
1. INTRODUCTION

HORN TABLES - AN EFFICIENT TOOL FOR HANDLING
INCOMPLETE INFORMATION IN DATABASES

Gijsta Grahne

University of Helsinki, Department of Computer Science
Teollisuuskatu 23 SF-005 10 Helsinki FINLAND

The basic semantic assumption is that an incomplete information
database is a set of possible worlds (i.e. a set of complete
databases). The main issue is then the problem of representing
the set of possible worlds in a fashion that is suitable for storing
and processing the database. There now exist a variety of
representations, including the so called logical databases [15,
201 and algebraic generalizations of ordinary relations [2,4,10,
121. In particular, [2] presents a hierarchy of representations
obtained by allowing variables and conditions on variables as
entries in relations.

In [2] the representation hierarchy is characterized w.r.t. the data
complexity of querying incomplete information databases. We
shall however see that taking dependencies into account
complicates the picture somewhat. Thus we complement the
representation hierarchy with a new construct called Horn

tables. This class of tables is algebraically closed w.r.t. total
dependencies, meaning that the information contained in the
dependencies can be incorporated into a Horn table in such a
way that the resulting table is still a Horn table. If the set of
dependencies consists of one join dependency and a set of
equality generating dependencies, the resulting table is no larger
than a polynomial of the size of the original table (in some
special cases any set of total dependencies is allowed). We shall
also see that Horn tables allow positive existential queries to be
evaluated in polynomial time (data complexity). If one is

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1989 ACM 0-89791-308-6/89/0003/0075 $1.50

interested in certain answers only, then any datalog query can be
used without increasing the complexity.

The rest of this paper is organized as follows. In Section 2 we
give the definition of Horn tables and show how they fit into the
representation hierarchy. Section 3 considers the problem of
query evaluation. We define the certain and possible answers
and give the central complexity results for Horn tables. We also
recall some results from [2] so that we can give a completed
picture of the complexity of querying incomplete information
databases. In Section 4 we define the completion of an
incomplete information database w.r.t. a set of dependencies,
and we characterize the complexity of computing the completion
for all representations in the hierarchy.

Throughout this paper we make the closed world assumption

[141, and the computational characterizations are in terms of data
complexity [18], i.e. the complexity measure is a function of the
database size, and not of the query size, or the size of the
dependency set. Data complexity is considered as a reasonable
measure since the the number of tuples in the database typically
is the dominating factor in an application.

2. HORN TABLES AND THE REPRESENTATION
HIERARCHY

We assume familiarity with the notions of relational databases,
queries and dependencies (see e.g. [17]), in order to use a
minimum of notation and space.

Let the domain be a countably infinite set of constants
(0, 1, L., c, . ..). A relation r of arity (a) is a finite subset of
(domain)a, where a is an integer 20. A member of a relation is

75

called a fact. A complete information database I of arity

(a i, aJ is a n-vector of relations (ri, r,,), such that each
ri is Of tity ai.

Let variables be a countably infinite set [x, y, z, u, v, . ..) that is
disjoint from the domain. The variables are used to express null
values, i.e. values present but unknown. A table T of arity (a)
is obtained by replacing some occurrences of constants in a
relation of arity (a) by distinct variables, so that each variable
occurs at most once in the table. A tupe t of a table T is a tuple
of variables and constants appearing as a row of T.

An equality is an expression of the form x=8, where x is a
variable and 6 is a variable or a constant. A literal is an equality
x=6 or the negation not(xd) of an equality. A condition is a
finite boolean combination of equalities. The boolean true and
fake are encoded as x=x and n&(x=x), respectively. Conditions
are associated with a table T in two ways:

(i) a finite set of conditions m(T), called the global condition,

is associated with the entire table,

(ii) a locul condition e(t) is associated with each tuple t of T.

A universal table (u-table for short) is a table T together with the
associated conditions. An example of a u-table T appears in
Figure 1. The two tuples are tt = (1, x, 2) and t2 = (2, y, z).
The local conditions are +(tl) = not(x=l or z=2), and $(tz) =
(z=5). The global condition a(T) is ((z=2 or y=x), not(z=9)).

