EFFICIENT EVALUATION FOR A SUBSFT OF RECURSIVE QUERIES

(Extended Abstract)

Gosta Grahne'l

Seppo Sippu?

Eljas Soisalon-Soininen’®

1Department of Comouter Science
University of Helsainki
Tukhclmankatu 2
SF-00250 Helsinkz,

Finland
Abstract Well-known results on gravh
traversal are used to develop a practical,
efficient algorithm for evaluating regular-
ly and linearly recursive queries 1in data-
bases that contain only binary relations.
Transformations are given that reduce a
subset of regular and linear queries in-
volving n-ary relations (n > 2) to gueries

involving only binary relations.

1 Introduction

Various strategies for pbrocessing loguic
queries 1n relational databases have been

proposed (see the references in [4]) Tnese

strategies include general evaluation
methods such as Naive Evaluation {5,13] and
Semi-Naive Evaluation [2], Queryv/Subaguery
[17], Henschen-Nagvi [6], APEX [11], and
the method used in Prolog imnlerientations

Another class of strategies, called query

The work was suvpvorted by the Alexander von
Humboldt Foundation and by the Academy of
Finland

Present address of E Soisalon-Soininen:
Institute fur Angewandte Informatik und
Formale Beschreibungsverfahren, Universi-
tat Karlsruhe, D-7500 Karlsruhe, BRD

Pcrmission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the pubhcation and 1ts date appear, and nofice 1s
given that copying 1s by permission of the Association for Computing Machinery
To copy otherwise, or to republish, requtres a fee and/ or specific permission

© 1987 ACM 0-89791-223-3/87/0003/0284 75¢

284

2Department of Computer Science
University of Jyvaskyla
Scminaarinkatu 15

SF-40100 Jyvaskyla, Finland

ootimization strategies, try to transform
the original query anto a form that 1is
more amenable to an underlying sample
evaluation method such as Naive Evaluatior
These strategies include Aho-Ullman [1],
Filtering [8,9], Magic Sets [3], Counting
and Reverse Counting [3], and Generalized

Counting [12}

A comparison ot the strategies and
their performance 1s given by Bancilhon
and Ramakrishnan [4]. In a careful analy-
s1s of the evaluation of sore typical
binary fueries Bancilhon and Ramakrishnan
observed tnat the werformance of a strat-
egy 1s greatly influenced by the following

(1)
(2) the size of the set of

three factors the amount of duplica-
tion of work,
relevant facts, and (3) whether the inter-
mediate results are represented as unary
or binary relations Here duplication of
work means the reveated firing of an
inference rule on the same data This can
hapnen in strategies that duplicate data
(c ¢ rTrolog) and 1n strategies that do
not remember previous firings (e g. Naive
Evaluation and the 1terative version of

Ouery/Subquery)

The set of relevant facts 1is the set
of tuples 1in the extensional database that
need be consulted by a strategy to orod-
uce the answer to a given query The num-

ber of relevant facts tends to be large

1in bottom-un methods (Maive and Semi-Naive)

Therefore these methods are usually coupnled
with some query ontimization strategy that
tries to reduce the number of relevant

facts. This may be done by selection trans-
vosition (e g Aho-Ullman) or by introduc-
ing some addaitional, restricting inference

rules (e g. Magic Sets).

Each of the general evaluation methods
carries along a vector of intermediate
relations that represent the current state
0Z the evaluation In most methods these
intermediate relations are of the same
arity as those in the original database,
whereas e.g the method of Henschen-Nagvi
employs unary relations in the evaluation
of binary relations Bancilhon and Rama-
krishnan state that (in the case of binary
queries) "strategies which only look at
sets of nodes rather than sets of arcs
perform better than those that look at sets

of arcs, by an order of magnitude or more."

