
EFFICIENT EVALUATION FOR a SUBSFT OF RECURSIVE QUERIES

(Extended Abstract)

Gosta Grahne'

Seppo blppu*
ElIas Solsalon-Solninen'

'Department of Comuuter Science
Unlverslty of Helsinki
Tukholmankatu 2
SF-00250 Hclnlnkl, Finland

Abstract Well-known results on graph
traversal are used to develop a practical,
efficient algorithm for evaluating regular-
ly and linearly recursive queries in data-
bases that contain only binary relations.
Transformations are given that reduce a
subset of regular and linear queries in-
volving n-ary relations (n > 2) to queries
lnvolvlng only binary relatloqs.

1 Introduction

Various strategies for orocessing 10glL
queries in relational databases have been
proposed (see the references in I41) Tnese
strategies include general evaluation
methods such as Naive Evaluation [5,131 and
Semi-Naive Evaluation [2], Query/Subquery
[17], Henschen-Naqvi [6], APEX [III, and
the method used in Proloq imolerlentations
Another class of strategies, called query

The work was suooorted by the Alexander von
Humboldt Foundation and by the Academy of
Finland
Present address of E Soisalon-Soininen:
Institute fur Angewandte Infornatlk und
Formale Beschreibungsverfahren, Unlversl-
tat Karlsruhe, D-7500 Karlsruhe, BRD

Pcrmwon tocopy wIthout feeallor part of this matenal lsgrantedprovldedthat
the copses are not made or dlstnbuted for dwct commercial advantage, the ACM
copyrlght notice and the title of the pubhcatmn and Its date appear, and nowe IS
gwen that copymg IS by permwon of the Assoclatmn for Computmg Machmery
To copy otherwse, or to repubbsh, reqmres a fee and/or specrfic permwon

G 1987 ACM O-89791-223-3/87/0003/0284 75C

'Department of Computer Science
Unlverslty of Jyvaskyla
Scnln~arinkntu 15
SF-40100 Jyvhskyla, Finland

ootimization strategies, try to transform
the original query into a form that 1s
more amenable to an underlylng simple
evaluation method such as Naive Evaluatlor
These strategies include Aho-Ullman [ll,

Filtering [8,9], Magic Sets [3], Counting
and Reverse Counting [31, and Generalized
Counting [121

A comoarlbon ot Lhe strategies and
their performance 1s given by Bancilhon
and Ramakrlshnan [4]. In a careful analy-
sis of the evaluatlo? o+ sqI"e typical
binary queries Bancilhon and Ramakrlshnan
observed teat the ocrformance of a strat-
egy 1s greatly influenced by the following
three factors (1) the amount of duplica-
tion of work, (2) Lhe bize of the set of
relevant facts, and (3) whether the inter-

mediate results are represented as unary
or blnar? relntlons Here dupllcatlon of

work means the repeated flrlng of an
lnferencc rule on the r,amc data This can

haonen in strategies that duplicate data

(c ': cro!og) and In stratcgles that do
not remember previous firings (e g. Naive
Evaluation and the lteratlve version of

Ouery/Subquery)

The set of relevant facts 1s the set
of tuples In the extensional database that
need be consulted by a strategy to orod-
uce the answer to a given query The num-

ber of relevant facts tends to be large

284

rn bottom-un racthods (Ilalve and Semi-Naive)
Therefore these methods are usually coupled
with some query ontlmlzatlon strategy that
tries to reduce the number of relevant
facts. This may be done by selection trans-
Dosltlon (e q Aho-Ullman) or by lntroduc-
lng some addItIonal, restrlctlnq inference
rules (e q. Magic Sets).

Each of the general evaluation methods
carries along a vector of IntermedIate
relations that represent the current state
05 the evaluation In most methods these
intermediate relations are of the same
arlty as those In the orlqlnal database,
whereas e.q the method of Henschen-Naqvl
employs unary relations in the evaluation
of binary relations Bancilhon and Rama-
krlshnan state that (in the case of binary
queries) "strategies which only look at
sets of nodes rather than sets of arcs
perform better than those that look at sets
of arcs, by an order of magnitude or more."