FIGURE 1. A u-table

The set of instances represented by a u-table is obtained through
valuations. A valuation h is a mapping from variables and
constants to constants, such that h(c)=c for each constant. A
valuation h naturally extends to tuples t and tables T, producing
facts h(t) and relations h(T). A valuation h sarisfies a condition
$(t) or Q(T), if its assignement of constants to variables makes
formulas 4(t) resp. 0(T) true. The set of instances Z
represented by a U-table T is defined as {I : there is a valuation
h satisfying Q(T), such that instance I consists exactly of those
facts h(t) for which h satisfies e(t)}. (Cf. Figure 2.)

132 El 235

FIGURE 2. Two instances represented by the u-table.

The above definitions easily generalize to n-vectors of u-tables,
as opposed to l-vectors, and I’s of arity (a,,G) as opposed
to arity (a). For this generalization the sets of variables
appearing in each T t, ..,T,, are pairwise disjoint; relationships
between these variables are established through the conditions.

The representation hierarchy is obtained by considering tables
with syntactically restricted conditions. Let li. 12, . . . , I,,, be
literals. A condition is said to be Horn, if it is of the form (1t or

l2 or . . . or I,), r&l, such that at most one of the literals is
not a negated equality. A table T is said to be a Horn-table

(h-table) if the global condition is a set of Horn conditions, and
the local conditions are conjunctions of equalities.

The representation hierarchy in [2] includes the following
classes of tables: Conditional tables (c-tables, all conditions are
conjunctions of literals), global tables (g-tables, the global
condition is a set of conjunctions of literals and the local
conditions are true), equality tables (e-tables, the global
condition is a set of conjunctions of equalities, the local
conditions are true), inequality tables (i-tables, the global
condition is a set of conjunctions of negated equalities and the
local conditions are true), and plain tables (p-tables), where all
conditions are true.

The (augmented) representation hierarchy is shown in Figure 3.
We note that h-tables are on the same level as c-tables, but we
shall see that the h-tables preserve the computational bounds for
g-tables.

The u-tables were introduced in [lo], generalizing a construct in
[121. The g-tables are equivalent (modulo isomorphism) to the
logical databases of [20]. Constructs similar to p-tables appears
in [4. 121, and the e-tables appear in [12].

76

horn-tables l

inequality-tables *

FIGURE 3. The representation hierarchy.

3. THE COMPLEXITY OF QUERY EVALUATION

A query q of arity (ai, a,,) + (bt, b,,,) is a mapping
from instances to instances of the appropriate arities. Let I be an
instance of arity (at, a& Then the answer to a query q is
q(I), i.e. the mapping applied to the instance. The answer q(I) is
of arity (bt, b,).

In an incomplete information database we have two types of
answers. Let Z be a set of instances of appropriate arities. Then
the possible answer to a query q is ’

q(L)= (q(I):IisinX).

I
The certain answer is

/
(J : J is in q(I). for all I in Z) .

j

i
We shall consider three classes of queries (cf. Figure 4):

(1) Positive existential queries. They can be expressed using
relational expressions with operators project, Cartesian

product, union, positive restrict and positive select.

(2) First order queries, i.e. queries that can be expressed using
gem-al restrict, general select and dzrerence in addition to the
operators in the expressions for (1) (the complete
relational algebra or calculus).

FIGURE 4. Part of the query hierarchy [3].

In complete databases the answer to all queries in the classes (1)
to (3) can be evaluated time polynomial in the size of the
database [3] (data complexity, i.e. in the number of tuples in the
database. The relation width and query size are fixed.) The data
complexity of query evaluation for incomplete information
databases was studied in [2] (see also references therein). The
data complexity is a function of the size of a table. By the size
we mean the number of tuples in the table plus the length of the
conditions. The arities of the tables are assumed to be fixed. The
size generalizes in the natural way to vectors of tables.

For the possible answer the following decision problem was
used in [2]:

Let q be. a query, k a positive integer and x one of
(u, h, c, g. e, i, p). Then the possibility problem is. given a
set P of at most k facts and an x-table representing a set ‘l. of
instances, to decide if there is an instance J in q(X). such that all
facts of P are facts of J. The problem is denoted POSS(k. q, x).

The following result is known:

THEOREM 1 [2].
(i) POSS(k, q, c) is in NP.
(ii) If q is a positive existential query,

then POSSQ, q, c) is in PTJME.
(ii) There is a first order query q,

such that POSS(1, q. p) is NP-complete.
(iv) There is a datalog query q,

such that POSS(1, q, p) is NP-complete.,

To this we can now add

THEOREM 2.
(i) POSS(k, q, u) is in NP.
(ii) If q is a positive existential query,

then POSS(k, q, h) is in PTIME.
(iii) Let q be the identity query.

