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The basic semantic assumption is that an incomplete information 
database is a set of possible worlds (i.e. a set of complete 
databases). The main issue is then the problem of representing 
the set of possible worlds in a fashion that is suitable for storing 
and processing the database. There now exist a variety of 
representations, including the so called logical databases [ 15, 
201 and algebraic generalizations of ordinary relations [2,4,10, 
121. In particular, [2] presents a hierarchy of representations 
obtained by allowing variables and conditions on variables as 
entries in relations. 

In [2] the representation hierarchy is characterized w.r.t. the data 
complexity of querying incomplete information databases. We 
shall however see that taking dependencies into account 
complicates the picture somewhat. Thus we complement the 
representation hierarchy with a new construct called Horn 

tables. This class of tables is algebraically closed w.r.t. total 
dependencies, meaning that the information contained in the 
dependencies can be incorporated into a Horn table in such a 
way that the resulting table is still a Horn table. If the set of 
dependencies consists of one join dependency and a set of 
equality generating dependencies, the resulting table is no larger 
than a polynomial of the size of the original table (in some 
special cases any set of total dependencies is allowed). We shall 
also see that Horn tables allow positive existential queries to be 
evaluated in polynomial time (data complexity). If one is 
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interested in certain answers only, then any datalog query can be 
used without increasing the complexity. 

The rest of this paper is organized as follows. In Section 2 we 
give the definition of Horn tables and show how they fit into the 
representation hierarchy. Section 3 considers the problem of 
query evaluation. We define the certain and possible answers 
and give the central complexity results for Horn tables. We also 
recall some results from [2] so that we can give a completed 
picture of the complexity of querying incomplete information 
databases. In Section 4 we define the completion of an 
incomplete information database w.r.t. a set of dependencies, 
and we characterize the complexity of computing the completion 
for all representations in the hierarchy. 

Throughout this paper we make the closed world assumption 

[ 141, and the computational characterizations are in terms of data 
complexity [18], i.e. the complexity measure is a function of the 
database size, and not of the query size, or the size of the 
dependency set. Data complexity is considered as a reasonable 
measure since the the number of tuples in the database typically 
is the dominating factor in an application. 

2. HORN TABLES AND THE REPRESENTATION 
HIERARCHY 

We assume familiarity with the notions of relational databases, 
queries and dependencies (see e.g. [17]), in order to use a 
minimum of notation and space. 

Let the domain be a countably infinite set of constants 
(0, 1, L., c, . ..). A relation r of arity (a) is a finite subset of 
(domain)a, where a is an integer 20. A member of a relation is 
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called a fact. A complete information database I of arity 

(a i, . . . . aJ is a n-vector of relations (ri, . . . . r,,), such that each 
ri is Of tity ai. 

Let variables be a countably infinite set [x, y, z, u, v, . ..) that is 
disjoint from the domain. The variables are used to express null 
values, i.e. values present but unknown. A table T of arity (a) 
is obtained by replacing some occurrences of constants in a 
relation of arity (a) by distinct variables, so that each variable 
occurs at most once in the table. A tupe t of a table T is a tuple 
of variables and constants appearing as a row of T. 

An equality is an expression of the form x=8, where x is a 
variable and 6 is a variable or a constant. A literal is an equality 
x=6 or the negation not(xd) of an equality. A condition is a 
finite boolean combination of equalities. The boolean true and 
fake are encoded as x=x and n&(x=x), respectively. Conditions 
are associated with a table T in two ways: 

(i) a finite set of conditions m(T), called the global condition, 

is associated with the entire table, 

(ii) a locul condition e(t) is associated with each tuple t of T. 

A universal table (u-table for short) is a table T together with the 
associated conditions. An example of a u-table T appears in 
Figure 1. The two tuples are tt = (1, x, 2) and t2 = (2, y, z). 
The local conditions are +(tl) = not(x=l or z=2), and $(tz) = 
(z=5). The global condition a(T) is ((z=2 or y=x), not(z=9)). 