Most of the strategies orouosed strive
to capture the general case in which no
restrlctlons are lmnosed on the form of
the inference rules any kind of Horn
clauses (wlthout function symbols) and any
kind of bIndIngs of variables are allowed.
Some strateqles (e q Henschen-Naqvl) how-
ever may not permit recurslon that 1s more
complicated than linear. None of the strat-
eqles imposes restrlctlons on the arlty
of the relations: relations with arltj
ranging from unary to n-ary, n > 1, are
allowed

Binary relations form an lmnortant

subcase of n-ary relations. This 1s not
only because of the fact that any set of

relations can be renresented as a set of

binary relations (In fact many of the in-
teresting examoles of recursive queries,

e 9. "dncestor" and "cousins of the same
generation", are binary) Problems on bin-
ary relations can usually be expressed as
graph traversal problems For examDle,

Bunt, Szymanskl and Ullman [7] have shown
that the problem of comwutlnq the value of
any exDresslon havlnq binary relations as
arcuments and operators chosen from among
U (union), . (composition), * (reflexive
transltlve closure), and -1 (Inverse) re-
duces to depth-first traversal of a certair
directed graph constructed from this ex-
presslon. Graph traversal 1s well under-
stood, and there are very efflclent general
alqorlthms as well as algorithms that take
Lnto account the expected structure of the
zelatlon. For example, by applying TarIan's
strong components alqorlthm 1161 to the
graph constructed from an expression E with
arguments of size n, we may compute the
value of the expression in time O(t*n),
where t = mln{ldomain(E)l,lrange(E)I] [14]

In this paper we shall lnvestlgate In
detail the complexity of evaluating requ-
larlv and linearly recursive queries when
the relations rn the database are binary
relations. We shall qcncrallze the algor-
ithm of Hunt, Szymanskl and Ullman to cover
the linear case. The resulting algorithm
will be "Aynamlc" In that the graph for the
exfiresslon to be evaluated will be con-
structed incrementally as the traverslnq
proceeds Pinally, WC shall show how a sub-
set of regular and linear queries lnvolvln$
n-arJ relations, n > 2, can be transformed
into queries lnvolvlng only binary rela-
tlons

Based on graph traversal, our strategy
for query evaluation 1s guaranteed to be
efficient. This 1s seen lmmedlately If we
consider the three performance factors
llsted above. First, no duplication of work
can occur because the graph 1s traversed
only once (We shall take care that in the
constructlon of the graph no data will be
duplicated.) Second, the set of relevant
Eacts 1s restrlcted to the set of reachable

nodes. Third, the representation of Inter-
mediate results is extremely simple. At any
moment of the evaluation, the portion of

285

the graph constructed so far will renresent

the current state of the evaluation. More-
over, usually only the nodes, not arcs, of
this graph need be stored Maintaining a
set of nodes is of course easier and more
efficient than maintaining collections of
relations of different arity

For notation and definitions pertaln-
ing to function-free Horn clause programs
we refer to 141.

2 Evaluation of binary relations ----

We assume that the intensional data-
base consists of rules of the forms:

(Al 1
P(X, a$.)+,) :-

P,(X,'X2)'PZ(X2#X3)'. .,P,(X,,X,+,).

(A21 p(X,Y) - s(Y,X)

In (Al) X,,. ,Xn+, (n 2 0) are distinct
variables, P,'...' p, are base relations,
derived relations, or evaluable Dredicates
In (A2) X and Y are distinct variables and
s is a base relation, a derived relation,
or an evaluable predicate.

The evaluation algorithm will require
that the base relations and evaluable
predicates annearing in the rules are
range-restricted. More spacifically, given
any base relation or evaluable nredicate
r and any term u, it should be possible
to determine effectively the set of all
terms v satisfying r(u,v) and the set of
all terms w satisiyiny r(w,u).

