PossDB: An Uncertainty Data Base Management System
based on Conditional Tables

Gosta Grahne
Concordia University
Montreal, Canada, H3G 1M8

grahne@cs.concordia.ca

1. INTRODUCTION

The PossDB (Possibilty Data Base) system is a Database
Management System fully supporting incomplete informa-
tion. The system is based on conditional tables [4] which
generalize relations in two ways. First, in the entries in
the columns, variables, representing unknown values, are al-
lowed in addition to the usual constants. The same variable
may occur in several entries. A conditional table T rep-
resents a set of complete instances, each obtained by sub-
stituting each variable with a constant, that is, applying a
valuation v to the table, where v is a mapping from the vari-
ables to constants. The second generalization is that each
tuple is associated with a condition, which is a Boolean com-
bination of atoms of the form z = y,x = a,a = b, for x,y
null values (variables), and a,b constants. In obtaining a
complete instance v(T'), only tuples whose local conditions
evaluate to true by v are included in v(T"). Below is an ex-
ample of a conditional table 7" and two complete instances
it represents.

| /: | E | COI\;D:H;ION | IUXC)[; ‘ IUX;)E ‘
x| d T=c a|b c | d
T e true ble c | e

The conditional tables support the full relational algebra [4]
and both possible and certain answers. A (complete) tuple
t is in the possible answer to a query @, if ¢t € Q(v(T))
for some valuation v, and t is in the certain answer if ¢ €
Q(v(T)) for all valuations v, Examples of select-project-join
queries and their answers are given in Section 2.
Uncertainty management is an important topic in data ex-
change and information integration. In these scenarios the
data stored in one data base has to be restructured to fit
the schema of a different database, which forces the intro-
duction of null values in the translated data, since the second
schema can contain columns not present in the first. Condi-
tional tables are the oldest and most fundamental instance of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The xth International Conference on Very Large Data Bases.
Proceedings of the VLDB Endowment, Vol. X, No. Y

Copyright 20xy VLDB Endowment 2150-8097/11/XX... $ 10.00.

Adrian Onet
Concordia University
Montreal, Canada, H3G 1M8

a_onet@cs.concordia.ca m_tartal@encs.concordia.ca

Nihat Tartal
Concordia University
Montreal, Canada, H3G 1M8

a semiring-labelled database [2]. By choosing the appropri-
ate semiring, labelled databases can model a variety of phe-
nomenons in addition to incomplete information. Examples
are probabilistic databases, various forms of database prove-
nance, databases with bag semantics, etc. It is our view
that the experiences obtained from the PossDB project will
also be applicable to all semiring based databases. Notable
other systems similar to ours include MayBMS - A Proba-
bilistic Database Management System [3] and Trio - A Sys-
tem for Integrated Management of Data, Uncertainty, and
Lineage [5] However, neither of these systems are based on
conditional tables, and to the best of our knowledge, PossDB
is the first implemented system based on conditional tables.
In the future we plan to extend our system to support the
Conditional Chase [1], a functionality which is highly rele-
vant in data exchange and information integration.

We have built the PossDB system on top of Postgres,
which is an open source extensible relational database man-
agement system. In case there are no variables and condi-
tions, PossDB acts as a classical DBMS. However, at this
point we have restricted the allowed datatypes to strings.
(note that most of the other datatypes can be simulated with
strings). In the future we will extend the allowed datatypes
to include all the base datatypes.

When compared with any other classical DBMS, our sys-
tem allows the following extra operations:

e Creation of conditional tables
e Querying conditional tables
e Materializing views as conditional tables

e Testing for tuple possibility and certainty in condi-
tional tables

In order to facilitate all these operations we extended the
ANSI SQL language and created a new language called CSQL
(Conditional SQL).

The structure of this demonstration paper is as follows:
Section 2 provides the features and functionalities of the sys-
tem, Section 3 provides a brief software architecture and im-
plementation overview, and Section 4 describes the demon-
stration process.