Then POSS(1, q, u) is NP-complete.
(3) Datalog queries (recursive queries). These queries can be

expressed as least fixpoints of positive existential queries.

77

PROOF (sketch). (i) is a variation of Theorem 1 (i). The third
claim is prooved by a reduction from the 3CNF satisfiablitiy
problem [8]. The formula is encoded in the global condition. For
(ii) we note that the query q can be incorporated in the table using
the technique of [121. The resulting table is still a Horn table, and
its size is polynomial in the size of the original table. Then we
look for a bounded pattern.,

The theorem means that we can efficiently evaluate the possible
answer to any positive existential query in Horn tables. The class
of Horn tables is closed under these queries, meaning that the
result is still a Horn table (and of size a polynomial of the
original table). Thus the structure of the table is regular enough,
so that a user who asks “is this small set of facts possible in the
result” can have his answer in polynomial time. The results of
Theorem 1 and 2 are summarized in Figure 5.

id. pos. exist. datalog first order

u-table
c-table
h-table
g-table
i-table
e-table
p-table

FIGURE 5. The complexity of the possibility problem.

For characterizing the complexity of evaluating the certain
answer the following decision problem was used in [2]:

Let q be a query, k a positive integer and x one of
(u, h, c, g, e, i, p). Then the certainty problem is, given a set
P of at most k facts and a x-table representing a set % of
instances, to decide if all facts of P are facts of q(l), for all 1 in ‘L.

Since the certainty problem is polynomially equivalent to the
same problem where k is no longer a parameter [2], we shall
denote the problem CERT(q, x). Now we can cite the following
result:

THEOREM 3 [2].
(i) CERT(q, c) is in coNP.
(ii) For any datalog query q, CERT(q, g) is in PRIME.
(iii) Let q be the identity. Then CERT(q, c) is CoNP-complete.
(iv) There is a first order query q, such that CERT(q, p) is

coNP-complete.,

The following theorem completes the picture.

THEOREM 4.
(i) CERT(q, u) is in CONP.
(ii) For any datalog query q, CERT(q, h) is in PTlME.

PROOF (sketch). For (ii) we replace x by 6 in the input table T,
for all (x, a), such that the global condition Q(T) logically
implies x=6. This step can be done in time polynomial in the size
of T. Then we forget about the conditions and evalute the query
as in complete databases, i.e. we treat the variables as constants,
pairwise different, and different from all “real” constants. The
evaluation in complete databases can be done in time polynomial
in the size of the database [33.,

The results of Theorem 3 and 4 are summarized in Figure 6.

id. pos. exist. datalog fast order

u-table
c-table
h-table
g-table
i-table
e-table
p-table

-

0

0

-

FIGURE 6. The complexity of the certainty problem.

Thus Horn tables strengthens the result for global tables (logical
databases). ln comparison with the possible answer, Horn tables
allow efficient evaluation of the certain answer to positive
existential and datalog queries, wheras only positive existential
queries can be allowed in efficiently evaluating the possible
answer.

The real importance of the class of Horn tables will become clear
in the next section, where we consider the problem of
dependency enforcement. It turns out that Horn tables are
algebraically closed w.r. t. total dependencies, and that the Horn
tables is the only restricted class with this property.

78

4. DEPENDENCIES : REPRESENTATION AND
COMPLEXITY

The data dependencies form a language for specifying the
semantics of an application [7], by restricting the set of allowed
instances. Another way to look at the dependencies is as a set of
deductive rules. This view holds especially for the so called tuple

generating dependencies. In incomplete information databases
the equality generating dependencies also play the role of
deductive rules, since they will enforce restrictions on the null
values.

Let P be a predicate of arity n. Then P(xt, a) is an atomic

formula. A total dependency of arity n is a first order sentence
(for all (x1, xk)(Al and . . . and %) implies B) [5]. Here each
Ai is an atomic formula, and B is an atomic formula or an
equality xi=Xj, where xi and xj appears in the Ai:s. There are no
free variables. If B is an atomic formula, then the dependency is
a tuple generating one (abbr. TGD), and if B is an equaility, then
the sentence represents an equality generating dependency (abbr.
EGD). The well known join dependency (abbr JD) is a special
case of a TGD, and the also well knownfunctional dependency

(?bbr.FD),isa~~~f_-~~.Fmm-h~~~~~wyrp,~jl~
by a dependency mean a total one. Dependencies will be denoted
Q, and finite sets of dependencies of the same arities are
denoted C.