Lemma 1 Any set oL linear [4] rules
of the forms (Al) and (A2) can be trans-
formed into a set of equations of the form

(A’) p = e
P

such that the following conditions are sat-
isfied

(1) There is exactly one equation for
each derived relation p

(2) The right-hand side ep of the equa-
tion for p is an expression whose arguments
are base relations, derived relations, or
evaluable predicates and whose operators
are chosen from among U (union), . (compo-

sition), * (reflexive transitive closure),
and -1 (inverse)

(3) If e contains a subexpression of
the form f -lP , then f is a relation, not a
more complicated expression (cf. [15],

definition 3).
(4) ep contains at most one occurrence

of a derived relation.
(5) If p is a linear relation, then p

occurs in e .
(6) If F is a derived relation occur-

ring in e
P'

then r is linear.
cl

For example, the system of linear rules

P(X,Z) - r(X,Y),bl(Y,Z).
r(X,Y):- s(X,Y).
r(X,Z):- bZtX,Y),p(Y,Z).
s(X,J).- b3(X,Y).

stX,Z) - stX,Y) ,bQtY,Z)

pl (X,Y) .- s(Y,X).

Dl(X,,X4):- s(X, ,X2) ,ptX2,X3) ,bl (X3,X4)

can be transioraed into the set of equa-
tions

p = (b3.b4* U b2*p).bl,
r = b3ab4* U b2ar*bl,
s = b3*b4*,
pl = (b4-')*.b3-' u b3.b4**p*bl.

We shall represent an equation p = ep
as a nondeterministic finite automaton,
denoted by M(ep). For expression e, M(e)
is the automaton obtained by the standard
technique from e when we regard e as a
regular expression over the alphabet

(r 1 r is a relation appearing in e)

U {r -1 1 r is a relation appearing in e}

(Cf. 1151.)

286

The evaluation of a query for p will be
controlled by a hierarchy of automata de-

noted by EM(p,i), i 1 1 The ith iteration
of the main loop of the algorithm will be
controlled by EM(u,i) EM(p,l) is a CODY
of M(en) If 1 > 1 and EM(p,i-1) contains
a transition q 5 q' where r is a derived
relation (usually r = p), then EM(p,i) is
obtained from EM(D,~-~) by replacing this
transition by a fresh copy of M(e,) More
specifically, the transition q 5 q' is
removed and transitions q s qJ and q; 4 q'
are added, where E IS the empty string and

s; and s; are the initial and final states
of the copy of M(e,) (see Fig I)
EM(p,i-1) contains a transition q 5

'f
q'

where r is a derived relation, then EM(p,i)
is obtained by replacing this transition
by a fresh cony of the inverse of M(e,).
The inverse of automaton M(e) is the non-
deterministic finite automaton obtained
from M(e) by exchanging the initial and
final states and by replacing (1) each
transition q 2 q' by the transition
q' 5-l q, (2) each transition q 3-l CI' by
the transition q' 2 Q, and (3) each tran-
sition q 4 q' by the transition q' c q.
(Here s is any relation.)

An interpreiation of EM(n,i) is a

directed graph obtained from Eh(o,i) by
replacing each transition q 5 q', where r

is a base relation or an evaluable nredi-
cate (or the inverse of such), by zero or
more arcs of the form ((q,u),(q',v)),

where r(u,v) is true (cf. [15,10].)

Now consider a query of the form

query(Y) - p(V,Y)

Here V is a subset of the domain of P. The
evaluation algorithm will generate a se-

quence of interpretations of EM(p,i),
1 = 1,2, ,h, where h is a certain upper
bound (to be discussed later). The inter-
pretation of EM(p,i) is denoted by
G(~,v,l) (see Fig 2).

