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Abstract Well-known results on graph 
traversal are used to develop a practical, 
efficient algorithm for evaluating regular- 
ly and linearly recursive queries in data- 
bases that contain only binary relations. 
Transformations are given that reduce a 
subset of regular and linear queries in- 
volving n-ary relations (n > 2) to queries 
lnvolvlng only binary relatloqs. 

1 Introduction 

Various strategies for orocessing 10glL 
queries in relational databases have been 
proposed (see the references in I41) Tnese 
strategies include general evaluation 
methods such as Naive Evaluation [5,131 and 
Semi-Naive Evaluation [2], Query/Subquery 
[17], Henschen-Naqvi [6], APEX [III, and 
the method used in Proloq imolerlentations 
Another class of strategies, called query 
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ootimization strategies, try to transform 
the original query into a form that 1s 
more amenable to an underlylng simple 
evaluation method such as Naive Evaluatlor 
These strategies include Aho-Ullman [ll, 

Filtering [8,9], Magic Sets [3], Counting 
and Reverse Counting [31, and Generalized 
Counting [121 

A comoarlbon ot Lhe strategies and 
their performance 1s given by Bancilhon 
and Ramakrlshnan [4]. In a careful analy- 
sis of the evaluatlo? o+ sqI"e typical 
binary queries Bancilhon and Ramakrlshnan 
observed teat the ocrformance of a strat- 
egy 1s greatly influenced by the following 
three factors (1) the amount of duplica- 
tion of work, (2) Lhe bize of the set of 
relevant facts, and (3) whether the inter- 

mediate results are represented as unary 
or blnar? relntlons Here dupllcatlon of 

work means the repeated flrlng of an 
lnferencc rule on the r,amc data This can 

haonen in strategies that duplicate data 

(c ': cro!og) and In stratcgles that do 
not remember previous firings (e g. Naive 
Evaluation and the lteratlve version of 

Ouery/Subquery) 

The set of relevant facts 1s the set 
of tuples In the extensional database that 
need be consulted by a strategy to orod- 
uce the answer to a given query The num- 

ber of relevant facts tends to be large 
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rn bottom-un racthods (Ilalve and Semi-Naive) 
Therefore these methods are usually coupled 
with some query ontlmlzatlon strategy that 
tries to reduce the number of relevant 
facts. This may be done by selection trans- 
Dosltlon (e q Aho-Ullman) or by lntroduc- 
lng some addItIonal, restrlctlnq inference 
rules (e q. Magic Sets). 

Each of the general evaluation methods 
carries along a vector of IntermedIate 
relations that represent the current state 
05 the evaluation In most methods these 
intermediate relations are of the same 
arlty as those In the orlqlnal database, 
whereas e.q the method of Henschen-Naqvl 
employs unary relations in the evaluation 
of binary relations Bancilhon and Rama- 
krlshnan state that (in the case of binary 
queries) "strategies which only look at 
sets of nodes rather than sets of arcs 
perform better than those that look at sets 
of arcs, by an order of magnitude or more." 

Most of the strategies orouosed strive 
to capture the general case in which no 
restrlctlons are lmnosed on the form of 
the inference rules any kind of Horn 
clauses (wlthout function symbols) and any 
kind of bIndIngs of variables are allowed. 
Some strateqles (e q Henschen-Naqvl) how- 
ever may not permit recurslon that 1s more 
complicated than linear. None of the strat- 
eqles imposes restrlctlons on the arlty 
of the relations: relations with arltj 
ranging from unary to n-ary, n > 1, are 
allowed 

Binary relations form an lmnortant 

subcase of n-ary relations. This 1s not 
only because of the fact that any set of 

relations can be renresented as a set of 

binary relations (In fact many of the in- 
teresting examoles of recursive queries, 

e 9. "dncestor" and "cousins of the same 
generation", are binary) Problems on bin- 
ary relations can usually be expressed as 
graph traversal problems For examDle, 