FIGURE 1. A u-table 

The set of instances represented by a u-table is obtained through 
valuations. A valuation h is a mapping from variables and 
constants to constants, such that h(c)=c for each constant. A 
valuation h naturally extends to tuples t and tables T, producing 
facts h(t) and relations h(T). A valuation h sarisfies a condition 
$(t) or Q(T), if its assignement of constants to variables makes 
formulas 4(t) resp. 0(T) true. The set of instances Z 
represented by a U-table T is defined as {I : there is a valuation 
h satisfying Q(T), such that instance I consists exactly of those 
facts h(t) for which h satisfies e(t)}. (Cf. Figure 2.) 
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FIGURE 2. Two instances represented by the u-table. 

The above definitions easily generalize to n-vectors of u-tables, 
as opposed to l-vectors, and I’s of arity (a,, . . ..G) as opposed 
to arity (a). For this generalization the sets of variables 
appearing in each T t, ..,T,, are pairwise disjoint; relationships 
between these variables are established through the conditions. 

The representation hierarchy is obtained by considering tables 
with syntactically restricted conditions. Let li. 12, . . . , I,,, be 
literals. A condition is said to be Horn, if it is of the form (1t or 

l2 or . . . or I,), r&l, such that at most one of the literals is 
not a negated equality. A table T is said to be a Horn-table 

(h-table) if the global condition is a set of Horn conditions, and 
the local conditions are conjunctions of equalities. 

The representation hierarchy in [2] includes the following 
classes of tables: Conditional tables (c-tables, all conditions are 
conjunctions of literals), global tables (g-tables, the global 
condition is a set of conjunctions of literals and the local 
conditions are true), equality tables (e-tables, the global 
condition is a set of conjunctions of equalities, the local 
conditions are true), inequality tables (i-tables, the global 
condition is a set of conjunctions of negated equalities and the 
local conditions are true), and plain tables (p-tables), where all 
conditions are true. 

The (augmented) representation hierarchy is shown in Figure 3. 
We note that h-tables are on the same level as c-tables, but we 
shall see that the h-tables preserve the computational bounds for 
g-tables. 

The u-tables were introduced in [lo], generalizing a construct in 
[ 121. The g-tables are equivalent (modulo isomorphism) to the 
logical databases of [20]. Constructs similar to p-tables appears 
in [4. 121, and the e-tables appear in [12]. 
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horn-tables l 

inequality-tables * 

FIGURE 3. The representation hierarchy. 

3. THE COMPLEXITY OF QUERY EVALUATION 

A query q of arity (ai, . . . . a,,) + (bt, . . . . b,,,) is a mapping 
from instances to instances of the appropriate arities. Let I be an 
instance of arity (at, . . . . a& Then the answer to a query q is 
q(I), i.e. the mapping applied to the instance. The answer q(I) is 
of arity (bt, . . . . b,). 

In an incomplete information database we have two types of 
answers. Let Z be a set of instances of appropriate arities. Then 
the possible answer to a query q is ’ 

q(L)= (q(I):IisinX). 

I 
The certain answer is 

/ 
(J : J is in q(I). for all I in Z ) . 

j 

i 
We shall consider three classes of queries (cf. Figure 4): 

(1) Positive existential queries. They can be expressed using 
relational expressions with operators project, Cartesian 

product, union, positive restrict and positive select. 

(2) First order queries, i.e. queries that can be expressed using 
gem-al restrict, general select and dzrerence in addition to the 
operators in the expressions for (1) (the complete 
relational algebra or calculus). 

FIGURE 4. Part of the query hierarchy [3]. 