,
; -(q(U)b)_(q

a’

“) ‘.------;-------------b,-- -_,

1’ 5 t
c 14,‘U5i -k+,w)

\ _________________ -- ----- ___-_____-___-’

The algorithm starts 141th G(p,V,O),
which is the graph with set of nodes
{(q,,u) 1 UE VI and with no arcs (q, is the
initial state of all EM(p,i), 1 L 1)

During the i th iteration (1 > 1) of the

main loop, G(p,V,i-1) will be extended to

Gtp,V,l). This is done by performing a
depth-first traversal. When I = 1 the trav-
ersal starts from all nodes (q_,u), u E V

287

All naths not conta1n1na arcs labelled with
derived relations are traversed Whenever
a node (q,u) not visited before 1s entered,
all transitions 1n EM(v,1) leaving q are

examined For any transition q 5 c' such
that (q' ,u) has not yet been generated,
the algorithm generates (q',u) and contin-
ues the traversal from this node For any
transition q 5 q' where r 1s a base rela-
tion or an evaluable predicate and for any
term v such that r(u,v) 1s true and the
node (q' ,v) has not yet been generated,
tile algorithm generates (q',v) and contin-
ues the traversal from this node

-1
For any

transition q 5 q' where r 1s a base rela-
tion or an evaluable predicate and for any
term v such that r(v,u) 1s true and the
node (q' ,v) has not yet been generated,
the algorithm generates (q',v) and contin-
ues the traversal from this node

At the end of the 1 th iteration, it 15
examined whether or not a new iteration,
the (1+1)~~, 1s needed. If yes, EM(n,i) 1s
expanded into EM(p,i+l), and a new deuth-
first traversal 1s performed. The trav-
ersal now starts irOD all nodes (qs,u),
where qb 1s the initial state of the newly
added copy of automaton M(e,) (usually =
M(ep)) (or its inverse) and q 4 q; is a
newly added transition such that G(p,V,1)
contains (q,u). If on the contrary, the
algorithm decides to stop after the 1 th

iteration, the answer to the query can be
read from the nodes (q,,u), where q, 1s
the final state of EM(p,i). The answer set

Y 1s {u 1 (qf,u) E G(p,V,1)).

If e contains no occurrence of a
P

derived relation (the regular case), then
only a single iteration of the main loop
1s needed. Only the automaton M(eD) and
the grauh G(D,V,I) need be constructed,
and the answer to the query ~111 be Y =

Iu I (CIf'U) E G(p,V,l)} In Fact, the graph
G(u,V,l) then consists exactly of the
reachable portions of the grabh for en con
s1dered by Hunt, Szymanskl and Ullman 171

Here "reachable" means "reachable from somE

node in {(qs,u) 1 u E VI".

For the linear case we have to derive
some uooer bound on the number of itera-
tions. First we note that after expandlnq
Eti(p,i) into EM(p,i+l) 1t may turn out that
there are no nodes (q;,u) from which to
start a new traversal This happens when
1n the orev1ous traversal no node (q,u) 1s
visited where q has a trans1tlon on a de-
rived relation In this case the algorithm
naturally must stop because further Itera-
t1ons cannot extend the answer set

To handle the general case the algor-
ithm maintains a set, D, that at any mo-
ment contains those terms 1n the domain of
the 11near relation that have been reached

so far The algorithm will stop when more
than IDI iterations of the main loop have
been executed since the latest generation
ui d new answer node (qf,u).

Lemma 2. The time taken by the algor-
ithm to answer to the query p(V,Y) 1s

O(IG(p,V,h)I loq(Lacts+lG(p,V,h) I)),

where h 1s the number of iterations exe-

cuted, iacts 1s the number of tuples 1n the
base relations consulted, and IG(p,V,h) I
1s the number of nodes in G(p,V,h) c

Here we nave assumed that the base
relations, and the graph G(p,V,h), are
stored using a data structure from which
data items can be retrieved in log time
Observe that only the nodes, not arcs, of
G(p,V,h) need be stored

Theorem 3. (The regular case) If ep
does not contain any occurrence of a de-
rived relation, the time needed to answer

to the query p(V,Y) 1s O(n log n), where n
1s the number of tuples 1n the base rela-
t1ons (and the evaluable predicates) ap-
oear1ng 1n e . 0

P

288

Theorem 4 (The linear case) Assume ----- -_
that the equation for o 1s

(L) P = eO u e, 13 e2,

where e 0' el' and e2 do not contain occur-
rences of derived relatrons. Denote by C 1
(1 1 0) the expression defined by:

leOt when I = 0;

*1 = j
((e, U e, El-,-e2), when 1 > 0.