Bunt, Szymanskl and Ullman [7] have shown 
that the problem of comwutlnq the value of 
any exDresslon havlnq binary relations as 
arcuments and operators chosen from among 
U (union), . (composition), * (reflexive 
transltlve closure), and -1 (Inverse) re- 
duces to depth-first traversal of a certair 
directed graph constructed from this ex- 
presslon. Graph traversal 1s well under- 
stood, and there are very efflclent general 
alqorlthms as well as algorithms that take 
Lnto account the expected structure of the 
zelatlon. For example, by applying TarIan's 
strong components alqorlthm 1161 to the 
graph constructed from an expression E with 
arguments of size n, we may compute the 
value of the expression in time O(t*n), 
where t = mln{ldomain(E)l,lrange(E)I] [14] 

In this paper we shall lnvestlgate In 
detail the complexity of evaluating requ- 
larlv and linearly recursive queries when 
the relations rn the database are binary 
relations. We shall qcncrallze the algor- 
ithm of Hunt, Szymanskl and Ullman to cover 
the linear case. The resulting algorithm 
will be "Aynamlc" In that the graph for the 
exfiresslon to be evaluated will be con- 
structed incrementally as the traverslnq 
proceeds Pinally, WC shall show how a sub- 
set of regular and linear queries lnvolvln$ 
n-arJ relations, n > 2, can be transformed 
into queries lnvolvlng only binary rela- 
tlons 

Based on graph traversal, our strategy 
for query evaluation 1s guaranteed to be 
efficient. This 1s seen lmmedlately If we 
consider the three performance factors 
llsted above. First, no duplication of work 
can occur because the graph 1s traversed 
only once (We shall take care that in the 
constructlon of the graph no data will be 
duplicated.) Second, the set of relevant 
Eacts 1s restrlcted to the set of reachable 

nodes. Third, the representation of Inter- 
mediate results is extremely simple. At any 
moment of the evaluation, the portion of 
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the graph constructed so far will renresent 

the current state of the evaluation. More- 
over, usually only the nodes, not arcs, of 
this graph need be stored Maintaining a 
set of nodes is of course easier and more 
efficient than maintaining collections of 
relations of different arity 

For notation and definitions pertaln- 
ing to function-free Horn clause programs 
we refer to 141. 

2 Evaluation of binary relations ---- 

We assume that the intensional data- 
base consists of rules of the forms: 

(Al 1 
P(X, a$.)+,) :- 

P,(X,'X2)'PZ(X2#X3)'. .,P,(X,,X,+,). 

(A21 p(X,Y) - s(Y,X) 

In (Al) X,,. ,Xn+, (n 2 0) are distinct 
variables, P,'...' p, are base relations, 
derived relations, or evaluable Dredicates 
In (A2) X and Y are distinct variables and 
s is a base relation, a derived relation, 
or an evaluable predicate. 

The evaluation algorithm will require 
that the base relations and evaluable 
predicates annearing in the rules are 
range-restricted. More spacifically, given 
any base relation or evaluable nredicate 
r and any term u, it should be possible 
to determine effectively the set of all 
terms v satisfying r(u,v) and the set of 
all terms w satisiyiny r(w,u). 

Lemma 1 Any set oL linear [4] rules 
of the forms (Al) and (A2) can be trans- 
formed into a set of equations of the form 

(A’) p = e 
P 

such that the following conditions are sat- 
isfied 

(1) There is exactly one equation for 
each derived relation p 

(2) The right-hand side ep of the equa- 
tion for p is an expression whose arguments 
are base relations, derived relations, or 
evaluable predicates and whose operators 
are chosen from among U (union), . (compo- 

sition), * (reflexive transitive closure), 
and -1 (inverse) 

(3) If e contains a subexpression of 
the form f -lP , then f is a relation, not a 
more complicated expression (cf. [15], 

definition 3). 
(4) ep contains at most one occurrence 

of a derived relation. 
(5) If p is a linear relation, then p 

occurs in e . 
(6) If F is a derived relation occur- 

ring in e 
P' 

then r is linear. 
cl 

For example, the system of linear rules 

P(X,Z) - r(X,Y),bl(Y,Z). 
r(X,Y):- s(X,Y). 
r(X,Z):- bZtX,Y),p(Y,Z). 
s(X,J).- b3(X,Y). 

stX,Z) - stX,Y) ,bQtY,Z) 

pl (X,Y) .- s(Y,X). 

