, U, but T #q U when 2 is equal to all (unions of) conjuctive queries. Although
T and U have the same partial facts, T' contains the additional information that the two variables
represent the same unknown value. This allows the user to extract more certain information from
T than from U. For example, let v = P(U,W) « Q(U,Y,X),Q(W,Z,X). Then the certain
answer to ¢ (rep(T)) is {P(c,d)}, and the certain answer to ¢ (rep(U)) is empty.

Thus, unless the user wants to materialize the excact answer and obtain certain answers for sub-
sequent queries on it, we conclude that for practical purposes in information integration systems, the
tableau @(8S) is a sufficient approximation of ¢(S).

Note that in the introductory example the tableau representing the inversion of sources Si, Ss, S3,
and Sy will never contain repeated occurences of any variable. In this example the ¢ and @ eval-
uations of the user query ¢ = @Q(Pname, Email, Office, Area) «— Prof (Pname, Email, Office, Area),
Dept(Pname, compsci) both produce the same tableau.

References

[DGY7]

[CM77]

[GM99]

[1L84]

[Len02]

[LMSS95]

[LRO96]

[Men84]

[SYS0]

[U1197]

O. M. Dushka, M. R. Genesereth. Answering recursive queries using views. In Proc. 16th
ACM Symp. on Principles of Database System (PODS ’97), pp. 109-116 Tuscon, Arizona,
1997.

A. K. Chandra, P. M. Merlin. Optimal implementation of conjunctive queries. In Proc. ACM
SIGACT Symp. on the Theory of Computing (STOC "77), pp. 77-90, 1977.

G. Grahne, A. O. Mendelzon. Tableau Techniques for Querying Information Sources through
Global Schemas. In Proc. 7th International Conference on Database Theory (ICDT ’99). pp.
332-347, Delphi, Greece 1999.

T. Imielinski, W. Lipski Jr. Incomplete Information in Relational Databases. In J. ACM
31:4, 1984, pp. 761-791.

M. Lenzerini. Data Integration: A Theoretical Perspective. Invited tutorial in Proc. 21st
ACM Symp. on Principles of Database Systems (PODS ’02), Madison, Wisconsin 2002.

A. Y. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava. Answering Queries Using Views. In
Proc. 14th ACM Symp. on Principles of Database Systems (PODS ’95), pp. 95-104, San
Jose, California 1995.

A. Y. Levy, A. Rajaraman, J. J. Ordille. Querying Heterogeneous Information Sources
Using Source Descriptions. Proc. 22nd Int’l. Conf. on Very Large Databases (VLDB ’96),
pp. 251-262, Mumbai (Bombay), India 1996.

A. O. Mendelzon. Database States and Their Tableaux. In ACM Trans. on Databases Sys-
tems 9:2, 1984, pp. 264-282.

Y. Sagiv, M. Yannakakis Equivalence among relational expressions with the union and
difference operators. In J. ACM 27:4, 1980, pp. 633-655.

J. D. Ullman. Information Integration Using Logical Views. In Proc. 6th International Con-
ference on Database Theory (ICDT ’97). pp. 19-40, Delphi, Greece 1997.

10