2. FEATURES OF POSSDB

The PossDB system has system specific operations and
functions related to conditional tables. As a running ex-
ample we will use two conditional tables: Employees and

Departments, with the schemas shown in Table 1 and Ta-
ble 2 respectively. Let us suppose that we have two uni-
versities merging, and one university has a Employees table
which contains Firstname, Lastname and Department, while
the Employees table of the other university has only Last-
name and Department. When we merge these two tables
we will have null values in the Firstname column for those
tuples that came from the second university’s Employee ta-
ble. Suppose that the first university has an employee in a
CS department with a Firstname John and Lastname Smith
and other university has an employee in CS department with
Lastname Smith. Assuming that full names are unique, we
know that these two employees are distinct. The univer-
sity has decided to retain only one of these employees in
the merged department, but we don’t yet know which one.
Thus the two Smith tuples are mutually exclusive, which is
captured by their local conditions. Additionally, there is a
third employee in the Math department of the second uni-
versity, for whom we know that his or her Firstname is not
Newman.

Table 1: Employees

| Firstname [Lastname [Dept || Condition |
John Smith CS x = John
x Smith CS x # John
y Jones Math || y # Newman

In the same merging example we assume that universities
haven’t yet decided the location of the Physics department,
except that it will not be located on Campus C. In the ta-
bles an empty Condition value represents a condition that
is always true.

Table 2: Departments
lDept[Location H Condition ‘
CS Campus A
Math | Campus B
z Campus C

z # Physics

2.1 Operations

Selection. The select statement generalizes the stan-
dard SQL select statement. By the generalization the select
statement will be able to return a conditional table when
querying an existing conditional table. The new extended
select statement also does optimizations on the resulting lo-
cal conditions. If the local condition is a tautology the con-
dition is replaced with true and when the local condition is a
contradiction the corresponding tuple will not be part in the
result. Let us consider the following example that returns
the employees with the name John:

SELECT *
FROM EMPLOYEES
WHERE FIRSTNAME = ’John’;

Running the query results in the following conditional table:

| Firstname [Lastname [Dept H Condition
John Smith CS x = John
y Jones Math || y # Newman Ay = John

The second row is automatically eliminated from the re-
sult since the local condition is a contradiction, and the tuple
will not be present in any complete instance represented by
the table.

Projection. The projection operation is implemented,
as expected, with the use of Select statement. The system
will automatically merge duplicate tuples by considering the
disjunction of the two existing local conditions. Consider the
following query:

SELECT LASTNAME, DEPT
FROM EMPLOYEES

The result will be

| Lastname [Dept H

Smith CS
Jones Math

Condition ‘

y # Newman Ay = John

The local condition for the first tuple is replaced by true
because it is a tautological formula after merging the formu-
lae from both tuples with the same SURNAME and DEPT.
Thus, the end user will not see the tautological local condi-
tions.

Join. The operation joins two or more conditional tables
and return a new conditional Table. To join the conditional
tables Employees and Departments we write the following

query:

SELECT EMPLOYEES.NAME,
DEPARTMENTS .DEPT,
DEPARTMENTS .LOCATION
FROM EMPLOYEES
INNER JOIN DEPARTMENTS ON
EMPLOYEES .DEPARTMENT = DEPARTMENTS.DEPARTMENT

The resulting conditional table is:

[Firstname [Dept | Location | Condition
John CS Campus A x = John
John z Campus C x # John A
z # Physics Nz =CS
T CS | Campus A x # John
T z Campus C x # John N
z = CS A z # Physics
y Math | Campus B x # John
y z Campus B y = Newman A
z = Math A z # Physics

It can be noted that in the join case the local conditions
for each resulted tuple is a conjunction of the local condi-
tions of the tuples that contributed by join to that tuple.

Create Table Conditional tables are defined using the
same syntax used to create regular tables in DBMS. Thus,
the following statement will create a conditional table:

CREATE TABLE DEPARTMENTS (
DEPT,
LOCATION

Materialized View In our system we allow material-
ization of queries over conditional tables. This means that
the system will create a new conditional table with the given
schema and with the tuples and conditions given by the re-
sult of the given select statement. For example, if one needs
to create a materialized view that contains all the tuples
and associated local conditions returned by SELECT * FROM
EMPLOYEES WHERE DEPT=’CS’ will run the following state-
ment that will materialize the result as a new conditional
table named 'CS_.EMPLOYEES’