Dl(X,,X4):- s(X, ,X2) ,ptX2,X3) ,bl (X3,X4) 

can be transioraed into the set of equa- 
tions 

p = (b3.b4* U b2*p).bl, 
r = b3ab4* U b2ar*bl, 
s = b3*b4*, 
pl = (b4-')*.b3-' u b3.b4**p*bl. 

We shall represent an equation p = ep 
as a nondeterministic finite automaton, 
denoted by M(ep). For expression e, M(e) 
is the automaton obtained by the standard 
technique from e when we regard e as a 
regular expression over the alphabet 

(r 1 r is a relation appearing in e) 

U {r -1 1 r is a relation appearing in e} 

(Cf. 1151.) 
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The evaluation of a query for p will be 
controlled by a hierarchy of automata de- 

noted by EM(p,i), i 1 1 The ith iteration 
of the main loop of the algorithm will be 
controlled by EM(u,i) EM(p,l) is a CODY 
of M(en) If 1 > 1 and EM(p,i-1) contains 
a transition q 5 q' where r is a derived 
relation (usually r = p), then EM(p,i) is 
obtained from EM(D,~-~) by replacing this 
transition by a fresh copy of M(e,) More 
specifically, the transition q 5 q' is 
removed and transitions q s qJ and q; 4 q' 
are added, where E IS the empty string and 

s; and s; are the initial and final states 
of the copy of M(e,) (see Fig I) 
EM(p,i-1) contains a transition q 5 

'f 
q' 

where r is a derived relation, then EM(p,i) 
is obtained by replacing this transition 
by a fresh cony of the inverse of M(e,). 
The inverse of automaton M(e) is the non- 
deterministic finite automaton obtained 
from M(e) by exchanging the initial and 
final states and by replacing (1) each 
transition q 2 q' by the transition 
q' 5-l q, (2) each transition q 3-l CI' by 
the transition q' 2 Q, and (3) each tran- 
sition q 4 q' by the transition q' c q. 
(Here s is any relation.) 

An interpreiation of EM(n,i) is a 

directed graph obtained from Eh(o,i) by 
replacing each transition q 5 q', where r 

is a base relation or an evaluable nredi- 
cate (or the inverse of such), by zero or 
more arcs of the form ((q,u),(q',v)), 

where r(u,v) is true (cf. [15,10].) 

Now consider a query of the form 

query(Y) - p(V,Y) 

Here V is a subset of the domain of P. The 
evaluation algorithm will generate a se- 

quence of interpretations of EM(p,i), 
1 = 1,2, ,h, where h is a certain upper 
bound (to be discussed later). The inter- 
pretation of EM(p,i) is denoted by 
G(~,v,l) (see Fig 2). 

, 
; -(q( U)b)_(q 

a’ 

“) ‘.------;-------------b,-- -_, 

1’ 5 t 
c 14,‘U5i -k+,w ) 

\ _________________ -- ----- ___-_____-___-’ 

The algorithm starts 141th G(p,V,O), 
which is the graph with set of nodes 
{(q,,u) 1 UE VI and with no arcs (q, is the 
initial state of all EM(p,i), 1 L 1) 

During the i th iteration (1 > 1) of the 

main loop, G(p,V,i-1) will be extended to 

Gtp,V,l). This is done by performing a 
depth-first traversal. When I = 1 the trav- 
ersal starts from all nodes (q_,u), u E V 
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All naths not conta1n1na arcs labelled with 
derived relations are traversed Whenever 
a node (q,u) not visited before 1s entered, 
all transitions 1n EM(v,1) leaving q are 

examined For any transition q 5 c' such 
that (q' ,u) has not yet been generated, 
the algorithm generates (q',u) and contin- 
ues the traversal from this node For any 
transition q 5 q' where r 1s a base rela- 
tion or an evaluable predicate and for any 
term v such that r(u,v) 1s true and the 
node (q' ,v) has not yet been generated, 
tile algorithm generates (q',v) and contin- 
ues the traversal from this node 

-1 
For any 

transition q 5 q' where r 1s a base rela- 
tion or an evaluable predicate and for any 
term v such that r(v,u) 1s true and the 
node (q' ,v) has not yet been generated, 
the algorithm generates (q',v) and contin- 
ues the traversal from this node 