The time taken by the algorithm to answer
to the query p(V,Y) 1s the same as the tlmc
taken to evaluate the same query In the
regular case p = Eh, where h 1s the number
of lteratlons needed in the linear case

(L) . Hence the trme needed to answer to
the query p(V,Y) is O(h n log(h.n)), where
n 1s the number of tuples in the base rela-
trons (and evaluable predicates) apwearlng
In e 0 u el U e2 and (1) h is the length of
the longest path in e,lV when e,IV 1s
acyclic and (2) h 1s Idomaln(plV))
Irange(plV) I when e,lV 1s cyclic. (Here
rlV denotes those portions of r that are
reached from nodes In V) q

Observe that the expression Eh is
equrvalent to the expression

Eil
2

= e o U e, eo’e2 U e,.eo e4 U

h .
u el

h
e. e2

In that it denotes exactly the same rela-
tion However, Eh 1s essentially (by a fac-
tor of h) smaller than EA.

As an example assume that the rules for
derived relations are

sg(X,X)
sg(X,Y) - parent(X,X'),sg(X',Y'),

chlld(Y',Y).
chlld(X,Y):- parent(Y,X).

The time needed to determine the set of all
wersons Y such that John and Y are cousins
at the same generatlon, 1s

O((kg+ +kh) log (I neoule I +
Iwarentl+ko+.. +kh)),

where h 1s the number of generatrons from
John to his remotest ancestor and kl 1s the
number of persons v satlsfylng

]ohn oarent ' chlldJ v,

for some J, 0 S J S 1. We cannot rmaglne
a solution more efficient than this!

To exemplify the worst case let k, and
k2 be distinct prlmc numbers and let eo,

el ' and e2 be the following relations

el

e2

Now O(k,kL) iterations of the main loop of
the algorithm are needed to produce the
entlre answer to the query p((u,),Y), when

p=e o U e,*p e2. This is because (u,,w)
belongs to the relation denoted by

v2 klk2
“1 -eo-e2

but does not belong to any et eo*et, where
k < k,k2. Observe that the algorithm per-
forms periodically k, successive iterations
during which nothrng new is added to the

answer set. (This 1s an example of a case
In which a bottom-up evaluation method,
such as Naive Evaluation, shows Its best!)

We conclude this sectlon by noting that
the algorithm outlined above could be used
as such to evaluate the query p(X,Y), where
the entlre relation p, not only an Image

P(V) I is wanted. We simply execute the
algorithm for all V = {u), where u 1s a
term In the domaln of p. This yields the
time bound O(ldomaln(p) I nslog n) In the
regular case However, the graphs

289

G(p {u),l) may Intersect for dlffercnt u's,
which means duwllcatlon of work. This du-
plication can be avoided by awwlylng Tar-
Ian's strong components algorithm [I61 (cf.

[I411

3 Transforming n-ary queries into binary
queries

A typical set of rules for a regular
n-ary relation p can be represented as

p(X1,X2)-- rO(X,,Z2)

p(Z,,X,):- rl (P,,Y,), p(Z,,i,),
(RI p-1 (i7, ,T, 1 ,

- -
rlp(Y2,Z1),

- -
PP(Z2J2)

Here ?,, x2, ?,, T2, z,, and 5, are vectors
of dlstrnct variables No variable has two
occurrences In a vector, and no two vectors
have common variables The length of the
concatenated vector z ,,E2 1s n. The vectors
2, and z, have equal length. The relatrons
r0, rl, prl, rlw, and pw are nonrecursrve
relations (base relations, evaluable vred-
icates, or derived relations). r0 and rl

are range-restricted To guarantee that
the system indeed 1s regular, we require

that the relation pp satisfy the following
"transltlvlty" condrtlon

pP(i,;) whenever x, y, and z are equal-
length vectors of terms and
pp(z,?) and pw(y,x).