Most of the strategies proposed strive
to capture the general case in which no
restrictions are i1mnosed on the form of
the inference rules any kind of Horn
clauses (without function symbols) and any
kind of bindings of variables are allowed.
Some strategies (e g Henschen-Nanqvi) how-
ever may not permit recursion that is more
complicated than linear. None of the strat-
egles 1mposes restrictions on the arity
of the relations: relations with arity
ranging from unary to n-ary, n > 1, are

allowed

Binary relations form an imoortant
subcase of n-ary relations. This 1s not
only because of the fact that any set of
relations can be revresented as a set of
binary relations (in fact many of the in-
teresting examoles of recursive queries,
"cousins of the same

"ancestor" and

e g.
generation", are binary) Problems on bin-
ary relations can usually be expressed as

graph traversal problems For examvle,

285

Hunt, Szymanskl and Ullman [7] have shown
that the problem of computing the value of
any expression having binary relations as
arauments and operators chosen from among
* (reflexive

U (union), +« (composition),

-1 {inverse)

transitive closure), and re-
duces to depth-first traversal of a certair
directed graph constructed from this ex-
pression. Graph traversal i1s well under-
stood, and there are very efficient general
algorithms as well as algorithms that take
Lnto account the expected structure of the
relation. For example, by applying Tarjan's
strong components algorithm [16] to the
graph constructed from an expression E with
arguments of size n, we may comoute the
value of the expression in time O(t-n),

where t = min{l|domain(E) |, |lrange(E) |} [14]

In thais paper we shall investigate 1in
detail the complexity of evaluating requ-
larly and linearly recursive queries when
the relations i1n the database are binary
relations. We shall gycneralize the algor-
ithm of Hunt, Szymanski and Ullman to cover
the linear case. The resulting algorithm
wi1ll be "dynamic" in that the graph for the
exviession to be evaluated will be con-
structed incrementally as the traversing
proceeds finally, we shall show how a sub-
set of regular and linear queries involvinc
2,

into queries involving only binary rela-

n-ary relations, n > can be transformed

tions

Based on graph traversal, our strategy
for query evaluation 1s guaranteed to be
efficient. This 1s seen immediately 1f we
consider the three performance factors
listed above. First, no duplication of work
can occur because the graph 1s traversed
only once (We shall take care that in the
construction of the graph no data will be
duplicated.) Second, the set of relevant
facts 1s restricted to the set of reachable
10odes. Third, the representation of inter-
mediate results 1s extremely simple. At any
moment of the evaluation, the portion of

the graph constructed so far will renresent
the current state of the evaluation. More-
over, usually only the nodes, not arcs, of
this graph need be stored Maintaining a
set of nodes 1s of course easier and more
efficient than maintaining collections of

relations of different arity

For notation and definitions pertain-
ing to function-free Horn clause programs
we refer to [4].

2 _Evaluation of binary relations

We assume that the intensional data-
base consists of rules of the forms:

p(X, ,X):-
(A1) 1" "n+1
P1 (X1Ix2)rP2(x21X3)I° -:Pn(xnlxn+1)
(A2) p(X,Y) - s(¥Y,X)
In (A1) X1,. ,Xn+1 (n 2 0) are distinct

variables, Pyse..,p, are base relations,

derived relations, or evaluable oredicates
In (A2) X and Y are distinct variables and
S 1s a base relation, a deraived relation,

or an evaluable predicate.

The evaluation algorithm will require
that the base relations and evaluable
predicates avpearing in the rules are
range-restricted. More spacifically, given
any base relation or evaluable vredicate
1t should be possible
to determine effectively the set of all

r and any term u,

terms v satisfying r(u,v) and the set of

all terms w satisiyinyg r(w,u).

Any set of linear [4] rules

(A1) and (A2) can be trans-

Lemma 1
of the forms

formed into a set of equations of the form

A =
(Aa') p ep

such that the following conditions are sat-
1sfied
(1) There i1s exactly one equation for

each derived relation p

.

286

(2) The right-hand side ep of the equa-
tion for p is an expression whose arguments
are base relations, derived relations, or
evaluable predicates and whose operators

are chosen from among V {union), - (compo-

sition), * (reflexive transitive closure),
and ' (inverse)
(3) If e, contains a subexpression of

the form f_1, then f 1s a relation, not a
more complicated expression (cf. [15],
definition 3).