At the end of the 1 th iteration, it 15 
examined whether or not a new iteration, 
the (1+1)~~, 1s needed. If yes, EM(n,i) 1s 
expanded into EM(p,i+l), and a new deuth- 
first traversal 1s performed. The trav- 
ersal now starts irOD all nodes (qs,u), 
where qb 1s the initial state of the newly 
added copy of automaton M(e,) (usually = 
M(ep)) (or its inverse) and q 4 q; is a 
newly added transition such that G(p,V,1) 
contains (q,u). If on the contrary, the 
algorithm decides to stop after the 1 th 

iteration, the answer to the query can be 
read from the nodes (q,,u), where q, 1s 
the final state of EM(p,i). The answer set 

Y 1s {u 1 (qf,u) E G(p,V,1)). 

If e contains no occurrence of a 
P 

derived relation (the regular case), then 
only a single iteration of the main loop 
1s needed. Only the automaton M(eD) and 
the grauh G(D,V,I) need be constructed, 
and the answer to the query ~111 be Y = 

Iu I (CIf'U ) E G(p,V,l)} In Fact, the graph 
G(u,V,l) then consists exactly of the 
reachable portions of the grabh for en con 
s1dered by Hunt, Szymanskl and Ullman 171 

Here "reachable" means "reachable from somE 

node in {(qs,u) 1 u E VI". 

For the linear case we have to derive 
some uooer bound on the number of itera- 
tions. First we note that after expandlnq 
Eti(p,i) into EM(p,i+l) 1t may turn out that 
there are no nodes (q;,u) from which to 
start a new traversal This happens when 
1n the orev1ous traversal no node (q,u) 1s 
visited where q has a trans1tlon on a de- 
rived relation In this case the algorithm 
naturally must stop because further Itera- 
t1ons cannot extend the answer set 

To handle the general case the algor- 
ithm maintains a set, D, that at any mo- 
ment contains those terms 1n the domain of 
the 11near relation that have been reached 

so far The algorithm will stop when more 
than IDI iterations of the main loop have 
been executed since the latest generation 
ui d new answer node (qf,u). 

Lemma 2. The time taken by the algor- 
ithm to answer to the query p(V,Y) 1s 

O(IG(p,V,h)I loq(Lacts+lG(p,V,h) I)), 

where h 1s the number of iterations exe- 

cuted, iacts 1s the number of tuples 1n the 
base relations consulted, and IG(p,V,h) I 
1s the number of nodes in G(p,V,h) c 

Here we nave assumed that the base 
relations, and the graph G(p,V,h), are 
stored using a data structure from which 
data items can be retrieved in log time 
Observe that only the nodes, not arcs, of 
G(p,V,h) need be stored 

Theorem 3. (The regular case) If ep 
does not contain any occurrence of a de- 
rived relation, the time needed to answer 

to the query p(V,Y) 1s O(n log n), where n 
1s the number of tuples 1n the base rela- 
t1ons (and the evaluable predicates) ap- 
oear1ng 1n e . 0 

P 
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Theorem 4 (The linear case) Assume ----- -_ 
that the equation for o 1s 

(L) P = eO u e, 13 e2, 

where e 0' el' and e2 do not contain occur- 
rences of derived relatrons. Denote by C 1 
(1 1 0) the expression defined by: 

leOt when I = 0; 

*1 = j 
((e, U e, El-,-e2), when 1 > 0. 

The time taken by the algorithm to answer 
to the query p(V,Y) 1s the same as the tlmc 
taken to evaluate the same query In the 
regular case p = Eh, where h 1s the number 
of lteratlons needed in the linear case 

(L) . Hence the trme needed to answer to 
the query p(V,Y) is O(h n log(h.n)), where 
n 1s the number of tuples in the base rela- 
trons (and evaluable predicates) apwearlng 
In e 0 u el U e2 and (1) h is the length of 
the longest path in e,lV when e,IV 1s 
acyclic and (2) h 1s Idomaln(plV)) 
Irange(plV) I when e,lV 1s cyclic. (Here 
rlV denotes those portions of r that are 
reached from nodes In V ) q 

Observe that the expression Eh is 
equrvalent to the expression 

Eil 
2 

= e o U e, eo’e2 U e,.eo e4 U 

h . 
u el 

h 
e. e2 

In that it denotes exactly the same rela- 
tion However, Eh 1s essentially (by a fac- 
tor of h) smaller than EA. 