The pair of rules (R) captures the
essence of a regular n-ary relation. We
argue that for a large class of regular
relations the rules can be automatically
transformed into form (R)

As a slmwle examwle, consider a data-
base representing alrllne flights [II The
extensional database consists of facts of
the form

Where s and d are the source and the destl-

nation of a flight and dt and at are the
dewarture and arrival times. The problem
1s to evaluate the derived relation tran-

sItflight defined by:

transltflight(S,DT,D,AT) -
Ellght(S,DT,D,AT)

transi+flight(S,DT,D,AT) -
fllght(S,DT,Dl,ATl) ,
transltfllght(Dl,DTl,D,AT),
AT1 < DTl

The pair of rules 1s equivalent to the
followrng set of rules.

transitflight(S,DT,D,AT).-
fllght(S,DT,D,AT)

transitflight(S,DT,D,AT) -
fllght(Sl,DTl,Dl,ATl),
transitflight(S2,DT2,D2,AT2),

wrl(S,DT,Sl,DTl),
rlw(Dl,ATl,S2,DT2),

pP(D2,AT2,D,AT).

prl(S,DT,Sl,DTl).- S = Sl, DT = DTI

rlp(Dl,ATl,S2,DT2)*- Dl= S2, ATl(DT2

pp(D2,AT2,D,AT) :- D2 = D, AT2 = AT

This set of rules 1s of the required form
(R) Here r0 = flight = rl. Also note that
WD is trivially transitive

To make possible the use of the eval-
uatlon algorithm wresented in the previous
sectlon we have to shift from n-ary rela-
tions to binary relations. For any pair of
rules of the form (R) bve define bznary re-
lations rlrlb, rlrOb, and prlb by.

flrght(s,dt,d,at),

290

Here xl1 Y,, Y2 i,, z2, t,, u, are vectors
of dlstlnct variables. The vectors T2 and
fi2 are of the same length as the vector Y2
in (R). The vector z2 1s of the same length
as the vector 2 2 u-i (RI

For examwle, in the "flight" database
we have:

rlrlb(tall(d,at),tall(dl ,atl)) If and
only If flight(d,dt,dl,atl) and
at < dt for some dt.

rlr0b = rlrlb.

prlb(head(s,dt),tall(d,at)) If and only
if fllght(s,dt,d,at)

We have used compound terms with func-
tion symbols (head, tall) to grouw together
attribute values in the original tuples.
Observe that rlrlb, rlrOb, and prlb are
all range-restricted because r0 and rl are
so. Hence from the point of view of the
evaluation algorithm we may regard rlrlb,
rlrOb, and prlb as evaluable predlcatcs.
For example, grven a comwound term head
the evaluation of orlb(head(x,),tail(??2))
~111 generate the set of all terms tall(G2)
such that for some vector y, the clauses

- - - -
rl(y,,y2) and prl (x,,y,) are true. In this
generation, the standard retrieval mccha-
nlsm of the extensional database 1s used
(together with a slmwle inference mecha-
nism lnvolvlng only nonrecurslve uredi-
cates)

Theorem 5 Let

pb = prlb.rlrlb*.rlrOb.

Then p can be evaluated using the non-
recursive rules

p(Z,,Z2) - rO(Ti,,Z2)

- -
p(x,,x2) - pb(head(?,),tail(z,)),

Now If M 1s the number of tuples In the
relations orlb, rlrlb, and rlrOb, we con-
clude from Theorem 3 that any query of the

form

wery(%2) :- pi:, ,Z,)

can be evaluated in time O(M log M) In the
worst case M may be quadratic In N, the
number of tuples In the original relations
r0 and rl. Hence the worst case time bound
for the query 1s O(N2 log N).