CREATE TABLE CS_EMPLOYEES(
NAME,
SURNAME,
DEPT) FOR
SELECT *
FROM EMPLOYEES
WHERE DEPT = ’CS’

Insert We extended the standard SQL Insert statement
by allowing the users to also specify a local condition asso-
ciated with the inserted tuple. The null values needs to be
specified as the null label preceded by the # sign (given
this constraint the system does not allow the # as part of
regular strings). Thus, the string ”#x” specifies a new null
value labeled as ”x”. This notation is necessary in order
for the system to be able to delimit the labeled nulls from
regular text information. In case the CONDITION clause
is not specified in the INSERT statement, by default we
consider the local condition tautological, that is true. The
following example shows the syntax used to insert the tuple
(x,”Smith”,”CS”) with the local condition x="John’ in the
Employees table (note how the labeled null 'x’ is specified):

INSERT INTO EMPLOYEES
VALUES (’#x’,’Smith’,’CS’)
CONDITION (’#x = John’)

The Boolean expression used in the local condition are
constructed based on the equality (=) and inequality (=)
atoms connected by the conjunction (AND) and disjunction
(OR) operator. For example the expression
x = John A (y # Smith V y # Brown), where z and y are
variables, is expressed by the following string:

#x=’John’ AND (#y'!=’Smith’ OR #y!=’Brown’)

2.2 Functions

We have two new functions defined in PossDB. These
functions are used to query for certainty and possibility of
a tuple in a conditional table.

IS POSSIBLE(<Tuple>, Conditional Table Name)

Takes a tuple “Tuple“ and decides if the tuple is possible
in the conditional table given by the conditional table name.
Intuitively a tuple is possible in a given conditional table if
there exists a valuation for the conditional table that con-
tains that tuple. The “Tuple“ has to be in a format such
Name of the Column 1, Value of the Column 1, Name of the
Column 2, Value of the Column 2, ...

If the tuple is possible in the given conditional table it re-
turns true otherwise it returns false.

As an example onsider the following function call:

IS POSSIBLE(<’Name’,’John’, ’Surname’,’Smith’,
’Dept’,’CS’>, ’Employees’)

In our example this function returns true, because given
tuple is possible in the system, it is not certain because it
depends on the condition x = John.

IS CERTAIN(<Tuple>,Conditional Table Name)
It takes tuple and name of the conditional table as a param-
eter as the same way IsPossible does. Certain means that
the tuple does not depend on any condition, this functions
determines if the tuple is certain or not in the given table.
If we ask to the system if a tuple is certain in the table, we
write:

IS CERTAIN (<’Surname’,’Smith’, ’Dept’,’CS’>,
’Employees’)

This function returns true, because given tuple doesn’t
depend on any condition, that’s why it is certain.

3. IMPLEMENTATION

3.1 Implementation Overview

For the conditional tables we used regular relational ta-
bles and added one more text data typed column that will
store the local condition associated with the tuple specified
by the other columns to each table. The data types of the
tables are user defined data types called c_varchar (Condi-
tional varchar). The only difference between regular charac-
ter types and c_varchar is that c_varchar can store variables.
If a c_varchar data type contains a text which starts with
an number sign (#) this data type treats it as a variable.
In order to cope with the variables we had also to override
the equality operator. If the left-hand or right-hand of the
equality is variable, the equality is automatically satisfied,
otherwise the regular equality operator does its normal job.
Consequently, without variables the PossDB system works
as a regular RDBMS. If the equality has a variable the sys-
tem adds the equality to the corresponding local condition,
and sends the local condition to java method to check if
the local condition is satisfiable, a tautology, or a contradic-
tion. In order to check for satisfiability, the local condition
is converted to DNF (Disjunctive Normal Form)

(El/\Ez/\Eg) \/(E4/\E5/\...) V...

First Disjunct Second Disjunct

Here FE; denotes an equality or inequality. If one of the dis-
junct in DNF is satisfiable, we do not need to go over every
disjunct Only if the Boolean combination is contradiction
we have to make sure that all the disjuncts are contradic-
tions. In this case the java method returns false and DBMS
eliminates that tuple. For checking if a local condition is a
tautology we have to make sure that it is satisfiable first,
that’s why checking for tautology comes after checking the

satisfiability. For checking if a local condition is a tautology
is easier if it is in CNF (Conjunctive Normal Form):

(E1\/E2\/E3) /\(E4\/E5\/...) A ...