In complete databases the answer to all queries in the classes (1) 
to (3) can be evaluated time polynomial in the size of the 
database [3] (data complexity, i.e. in the number of tuples in the 
database. The relation width and query size are fixed.) The data 
complexity of query evaluation for incomplete information 
databases was studied in [2] (see also references therein). The 
data complexity is a function of the size of a table. By the size 
we mean the number of tuples in the table plus the length of the 
conditions. The arities of the tables are assumed to be fixed. The 
size generalizes in the natural way to vectors of tables. 

For the possible answer the following decision problem was 
used in [2]: 

Let q be. a query, k a positive integer and x one of 
(u, h, c, g. e, i, p). Then the possibility problem is. given a 
set P of at most k facts and an x-table representing a set ‘l. of 
instances, to decide if there is an instance J in q(X). such that all 
facts of P are facts of J. The problem is denoted POSS(k. q, x). 

The following result is known: 

THEOREM 1 [2]. 
(i) POSS(k, q, c) is in NP. 
(ii) If q is a positive existential query, 

then POSSQ, q, c) is in PTJME. 
(ii) There is a first order query q, 

such that POSS(1, q. p) is NP-complete. 
(iv) There is a datalog query q, 

such that POSS(1, q, p) is NP-complete., 

To this we can now add 

THEOREM 2. 
(i) POSS(k, q, u) is in NP. 
(ii) If q is a positive existential query, 

then POSS(k, q, h) is in PTIME. 
(iii) Let q be the identity query. 

Then POSS( 1, q, u) is NP-complete. 
(3) Datalog queries (recursive queries). These queries can be 

expressed as least fixpoints of positive existential queries. 
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PROOF (sketch). (i) is a variation of Theorem 1 (i). The third 
claim is prooved by a reduction from the 3CNF satisfiablitiy 
problem [8]. The formula is encoded in the global condition. For 
(ii) we note that the query q can be incorporated in the table using 
the technique of [ 121. The resulting table is still a Horn table, and 
its size is polynomial in the size of the original table. Then we 
look for a bounded pattern., 

The theorem means that we can efficiently evaluate the possible 
answer to any positive existential query in Horn tables. The class 
of Horn tables is closed under these queries, meaning that the 
result is still a Horn table (and of size a polynomial of the 
original table). Thus the structure of the table is regular enough, 
so that a user who asks “is this small set of facts possible in the 
result” can have his answer in polynomial time. The results of 
Theorem 1 and 2 are summarized in Figure 5. 

id. pos. exist. datalog first order 

u-table 
c-table 
h-table 
g-table 
i-table 
e-table 
p-table 

FIGURE 5. The complexity of the possibility problem. 

For characterizing the complexity of evaluating the certain 
answer the following decision problem was used in [2]: 

Let q be a query, k a positive integer and x one of 
(u, h, c, g, e, i, p). Then the certainty problem is, given a set 
P of at most k facts and a x-table representing a set % of 
instances, to decide if all facts of P are facts of q(l), for all 1 in ‘L. 

Since the certainty problem is polynomially equivalent to the 
same problem where k is no longer a parameter [2], we shall 
denote the problem CERT(q, x). Now we can cite the following 
result: 

THEOREM 3 [2]. 
(i) CERT(q, c) is in coNP. 
(ii) For any datalog query q, CERT(q, g) is in PRIME. 
(iii) Let q be the identity. Then CERT(q, c) is CoNP-complete. 
(iv) There is a first order query q, such that CERT(q, p) is 

coNP-complete., 

The following theorem completes the picture. 

THEOREM 4. 
(i) CERT(q, u) is in CONP. 
(ii) For any datalog query q, CERT(q, h) is in PTlME. 

PROOF (sketch). For (ii) we replace x by 6 in the input table T, 
for all (x, a), such that the global condition Q(T) logically 
implies x=6. This step can be done in time polynomial in the size 
of T. Then we forget about the conditions and evalute the query 
as in complete databases, i.e. we treat the variables as constants, 
pairwise different, and different from all “real” constants. The 
evaluation in complete databases can be done in time polynomial 
in the size of the database [33., 

The results of Theorem 3 and 4 are summarized in Figure 6. 

id. pos. exist. datalog fast order 

u-table 
c-table 
h-table 
g-table 
i-table 
e-table 
p-table 

- 

0 

0 

- 

FIGURE 6. The complexity of the certainty problem. 