However, in most cases we can tighten
this bound by a factor of N. This 1s pos-
sable when r0 and rl are base relations
and when the data structure used to imple-
ment these relations implles a linear order
on the tuples and the retrieval mechanism
allows tuples to be retrieved efficiently
in this order. More specifically, we as-
sume that for base relation r the following
Predicates are efflclently computable.

rflrstaddr(A) .- "A 1s the smallest
address oi d tuple In r".

rnextaddr(A, B) - "B is the smallest

address 01 a tuple In r satisfying
A < B".

rtuple(A,T):- *'y 1s the tuple of r

at address A".

Now define+

rlfirstb(ta11(?2),t(!?2,A)):-
rlflrstaddr(A).

rlnextb(t(?2,A),t(?L,B)):-
rlnextaddr(A,B).

Clearly, rlfirstb, rlnextb, and rlrldownb
are all of linear size and

rlrlb = rlflrstb rlnextb*.rlrldownb.

291

Slmildrlsr, we mdy deflnc Ilncar-size relc?-
tions rofirstb, ronextb, rlrodownb, and
DrIdownb satlsfylng

rlr0b = rOflrstb rOnextb* rlrodownb,

prlb = rlflrstb*rlnextb* wrldownb.

Now pb can be exvressed as

pb = rlfirstb rlnextb*+nrldownb
(rlflrstb rInextb* rlrldownb)*
rOflrstb rOnextb* rlrodownb

All arguments in tnls cxorcsslon are of
size linear In the size of the original
relations r0 and rl and hence we get the
time bound O(N log N)

The above ideas can easily be genera-
lized to the linear case. A tywlcal set of
rules for a linear n-ary relation can be
revresented as

P(%, ,X2) - r0 Cji, ,ji,)

p(X, 3,) :-

(L) rl(F ,,T,), p(i,,Z,), r2(i,,G,),

wrl(X,,Y,),

rlo(P,,i,),
- _

pr2 (Z2,W1 1 ,
- -

r2pW2,X2).

Here x,, ii,, P,, P,, i,, z2, fi,, and w2
are vectors of distinct variables. No
variable has two occurrences In a vector,
and no two vectors have common variables.
The length of the concatenated vector
- -
X1,X2 is n The vectors z2 and 8, have
equal length. The relations r0, rl, r2,
m-1, rlw, pr2, and r2w are nonrecursive
relations. r0, rl, and r2 are range-
restrlcted

For examnle, the pair of rules

sg (X,X)

sq (X ,,X2) - parent(X,,X;), sg(X;,X;),

parent(X2,X;).

is equivalent to.

sg (X, ,X2) - equal 0, ,X2)

sg(X, ,X2) - mrent(Y, ,Y2), sg(Z, ,z2),

ChlWW, ,w,) ,

equal(X,,Y,),

equal(Y2,Z,),

equal(Z2,w,),

equal(W2,X2).

equal(X,Y) - X = Y.

chlld(X,Y).- warent(Y,X).

Theorem 6. Let the rules for p be of
the form (L) Then there are range-
restricted binary relations prlb, rlrlb,
rlrOb, rOr2b, and r2r2b such that when

pb = prlbapb', and

pb' = rlr0b rOr2b U rlrlbmpb'.r2r2b,

teen p can be evaluated using the non-
recursive rules

- -
PU, ,X2) r0tE,,E2).

P(X,'X2) -- pb(head(~,),tall(fi,))r

q

As In the regular case we may repre-
sent the relations prlb, rlrlb, rIrOb,
rOr2b, and r2r2b as expressions containing
only linear-size arguments This 1s possl-

ble when r0, rl, and r2 are base relations
and the predicates rflrstaddr, rnextaddr,
and rtuwle are avallable for these rela-
tions.

I Conclusion

We have presented an efflclent strategy
for evaluating a subset of regularly and
linearly recursive queries The strategy 1s
based on a graph traversal algorithm that
can solve linearly recursive equations

292

lnvolvlnq blna~\~ rclatlons an2 the ooera-

tions U (union), (comoosltion), * (refle:cive
transitive closure), and -1 (Inverse). The
algorithm is a generalization of an algor-
ithm orIgInally presented by Hunt, Szymans-
kl and Ullman 171 for evaluating binary
relational exwressions.