(4) e contains at most one occurrence
of a derived relation,

(5) If p is a linear relation, then p
occurs in ep.

(6) If r is a derived relation occur-
ring in ep, then r is linear.

o
For example, the system of linear rules

p{X,2) - r{X,Y),bi(Y,2).

r(X,Y):- s(X,Y).

r{X.,2):- b2(X,Y),p(Y,Z).

s(X, 7).~ b3(x,¥).

s{X,2) - s{X,Y),bd(Y,2)

p1{X,Y).- s(Y,X).

D1(X1,X4):— s(X1,X2),p(X2,X3),b1(X3,X4)

can be transtormed into the set of equa-

tions
p = (b3:b4* U b2.p) b1,
r = b3+:b4* U b2.xr.b1,
s = b3.b4*,

1

p1 = (b4~ ") *.p3"1 y b3.ba*.p-bi.

We shall represent an equation p = ep
as a nondeterministic finite automaton,
denoted by M(ep). For exvression e, M(e)
1s the automaton obtained by the standard
technique from e when we regard e as a

regular expression over the alphabet

{r | r 1s a relation appearing 1in e}

U {r_1| r 1s a relation appearing in e}

(Cf£. [15].)

The evaluatinn of a query for p wall be
controlled by a hierarchy of automata de-
noted by EM(p,1), 1 > 1 The 1th 1teration
of the main loop of the algorithm will be
controlled by EM(p,1)
of M(ep)
a transition g 23 q' where r 1s a deraived
p), then EM(p,1) is

obtained from EM(vo,1-1) by replacing thais

EM(o,1) 1s a cooy
If 1 > 1 and EM(p,1-1) contains

relation (usually r =
transaition by a fresh copy of M(er) More
specifically, the transition g 4 q' 1s
removed and transaitions g § q; and q% & q'
are added, where € 1s the emvty string and
g
of the copy of M(er) (see Fig

and q% are the initial and final states
1) If
EM{(p,1-1) contains a transition g 5-1 q'
where r 1s a deraived relation, then EM(p,1)
1s obtained by replacing this transition
by a fresh copy of the inverse of M(er).
The inverse of automaton M(e) 1s the non-
deterministic finite automaton obtained
from M{e) by exchanging the 1initial and
final states and by replacing (1) each
transition g 3 q' by the transition

q &

the transition q' g g, and (3) each tran-

-1
q, (2) each transition q 3 q' by

sition q & q' by the transition g’ & q.

(Here s 1s any relation.)

An interpretation of EM(p,1) 1s a
directed graph obtained from EM(p,1) by

replacing each transition q 5 q', where r

1s a base relation or an evaluable predi-
cate (or the inverse of such), by zero or
more arcs of the form ((g,u),(q',v)),
(CE. [15,10].)

where r(u,v) i1s true

Now consider a query of the form

query(Y) - p(V,Y)

The
generate a se-
of EM(p,i),

a certain upper

Here V 1s a subset of the domain of p.
evaluation algorithm will
quence of interpretations
1=1,2, ¥
bound (to be discussed later). The inter-

where h 1s

pretation of EM(p,1) 1s denoted by

G(o,V,1) (see Fig 2).

287

Figure 1 Automaton EM(p,2) used in the second iteration of the main
loop for evaluating p = ¢ when e is the expression (b3 b4*Ub2 P} bt
{Here bl, b2 b3 and b4 are base relations or evaluable predicates) The

portion enclosed by a broken line shows the automaton EM(p 1) (-H(ep))
with transition q5 [qs removed

b2
("i'“x’——"‘qi'“a’

(q;,ul)
SURNUIPRIIP MUY

'
' (qe,u,) ¢t
' 5°°1 N
H) a*,u0) € ¢ bl .
: b2 Lemm qy rug) —a q;'“s)—"(qf'“q)
| @) |
H '

(q,,u) b3
: 4’ ' CI {ag.uy)