Thus Horn tables strengthens the result for global tables (logical 
databases). ln comparison with the possible answer, Horn tables 
allow efficient evaluation of the certain answer to positive 
existential and datalog queries, wheras only positive existential 
queries can be allowed in efficiently evaluating the possible 
answer. 

The real importance of the class of Horn tables will become clear 
in the next section, where we consider the problem of 
dependency enforcement. It turns out that Horn tables are 
algebraically closed w.r. t. total dependencies, and that the Horn 
tables is the only restricted class with this property. 
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4. DEPENDENCIES : REPRESENTATION AND 
COMPLEXITY 

The data dependencies form a language for specifying the 
semantics of an application [7], by restricting the set of allowed 
instances. Another way to look at the dependencies is as a set of 
deductive rules. This view holds especially for the so called tuple 

generating dependencies. In incomplete information databases 
the equality generating dependencies also play the role of 
deductive rules, since they will enforce restrictions on the null 
values. 

Let P be a predicate of arity n. Then P(xt, . . . . a) is an atomic 

formula. A total dependency of arity n is a first order sentence 
(for all (x1, . . . . xk)(Al and . . . and %) implies B) [5]. Here each 
Ai is an atomic formula, and B is an atomic formula or an 
equality xi=Xj, where xi and xj appears in the Ai:s. There are no 
free variables. If B is an atomic formula, then the dependency is 
a tuple generating one (abbr. TGD), and if B is an equaility, then 
the sentence represents an equality generating dependency (abbr. 
EGD). The well known join dependency (abbr JD) is a special 
case of a TGD, and the also well knownfunctional dependency 

(?bbr.FD),isa~~~f_-~~.Fmm-h~~~~~wyrp,~jl~ 
by a dependency mean a total one. Dependencies will be denoted 
Q, and finite sets of dependencies of the same arities are 
denoted C. 

An instance I of arity (n) satisjies a dependency c of arity (n) if I 
is a model (in the sence of mathematical logic) of the sentence. If 
I satisfies every dependency (T in a set Z we say that I satisfies 
Z. In the sequel, when we speak of instances and sets of 
dependencies, we implicitly assume that they are of the same 
arity. We shall also consider the following restricted classes of 
dependencies (cf. Figure 7). 

(1) Sets of FD ‘s. This is the most basic and practical class. 

(2) Sets consisting of EGD ‘s and one JD. In [6] it is argued that 
every real world application can be sufficiently constrained 
by one join dependency and a set of functional 
dependencies. Such a class is properly contained in this 

class. 

I 
TGD’s + EGD’s 

I 

one JD + EGDS 

0 FD’S 

FIGURE 7. Classes of dependencies. 

Let I be an instance and Z a set of dependencies. Then the 
completion of I w.r.t. Z, denoted C(I), is the smallest instance J, 
such that J contains I and J satisfies Z (cf. [ 131). Note that the 
completion does not necessary always exist, but if it does, it is 
unique and contains all the information implied by the 
dependencies (deductive rules). The requirement for minimabty 
is the interpretation of the closed world assumption. 

Then let Z be a set of instance and Z a set of dependencies. Then 
the completion of Z w.r.t. I: is 

Z(%)=[Z(I):Iisin2). 

Since Z is represented by a table in some class we are faced with 
the problem of representing Z(%) in some way. It turns out that 
apart from the u-tables, the class of Horn tables is the only class 
that is able to represent Z(%) for all C. Formally we have 

THEOREM 5. (i) For any h-table T and set of dependencies Z, 
there is a h-table U, such that U represents the set E(1), where Z 
is the set of instances represented by T. 
(ii) There is a p-table T and a functional dependency B, such that 
no c-table represents o(2), where Z is the set of instances 
represented by T. 