First Conjunct Second Conjunct

If one of the conjuncts in the CNF formula is not tautol-
ogy, it means the CNF formula is not tautology. If the CNF
formula is a tautology, every conjunct has to be inspected to
see if it is a tautology. In order to reduce the run-time and
complexity, we don’t convert the DNF formula into CNF
formula directly, instead we generate CNF conjuncts one by
one from the DNF. If a generated conjunct is not tautology
we terminate the process because it means that the formula
is not a tautology. If the generated conjunct is a tautology,
we continue to generate conjuncts until a non-tautological
one is encountered. If no generated conjunct is a tautology
it means that the whole formula is a tautology.

As an example, suppose we have a DNF formula:

(z=A AN y=B) V (x # A A y=D A z=E)

First, we take the first conjunct from the first disjunct of the
DNF formula and the first conjunct of the second disjunct,
forming the first conjunct (z = A) V (z # A) of the CNF
formula. Since (z = A) V (x # A) indeed is a tautology we
continue by forming the second conjunct (z = A) V (y =
D), which is not a tautology. Thus we can terminate the
processing of the local condition and return the fact that
the local condition is not a tautology.

After the Satisfiability and Tautology java method finishes
its duty, PossDB prepares the result of the query by adding
some annotations in the conditional column which our Java
GUI engine can understand and PossDB returns it to the
GUI engine. The GUI engine generates the output stream to
the user, or to a graphical interface. In general the PossDB
system works on Postgres with user defined functions. When
the user types CSQL query, the system generates a related
SQL query by using the user defined functions. The SQL
query is then run on Postgres.

)))

Gava 6 (DBMS (Java 6

Input
Stream
(csaL)

* JSON
o XML
o Text
o ...etc

JarFile e UDF Genorator J-
\ J\

Figure 1: System Workflow

3.2 System Architecture

PossDB system is built as a system on top of Postgres
RDBMS. We used PL/Java to introduce the user defined
functions. JavaT™6 and open source java sql parser ZQL

is being used for parsing the conditions and than evaluating
them. On the application layer Java is being used for parsing
and converting user input and output. This java application
is working with input and output streams that’s why it can
be easily ported to the any kind of application server or it
can be simply used through a console. The connection be-
tween the java middle tier and PostgreSQL database server
is done through JDBC.

4. DEMONSTRATION

For the demonstration we will use two data sets. One
small dataset, similar with the one used in this paper, is
used to clearly demonstrate the system capabilities. The
second set contains large conditional tables. This large data
was generated by us with the help of a data generator that
distributes nulls in the table in various ways. The second
data set is intended to show the scalability of the system.

Demonstration Steps

1. Basics We begin by introducing basic concepts such
as conditional tables, how the local conditions work,
how variables are represented. We then demonstrate a
number of Select-Project-Join queries, the insertion of
tuples into the tables, and the creation of materialized
views.

2. PossDB related Functions We continue by demon-
strating the Is Possible and Is Certain function func-
tions.

3. Large Data The last part of the demonstration will be
on very large data set with lots of missing information,
in order to show the scalability of our system.

S. REFERENCES

[1] G. Grahne and A. Onet. Closed world chasing. In
Proceedings of the 4th International Workshop on Logic
in Databases, LID ’11, pages 7-14, New York, NY,
USA, 2011. ACM.

[2] T. J. Green, G. Karvounarakis, and V. Tannen.

Provenance semirings. In Proceedings of the

twenty-sizth ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, PODS

'07, pages 31-40, New York, NY, USA, 2007. ACM.

J. Huang, L. Antova, C. Koch, and D. Olteanu.

Maybms: a probabilistic database management system.

In U. Cetintemel, S. B. Zdonik, D. Kossmann, and

N. Tatbul, editors, SIGMOD Conference, pages

1071-1074. ACM, 2009.

T. Imielinski and W. Lipski. Incomplete information in

relational databases. J. ACM, 31(4):761-791, September

1984.

[5] J. Widom. Trio: A system for data, uncertainty, and
lineage. In Managing and Mining Uncertain Data.
Springer, 2008.

3

[4