As an example assume that the rules for 
derived relations are 

sg(X,X) 
sg(X,Y) - parent(X,X'),sg(X',Y'), 

chlld(Y',Y). 
chlld(X,Y):- parent(Y,X). 

The time needed to determine the set of all 
wersons Y such that John and Y are cousins 
at the same generatlon, 1s 

O( (kg+ +kh) log ( I neoule I + 
Iwarentl+ko+.. +kh)), 

where h 1s the number of generatrons from 
John to his remotest ancestor and kl 1s the 
number of persons v satlsfylng 

]ohn oarent ' chlldJ v, 

for some J, 0 S J S 1. We cannot rmaglne 
a solution more efficient than this! 

To exemplify the worst case let k, and 
k2 be distinct prlmc numbers and let eo, 

el ' and e2 be the following relations 

el 

e2 

Now O(k,kL) iterations of the main loop of 
the algorithm are needed to produce the 
entlre answer to the query p((u,),Y), when 

p=e o U e,*p e2. This is because (u,,w) 
belongs to the relation denoted by 

v2 klk2 
“1 -eo-e2 

but does not belong to any et eo*et, where 
k < k,k2. Observe that the algorithm per- 
forms periodically k, successive iterations 
during which nothrng new is added to the 

answer set. (This 1s an example of a case 
In which a bottom-up evaluation method, 
such as Naive Evaluation, shows Its best!) 

We conclude this sectlon by noting that 
the algorithm outlined above could be used 
as such to evaluate the query p(X,Y), where 
the entlre relation p, not only an Image 

P(V) I is wanted. We simply execute the 
algorithm for all V = {u), where u 1s a 
term In the domaln of p. This yields the 
time bound O(ldomaln(p) I nslog n) In the 
regular case However, the graphs 
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G(p {u),l) may Intersect for dlffercnt u's, 
which means duwllcatlon of work. This du- 
plication can be avoided by awwlylng Tar- 
Ian's strong components algorithm [I61 (cf. 

[I411 

3 Transforming n-ary queries into binary 
queries 

A typical set of rules for a regular 
n-ary relation p can be represented as 

p(X1,X2)-- rO(X,,Z2) 

p(Z,,X,):- rl (P,,Y,), p(Z,,i,), 
(RI p-1 (i7, ,T, 1 , 

- - 
rlp(Y2,Z1), 

- - 
PP(Z2J2) 

Here ?,, x2, ?,, T2, z,, and 5, are vectors 
of dlstrnct variables No variable has two 
occurrences In a vector, and no two vectors 
have common variables The length of the 
concatenated vector z ,,E2 1s n. The vectors 
2, and z, have equal length. The relatrons 
r0, rl, prl, rlw, and pw are nonrecursrve 
relations (base relations, evaluable vred- 
icates, or derived relations). r0 and rl 

are range-restricted To guarantee that 
the system indeed 1s regular, we require 

that the relation pp satisfy the following 
"transltlvlty" condrtlon 

pP(i,;) whenever x, y, and z are equal- 
length vectors of terms and 
pp(z,?) and pw(y,x). 

The pair of rules (R) captures the 
essence of a regular n-ary relation. We 
argue that for a large class of regular 
relations the rules can be automatically 
transformed into form (R) 

As a slmwle examwle, consider a data- 
base representing alrllne flights [II The 
extensional database consists of facts of 
the form 

Where s and d are the source and the destl- 

nation of a flight and dt and at are the 
dewarture and arrival times. The problem 
1s to evaluate the derived relation tran- 

sItflight defined by: 

transltflight(S,DT,D,AT) - 
Ellght(S,DT,D,AT) 

transi+flight(S,DT,D,AT) - 
fllght(S,DT,Dl,ATl) , 
transltfllght(Dl,DTl,D,AT), 
AT1 < DTl 

The pair of rules 1s equivalent to the 
followrng set of rules. 