An instance I of arity (n) satisjies a dependency c of arity (n) if I
is a model (in the sence of mathematical logic) of the sentence. If
I satisfies every dependency (T in a set Z we say that I satisfies
Z. In the sequel, when we speak of instances and sets of
dependencies, we implicitly assume that they are of the same
arity. We shall also consider the following restricted classes of
dependencies (cf. Figure 7).

(1) Sets of FD ‘s. This is the most basic and practical class.

(2) Sets consisting of EGD ‘s and one JD. In [6] it is argued that
every real world application can be sufficiently constrained
by one join dependency and a set of functional
dependencies. Such a class is properly contained in this

class.

I
TGD’s + EGD’s

I

one JD + EGDS

0 FD’S

FIGURE 7. Classes of dependencies.

Let I be an instance and Z a set of dependencies. Then the
completion of I w.r.t. Z, denoted C(I), is the smallest instance J,
such that J contains I and J satisfies Z (cf. [131). Note that the
completion does not necessary always exist, but if it does, it is
unique and contains all the information implied by the
dependencies (deductive rules). The requirement for minimabty
is the interpretation of the closed world assumption.

Then let Z be a set of instance and Z a set of dependencies. Then
the completion of Z w.r.t. I: is

Z(%)=[Z(I):Iisin2).

Since Z is represented by a table in some class we are faced with
the problem of representing Z(%) in some way. It turns out that
apart from the u-tables, the class of Horn tables is the only class
that is able to represent Z(%) for all C. Formally we have

THEOREM 5. (i) For any h-table T and set of dependencies Z,
there is a h-table U, such that U represents the set E(1), where Z
is the set of instances represented by T.
(ii) There is a p-table T and a functional dependency B, such that
no c-table represents o(2), where Z is the set of instances
represented by T.

PROOF. For (i) one uses the algebraic counterparts of the
dependencies [1,211 in the generalized chase of [lo]. .

The process of computing the completion, given a table T and a
set Z, will be called dependency enforcement. The data
complexity of dependency enforcement is the subject for the rest
of this paper. For complete databases Z(I) can be computed in
time polynomial in the number of facts in I [193.

THEOREM 6. Let T be h-table and Z the set of instances it
represents, and let Z be a set of equality generating dependencies
and one join dependency. Then it is possible to compute a h-table
U that represents m), in time polynomial in the size of T.

79

PROOF. The proof is based on the fact that a join dependency
requires only one application to converge [16]. This property
carries over to the generalized chase of tables.,

The theorem means that the information contained in the
dependencies can be efficiently incorporated into the database,
yielding a h-table of size polynomial in the size of the original
table. Since the resulting table is a Horn table, it will allow
efficient subsequent query evaluation in the cases mentioned in
Section 3. Furthermore, the allowed class of dependencies is of
practical interest.

In order to exhaust the computational complexity of dependency
enforcement we shall consider a variant of the possibility
problem.

Let Z be a set of dependencies, k a positive integer and x one of
(u, h, c, g, e. i, p). Then the possibility problem is, given a set P
of at most k facts and a x-table representing a set Z of instances,
to decide if there is an instance J in X(X). such that all facts of P
are facts of J. The problem is denoted POSSQ, & x).

THEOREM 7.
(i) POSS(k, Z, u) is in NP.
(ii) If Z is a set of equality generating dependencies and one

join dependency, then POSS(k, Z, h) is in PTIh4E.
(iii) There is a functional dependency 0, such that

POSS(1, 6, c) is NP-complete.
(iv) There is a set of dependencies C, such that POSS(l, Z, p)

is NP-complete.

PROOF. For (i) we guess a valuation h, and check if P is
contained in C(h(T)). It follows from [19] that Z(h(T)) can be
computed in time polynomial in h(T). (ii) follows from Theorem
6 and Theorem 2. For (iii) and (iv) we use reductions from the
3CNF satistiablity problem [8].,

The results of Theorem 7 am summarized in Figure 8.

one FD one JD + EGD’s TGD’s + EGD’s

u-table
c-table
h-table
g-table
i-table
e-table
p-table

If the user is only concerned with the subsequent evaluation of
the certain answer to datalog queries we can allow a larger class
of dependencies. In this case we compute a table that
approximates the required result, in such a way that when

queries are evaluated no corruption of the information is visible.