PROOF. For (i) one uses the algebraic counterparts of the 
dependencies [ 1,211 in the generalized chase of [lo]. . 

The process of computing the completion, given a table T and a 
set Z, will be called dependency enforcement. The data 
complexity of dependency enforcement is the subject for the rest 
of this paper. For complete databases Z(I) can be computed in 
time polynomial in the number of facts in I [ 193. 

THEOREM 6. Let T be h-table and Z the set of instances it 
represents, and let Z be a set of equality generating dependencies 
and one join dependency. Then it is possible to compute a h-table 
U that represents m), in time polynomial in the size of T. 
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PROOF. The proof is based on the fact that a join dependency 
requires only one application to converge [16]. This property 
carries over to the generalized chase of tables., 

The theorem means that the information contained in the 
dependencies can be efficiently incorporated into the database, 
yielding a h-table of size polynomial in the size of the original 
table. Since the resulting table is a Horn table, it will allow 
efficient subsequent query evaluation in the cases mentioned in 
Section 3. Furthermore, the allowed class of dependencies is of 
practical interest. 

In order to exhaust the computational complexity of dependency 
enforcement we shall consider a variant of the possibility 
problem. 

Let Z be a set of dependencies, k a positive integer and x one of 
(u, h, c, g, e. i, p). Then the possibility problem is, given a set P 
of at most k facts and a x-table representing a set Z of instances, 
to decide if there is an instance J in X(X). such that all facts of P 
are facts of J. The problem is denoted POSSQ, & x). 

THEOREM 7. 
(i) POSS(k, Z, u) is in NP. 
(ii) If Z is a set of equality generating dependencies and one 

join dependency, then POSS(k, Z, h) is in PTIh4E. 
(iii) There is a functional dependency 0, such that 

POSS(1, 6, c) is NP-complete. 
(iv) There is a set of dependencies C, such that POSS(l, Z, p) 

is NP-complete. 

PROOF. For (i) we guess a valuation h, and check if P is 
contained in C(h(T)). It follows from [19] that Z(h(T)) can be 
computed in time polynomial in h(T). (ii) follows from Theorem 
6 and Theorem 2. For (iii) and (iv) we use reductions from the 
3CNF satistiablity problem [8]., 

The results of Theorem 7 am summarized in Figure 8. 

one FD one JD + EGD’s TGD’s + EGD’s 

u-table 
c-table 
h-table 
g-table 
i-table 
e-table 
p-table 

If the user is only concerned with the subsequent evaluation of 
the certain answer to datalog queries we can allow a larger class 
of dependencies. In this case we compute a table that 
approximates the required result, in such a way that when 

queries are evaluated no corruption of the information is visible. 

Let T and U be tables, and ‘l resp. 1 the set of instances they 
represent. Let Z be a set of dependencies. Then we say that U 
suflciently represents Z(%), if for any datalog query, the certain 
answers when evaluated on ‘J and on Z(‘L) are the same. 

.TEOREM 8. (i) Let T be a h-table , and ‘L the set of instances it 
represents. Let I; be a set of total dependencies. Then there is an 
e-table U that sufficiently represents Z(‘l..). 
(ii) There is a c-table T, and a set of dependencies 2;, such that 
no e-table sufficiently represents Z(2). where ‘I. is the set of 
instances represented by T. 

PROOF. For (i) we use a variation of the generalized chase 
process [lo]., 

Theorem 8 (i) strengthens a result in [ll], where a similar 
property was proved for e-tables under the open world 
assumption. 