transitflight(S,DT,D,AT).- 
fllght(S,DT,D,AT) 

transitflight(S,DT,D,AT) - 
fllght(Sl,DTl,Dl,ATl), 
transitflight(S2,DT2,D2,AT2), 

wrl(S,DT,Sl,DTl), 
rlw(Dl,ATl,S2,DT2), 

pP(D2,AT2,D,AT). 

prl(S,DT,Sl,DTl).- S = Sl, DT = DTI 

rlp(Dl,ATl,S2,DT2)*- Dl= S2, ATl( DT2 

pp(D2,AT2,D,AT) :- D2 = D, AT2 = AT 

This set of rules 1s of the required form 
(R) Here r0 = flight = rl. Also note that 
WD is trivially transitive 

To make possible the use of the eval- 
uatlon algorithm wresented in the previous 
sectlon we have to shift from n-ary rela- 
tions to binary relations. For any pair of 
rules of the form (R) bve define bznary re- 
lations rlrlb, rlrOb, and prlb by. 

flrght(s,dt,d,at), 
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Here xl1 Y,, Y2 i,, z2, t,, u, are vectors 
of dlstlnct variables. The vectors T2 and 
fi2 are of the same length as the vector Y2 
in (R). The vector z2 1s of the same length 
as the vector 2 2 u-i (RI 

For examwle, in the "flight" database 
we have: 

rlrlb(tall(d,at),tall(dl ,atl)) If and 
only If flight(d,dt,dl,atl) and 
at < dt for some dt. 

rlr0b = rlrlb. 

prlb(head(s,dt),tall(d,at)) If and only 
if fllght(s,dt,d,at) 

We have used compound terms with func- 
tion symbols (head, tall) to grouw together 
attribute values in the original tuples. 
Observe that rlrlb, rlrOb, and prlb are 
all range-restricted because r0 and rl are 
so. Hence from the point of view of the 
evaluation algorithm we may regard rlrlb, 
rlrOb, and prlb as evaluable predlcatcs. 
For example, grven a comwound term head 
the evaluation of orlb(head(x,),tail(??2)) 
~111 generate the set of all terms tall(G2) 
such that for some vector y, the clauses 

- - - - 
rl(y,,y2) and prl (x,,y,) are true. In this 
generation, the standard retrieval mccha- 
nlsm of the extensional database 1s used 
(together with a slmwle inference mecha- 
nism lnvolvlng only nonrecurslve uredi- 
cates) 

Theorem 5 Let 

pb = prlb.rlrlb*.rlrOb. 

Then p can be evaluated using the non- 
recursive rules 

p(Z,,Z2) - rO(Ti,,Z2) 

- - 
p(x,,x2) - pb(head(?,),tail(z,)), 

Now If M 1s the number of tuples In the 
relations orlb, rlrlb, and rlrOb, we con- 
clude from Theorem 3 that any query of the 

form 

wery(%2) :- pi:, ,Z,) 

can be evaluated in time O(M log M) In the 
worst case M may be quadratic In N, the 
number of tuples In the original relations 
r0 and rl. Hence the worst case time bound 
for the query 1s O(N2 log N). 

However, in most cases we can tighten 
this bound by a factor of N. This 1s pos- 
sable when r0 and rl are base relations 
and when the data structure used to imple- 
ment these relations implles a linear order 
on the tuples and the retrieval mechanism 
allows tuples to be retrieved efficiently 
in this order. More specifically, we as- 
sume that for base relation r the following 
Predicates are efflclently computable. 

rflrstaddr(A) .- "A 1s the smallest 
address oi d tuple In r". 

rnextaddr(A, B) - "B is the smallest 

address 01 a tuple In r satisfying 
A < B". 

rtuple(A,T):- *'y 1s the tuple of r 

at address A". 

Now define+ 

rlfirstb(ta11(?2),t(!?2,A)):- 
rlflrstaddr(A). 

rlnextb(t(?2,A),t(?L,B)):- 
rlnextaddr(A,B). 