Let T and U be tables, and ‘l resp. 1 the set of instances they
represent. Let Z be a set of dependencies. Then we say that U
suflciently represents Z(%), if for any datalog query, the certain
answers when evaluated on ‘J and on Z(‘L) are the same.

.TEOREM 8. (i) Let T be a h-table , and ‘L the set of instances it
represents. Let I; be a set of total dependencies. Then there is an
e-table U that sufficiently represents Z(‘l..).
(ii) There is a c-table T, and a set of dependencies 2;, such that
no e-table sufficiently represents Z(2). where ‘I. is the set of
instances represented by T.

PROOF. For (i) we use a variation of the generalized chase
process [lo].,

Theorem 8 (i) strengthens a result in [ll], where a similar
property was proved for e-tables under the open world
assumption.

THEOREM 9. Let T, Z and U be as in Theorem 8 (i). Then U
can be computed in time polynomial in the size of T.,

Finally we shall consider the complexity of computing a
sufficient representation for all tables in the hierarchy. For this
we use a variation of the certainty problem

Let Z be a set of dependencies, and let x one of
(u, h, c, g, e, i, p). Then the certainty problem is, given a set
P of facts and a x-table representing a set 1 of instances. to
decide if all facts of P are facts of Z(I), for all I in ‘L.

The certainty problem for dependencies is dencted CERT(Z, x).
We now have

THEOREM 10.
(i) For any set Z of dependecies, CERT(Z, u) is in coNP.
(ii) For any set Z of dependencies, CERT(Z, h) is in PTIME.
(iii) CERT(O, c) is coNP-complete.

FIGURE 8. The possiblity problem for dependencies.

80

PROOF. (i) The complement of the problem is to verify
whether there exists a valuation h, such that P is not included in
qh(T)). The latter problem is in NP. (ii) follows from Theorem
9 and Theorem 4, and (iii) follows directly from Theorem 3
(iii). .

These results are summarized in Figure 9.

I 0 TGDs + EGD’s

u-table *
c-table o CONP :

h-table
.:. ..,. .::??&&+. .:.. :... .$:~..+q*~. ‘“:.:::~::(‘~,.~‘):.: . :,+:::.
‘: “‘~o:~:~‘~.~. :‘:‘:y::::‘::..:... : :...:.: ,.:,..:::;i’\;p; y;zA:: (::

g-table
‘:~~~:~~~~~..~~~~,,::::~~:- :A.$; i/
::ygg@& ::.: .: ““.‘i.’ ::.:.::2.::::; / .,, ..,,_,:, >$,