THEOREM 9. Let T, Z and U be as in Theorem 8 (i). Then U 
can be computed in time polynomial in the size of T., 

Finally we shall consider the complexity of computing a 
sufficient representation for all tables in the hierarchy. For this 
we use a variation of the certainty problem 

Let Z be a set of dependencies, and let x one of 
(u, h, c, g, e, i, p). Then the certainty problem is, given a set 
P of facts and a x-table representing a set 1 of instances. to 
decide if all facts of P are facts of Z(I), for all I in ‘L. 

The certainty problem for dependencies is dencted CERT(Z, x). 
We now have 

THEOREM 10. 
(i) For any set Z of dependecies, CERT(Z, u) is in coNP. 
(ii) For any set Z of dependencies, CERT(Z, h) is in PTIME. 
(iii) CERT(O, c) is coNP-complete. 

FIGURE 8. The possiblity problem for dependencies. 
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PROOF. (i) The complement of the problem is to verify 
whether there exists a valuation h, such that P is not included in 
qh(T)). The latter problem is in NP. (ii) follows from Theorem 
9 and Theorem 4, and (iii) follows directly from Theorem 3 
(iii). . 

These results are summarized in Figure 9. 

I 0 TGDs + EGD’s 

u-table * 
c-table o CONP : 

h-table 
.:. ..,. .::??&&+. .:.. :... .$ :~..+q*~. ‘“:.:::~::(‘~,.~‘):.: . :,+:::. 
‘: “‘~o:~:~‘~.~. :‘:‘:y::::‘::..:... . . . . : :...:.: ,.:,..:::;i’\;p; y;zA:: ( :: 

g-table 
‘:~~~:~~~~~..~~~~,,::::~~:- :A.$ ; i . . . . . . .../ 
::ygg@& ::.: .: ““.‘i.’ ::.:.::2.::::; / .,, ..,,_,:, >$, 

; I:.:~~::‘~~~~...::. .., ,:::, ,, _ 1 :,,,,:,,,, ,.,, 
i-table 
e-table 

M 

~~~~~~~~ 
I:&*:~ :..:: :“::::::I~:::~:,:~. :i.:::.::....- . . . . . . :..:::. ‘::.::::.:,:..~::~.:.~.~:~::~~i:i~i:~~ .:,: $ j. :. ‘,‘:‘:‘8’.:,,: .‘“..: 

p-table ‘::~>.~~, /I ..,.: ii’~,~,:,,~,:.:.::.~.~~:~:~ ,.:i:s:. 
p& : ~ :?‘p ‘::::::::::::~:::: &:.. :, ,., .:..;:y. :.‘,::::*..~~~:.:.:.:...~ ,. ;.: . . . . . . 

FIGURE 9. The certainty problem for dependencies. 

The complexity result of this section are related to those of [9] 
and [ 191. The first paper uses a weaker form of completion and 
considers the combined complexity, i.e. a measure of the size on 
the database and the dependency set. Theorem 10 (ii) can be seen 
as a strengthening of Theorem 4.2 in [19], where the same 
bound is proved for a construct equivalent to a p-table where 
some columns contain only constants and the rest of the columns 
contain only (distinct) variables. The hardness results of { 191 are 
not directly comparable to ours, since [19] has a different 
interpretation of the closed world assumption. 

5. CONCLUSIONS 

We have complemented the representation bierachy with a 
construct called Horn tables. The class of Horn tables is 
algebraically closed under any set of total dependencies, and it is 
the only class in the hierarchy with this property (apart from the 
top element in the hierachy, which is of theoretical interest only). 
All sets of dependencies consisting of equality generating 
dependencies and one join dependency can be efficiently 
incorporated into a Horn table. The certain answer to any datalog 
query can be evaluated in polynomial time in the size of the Horn 
table. The same is true for the possible answer to any positive 
existential query. If one is concerned only with certain answers 
to datalog queries, any set of dependencies can be efficiently 
incorporated into a Horn table so that no corruption of the 
information occurs w.r.t. the answers. 

In a forthcoming work we shall deal with the problem of 
updating Horn tables. 
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