Clearly, rlfirstb, rlnextb, and rlrldownb 
are all of linear size and 

rlrlb = rlflrstb rlnextb*.rlrldownb. 
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Slmildrlsr, we mdy deflnc Ilncar-size relc?- 
tions rofirstb, ronextb, rlrodownb, and 
DrIdownb satlsfylng 

rlr0b = rOflrstb rOnextb* rlrodownb, 

prlb = rlflrstb*rlnextb* wrldownb. 

Now pb can be exvressed as 

pb = rlfirstb rlnextb*+nrldownb 
(rlflrstb rInextb* rlrldownb)* 
rOflrstb rOnextb* rlrodownb 

All arguments in tnls cxorcsslon are of 
size linear In the size of the original 
relations r0 and rl and hence we get the 
time bound O(N log N) 

The above ideas can easily be genera- 
lized to the linear case. A tywlcal set of 
rules for a linear n-ary relation can be 
revresented as 

P(%, ,X2) - r0 Cji, ,ji,) 

p(X, 3,) :- 

(L) rl(F ,,T,), p(i,,Z,), r2(i,,G,), 

wrl(X,,Y,), 

rlo(P,,i,), 
- _ 

pr2 (Z2,W1 1 , 
- - 

r2pW2,X2). 

Here x,, ii,, P,, P,, i,, z2, fi,, and w2 
are vectors of distinct variables. No 
variable has two occurrences In a vector, 
and no two vectors have common variables. 
The length of the concatenated vector 
- - 
X1,X2 is n The vectors z2 and 8, have 
equal length. The relations r0, rl, r2, 
m-1, rlw, pr2, and r2w are nonrecursive 
relations. r0, rl, and r2 are range- 
restrlcted 

For examnle, the pair of rules 

sg (X,X) 

sq (X ,,X2) - parent(X,,X;), sg(X;,X;), 

parent(X2,X;). 

is equivalent to. 

sg (X, ,X2) - equal 0, ,X2) 

sg(X, ,X2) - mrent(Y, ,Y2), sg(Z, ,z2), 

ChlWW, ,w,) , 

equal(X,,Y,), 

equal(Y2,Z,), 

equal(Z2,w,), 

equal(W2,X2). 

equal(X,Y) - X = Y. 

chlld(X,Y).- warent(Y,X). 

Theorem 6. Let the rules for p be of 
the form (L) Then there are range- 
restricted binary relations prlb, rlrlb, 
rlrOb, rOr2b, and r2r2b such that when 

pb = prlbapb', and 

pb' = rlr0b rOr2b U rlrlbmpb'.r2r2b, 

teen p can be evaluated using the non- 
recursive rules 

- - 
PU, ,X2) r0tE,,E2). 

P(X,'X2) -- pb(head(~,),tall(fi,))r 

q 

As In the regular case we may repre- 
sent the relations prlb, rlrlb, rIrOb, 
rOr2b, and r2r2b as expressions containing 
only linear-size arguments This 1s possl- 

ble when r0, rl, and r2 are base relations 
and the predicates rflrstaddr, rnextaddr, 
and rtuwle are avallable for these rela- 
tions. 

I Conclusion 

We have presented an efflclent strategy 
for evaluating a subset of regularly and 
linearly recursive queries The strategy 1s 
based on a graph traversal algorithm that 
can solve linearly recursive equations 
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lnvolvlnq blna~\~ rclatlons an2 the ooera- 

tions U (union), (comoosltion), * (refle:cive 
transitive closure), and -1 (Inverse). The 
algorithm is a generalization of an algor- 
ithm orIgInally presented by Hunt, Szymans- 
kl and Ullman 171 for evaluating binary 
relational exwressions. 

We believe that our strategy awolies 
to a fairly large set of recursive queries 
encountered in wractlce. However, the 
strategy has Its limitations, first of all 
because the underlylnq graoh traversal‘ 
algorithm only allows for binary relations 
the set of operations {U,.,*,” }. An inter- 
estlng questlon 1s whether or not this set 
can be extended without compromising the 
efflclency stemmlng from grawh traversal. 
Another Important topic of further research 
1s to develop algorithms that, given an 
arbitrary query, can detect whether or not 
this query can be evaluated using our 
strategy, that IS, whether or not the 
query can be transformed into one of the 
forms (R) or (L) considered in Section 3. 
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