We believe that our strategy awolies
to a fairly large set of recursive queries
encountered in wractlce. However, the
strategy has Its limitations, first of all
because the underlylnq graoh traversal‘
algorithm only allows for binary relations
the set of operations {U,.,*,” }. An inter-
estlng questlon 1s whether or not this set
can be extended without compromising the
efflclency stemmlng from grawh traversal.
Another Important topic of further research
1s to develop algorithms that, given an
arbitrary query, can detect whether or not
this query can be evaluated using our
strategy, that IS, whether or not the
query can be transformed into one of the
forms (R) or (L) considered in Section 3.

Acknowledgement

The authors are Indebted to Mr Juhani
Kulttlnen for fruitful discussions on the
towlcs of Sectlon 2. Kuittinen has imple-
mented a system for evaluating binary
relational exoressions [IO]

References

1

2

3.

4

A.Aho and J.Ullman. Universality of
data retrieval languages. Proc. 6th
ACM Symp. on Princlvles of Programmlng
Languages.
F Bancllhon: Naive evaluation of re-
cursively defined relations. In: On
Knowledge Base Management Systems -
Integrating Database and AI Systems.
Springer-Verlag, 1985.

F.Bancllhon, D.Maier, Y.Sagiv and J.
Ullman: Magic sets and other strange
ways to imwlement logic urograms. Proc
5th ACM SIGMOD-SIGACT SymP. on Prlnci-
wles of Database Systems, 1986.

F Bancllhon and R.Ramakrishnan: An ama-
teur's lntroductlon to recursive query

5.

6.

7.

8.

9.

10.

Il.

12.

13.

14.

15.

16.

17.

vrocessing strategies Proc. ACM SIG-
HOD’86, SIGMOD Record (ACM) 15 2 (1986)

C.Chang: On the evaluation of queries
cnntalnlng derived relations In rela-
tional databases. In: Advances In Data
Base Theory, Vol 1 Plenum Press,
1981.

L.Henschen and S Naqvi. On complllng
queries In recursive first-order data
bases. J. ACM 31:l (1984)

H.Hunt, T.Szymanski and J.Ullman: Oper-
aLions on soarse relations. Comm. ACM
20 3 (1977).

M Kifer and E.Lozlnskll. A framework
for an efficient imwlementatlon of de-
ductive database systems. Proc. 6th
Advanced Database Symp., Tokyo, 1986.

M.Kifer and E.Lozlnskii: Filtering data
flow In deductive databases. Internat.
Conf. on Database Theory, Rome, 1986.

J.Kuittinen: Binary relations and rela-
tional expressions (in Finnish). In-
ternal Report, Dept. of Computer Sci.,
Univ. of Helsinki, 1986.

E.Lozinskil: Evaluating queries in de-
ductive databases by generating. Proc.
11th Internat. Joint Conf. on Artlfl-
cial Intelligence, 1985.
D.SaccB and C Zanlolo: The generalized
counting method for recursive logic
queries Internet. Conf. on Database
rheorj, Rome, 1986.

S.Shaprro and D.McKay. Inference with
recursive rules Proc 1st Annual Na-
tlonal Conf on ArtJflclal Intelli-
qence, 1980.

S.Sippu and E.Soisalon-Soininen: On the
use oE relational expressions in the
design of eIficicnt algorithms. Automa-
ta, Languages and Programming, 12th
Colloquium. Springer-Verlag, 1985.

T.Szymanskl and J.Ullman: Evaluating
relational exvrebslons with dense and
sparse arguments. SIAM J. Comput. 6-l
(1977).

R Tar-Jan: Depth-first search and linear
graph algorithms. SIAM J. Comput. l-2
(1972).

L.Vieille: Recursive axioms in deduc-
tive datahases- the Query/Subquery ap-
vroach. Proc. 1st Internat. Conf. on
Expert Database Systems, 1986.

293