; I:.:~~::‘~~~~...::. .., ,:::, ,, _ 1 :,,,,:,,,, ,.,,
i-table
e-table

M

~~~~~~~~ 
I:&*:~ :..:: :“::::::I~:::~:,:~. :i.:::.::....- . . . . . . :..:::. ‘::.::::.:,:..~::~.:.~.~:~::~~i:i~i:~~ .:,: $ j. :. ‘,‘:‘:‘8’.:,,: .‘“..: 

p-table ‘::~>.~~, /I ..,.: ii’~,~,:,,~,:.:.::.~.~~:~:~ ,.:i:s:. 
p& : ~ :?‘p ‘::::::::::::~:::: &:.. :, ,., .:..;:y. :.‘,::::*..~~~:.:.:.:...~ ,. ;.: . . . . . . 

FIGURE 9. The certainty problem for dependencies. 

The complexity result of this section are related to those of [9] 
and [ 191. The first paper uses a weaker form of completion and 
considers the combined complexity, i.e. a measure of the size on 
the database and the dependency set. Theorem 10 (ii) can be seen 
as a strengthening of Theorem 4.2 in [19], where the same 
bound is proved for a construct equivalent to a p-table where 
some columns contain only constants and the rest of the columns 
contain only (distinct) variables. The hardness results of { 191 are 
not directly comparable to ours, since [19] has a different 
interpretation of the closed world assumption. 

5. CONCLUSIONS 

We have complemented the representation bierachy with a 
construct called Horn tables. The class of Horn tables is 
algebraically closed under any set of total dependencies, and it is 
the only class in the hierarchy with this property (apart from the 
top element in the hierachy, which is of theoretical interest only). 
All sets of dependencies consisting of equality generating 
dependencies and one join dependency can be efficiently 
incorporated into a Horn table. The certain answer to any datalog 
query can be evaluated in polynomial time in the size of the Horn 
table. The same is true for the possible answer to any positive 
existential query. If one is concerned only with certain answers 
to datalog queries, any set of dependencies can be efficiently 
incorporated into a Horn table so that no corruption of the 
information occurs w.r.t. the answers. 

In a forthcoming work we shall deal with the problem of 
updating Horn tables. 

ACKNOWLEDGEMENT 

This work was financially supported by the Academy of Finland 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Abiteboul, S., Algebraic Analogues to fundamental notions 
of query and dependency theory. Rapports de Recherche 
201. Institut National de Recherche en Informatique et en 
Automatique. Roquencourt, Avrill983. 

Abiteboul, S., Kanellakis, P., Grahne, G., On the 
representation and querying of sets of possible worlds. 
Proc. ACM SIGMOD Internat. Conf. on Management of 

Data. San Francisco, May 27-29, 1987, pp. 34-48. 

Char&a, A. K., Harel, D., Structure and complexity of 
relational queries. J. Comput. System. Sci. 25, 1 (Aug. 
1982). 99-128. , 

Codd, E.F., Extending the database relational model to 
capture more meaning. ACM Trans Database Syst. 4, 4 

(Dec. 19?9), 379-434. 

Fagin, R., Horn clauses and database dependencies. J. 

Assoc. Comput. Mach. 29, 4 (Oct. 1982), 952-985. 

Fagin, R., Mendelzon, A. 0.. Ullman, J. D.. A simplified 
universal relation assumption and its properties. ACM 

Trans. Database Syst. 7, 3 (Sept. 1982), 343-360. 

Fagin, R., Vardi, M. Y., The theory of data dependencies - 
a survey. In Mathematics of Infkmation Processing (M. 
Anshel and W. Gewritz, eds). American Mathematical 
Society, Providence, 1986, pp. 17-91. 

Garey, M. R., Johnson, D. S., Computers and 

Intractability: A Guide to the Theory of NP -Completeness. 
W. H. Freeman and Company, San Francisco, 1979. 

Graham, M., Mendelzon, A. O., Vardi, M. Y., Notions of 
dependency satisfacti0n.J. Assoc. Comput. Mach. 33, 1 
(Jan. 1986), 105129. 

81 



10. Grahne, G., Dependency satisfaction in databases with 
incomplete information. Proc. 10th Internat. Conf. on Very 

Large Data Bases. Singapore, Aug. 27-31, 1984, pp. 
37-45. 

11. Imielinski. T., Lipski, W., Incomplete information and 
dependencies in relational databases. Proc. ACM SIGMOD 

Znternat. Coqf. on Management of Data. San Jose, May 
23-26, 1983, pp. 178-184. 

12. Imielinski, T., Lipski, W., Incomplete information in 
relational databases. J. Assoc. Comput. Mach. 31, 4 (Oct. 

1984). 761-791. 

13. Maier, D., The Theory of Relational Databrrses. Computer 

Science Press, Rockville, MD. 1983. 

14 R&r, R., On closed world databases. In: Gallaire, H., 
Minker, J. (ads), Logic und Dat&ases. pltnum Press,New 

York, 1978.. pp. 56-76. 

15. Reiter, R., Towards a logical reconstruction of relational 
database theory. In On Conceptual Model&& (M. L. 
Brodie, J. Mylopoalos, and J. W. Schmidt, eds) 
Springer-Verlag, New York, 1984, pp. 191-233. 

16. Sagiv, Y., On computing restricted projections of the 
representaive instance. Proc. Fourth ACM 

SIGACT-SIGMOD Symp. on Principles of Database 

Systems. Portland, March 25-27. 1985, pp. 171-180. 

17. Ullman, J. D. Principles of Database Systems, Second 

Edition. Computer Science Press, Potomac, MD, 1982. 

18. Vardi, M. Y., The complexity of relational query 
languages. Proc. 14th ACM Symp. on Theory of 
Computing, San Francisco, May 1982, pp. 137-146. 

19. Vardi, M. Y ., On the integrity of dambases with incomplete 
information. Proc. 5th ACM Symp. on Principles of 
Database Systems, Boston, March 1986, pp. 252-266. 

20. Vardi. M. Y., Querying logical databases. J. Comput. 

System. Sci. 33, 2 (Oct. 1986). 142-160. 

21. Yannakakis, M., Papadimitriou, C. H., Algebraic 
dependencies. J. Comput. System. Sci. 25, 1 (Aug. 
1982). 2-41. 

82 