1

: ,‘(q;.uz) €
' b2 . b1
' ‘£ (Q308,) ——p(q, V)
' .-

e \
)
! (qs uz) i
1 1
' e e e e e e e
H b3 € b1 !
\
: —> (g) —a(q, ,u,) — (93,8g) ——wmlq,) |
N e e e e e e e e e e e o e e e e o e e e e e l‘

Figure 2 Graph G(p,V 2) when p is as in Fig 1, V = {u}, and the

extensional database contains the facts bl(u3 u‘) . bl(u‘ v), bl (u5)

u,)

b2(u,u,), b2(u,u,) b2(u, u,), by, u,), b3(uy,u5), b3lu ug) b3luy uy

The portion enclosed by a broken line shows G{p,V,1)

The algorithm starts with G(p,V,0),
which 1s the graph with set of nodes
{(qs,u)| u€ vV} and with no arcs (qg 1s the
initial state of all EM(p,i), 1 2 1)
During the 1th 1) of the

main loop, G(p,V,i-1) will be extended to

i1teration (1 2

G(p,V,1). This 1s done by performing a
depth-first traversal. When i = 1 the trav-

ersal starts from all nodes (qs,u), u €v

Al]

derived relations are traversed Whenever

paths not containinag arcs labelled with
a node (g,u) not visited before 1is entered,
all transitions in EM(o,1) leaving ¢ are
examined For any transition g & ¢' such
that (g',u) has not yet been generated,

the algorithm generates (q',u) ané contain-
ues the traversal from this node For any
transition g 5 q' where r 1s a base rela-
tion or an evaluable predicate and for any
term v such that r(u,v) 1is true and the
node (q',v) has not yet been generated,
thie algorithm generates (q',v) and contan-
ues the traversal from this node For any
transition g 5 q' where r 1s a base rela-
tion or an evaluable predicate and for any
term v such that r(v,u) 1is true and the
node (gq',v) has not yet been generated,
the algorithm generates (q',v) and contin-

ues the traversal from this node

th iteration,

At the end of the 1 it 1o
examined whether or not a new iteration,
the (1+1)th, 1s needed. If yes, EM(n,1) 1s
expanded into EM(p,1+1), and a new devth-
first traversal 1s performed. The trav-
ersal now starts from all nodes (qé,u),
where qé 1s the 1initial state of the newly
added copy of automaton M(er) {(usually =
M(ep)) (or its inverse) and q 3 qé 1s a
newly added transition such that G(p,V,1)

contains (q,u). If on the contrary, the

algorithm decides to stop after the 1th
1teration, the answer to the query can be
read from the nodes (qf,u), where de 18
the final state of EM(p,1). The answer set

Y 1s {u | (qg,u) € G(p,V,1)}.

If ep contains no occurrence of a

derived relation (the regular case)}, then
only a single 1iteration of the main loop
1s needed. Only the automaton M(en) and
the gravh G(o,V,1) need be constructed,
and the answer to the query will be Y =
{u | (4g,u) € G(p,V,1)} In fact,
G(o,V,1) then consists exactly of the

the graph

reachable portions of the graoh for e, con

sidered by Hunt, Szymanski and Ullman [7]

288

Here "reachable" means "reachable from some

node 1n {(qs,u) | u € v}",

For the linear case we have to derive
some uvoer bound on the number of itera-
tions. First we note that after exvanding
Er(p,1)

there are no nodes (qé,u) from which to

into EM(p,1+1) 1t may turn out that

start a new traversal This happens when
in the wrevious traversal no node (q,u) 1s
visited where g has a transition on a de-
rived relation In this case the algorithm
1aturally must stop because further itera-

tions cannot extend the answer set

To handle the general case the algor-
ithm maintains a set, D, that at any mo-
ment contains those terms in the domain of
the linear relation that have been reached
so far The algorithm will stop when more
than ID]

been executed since the latest generation

iterations of the main loop have

ol a new answer node (qf,u).

Lemma 2. The time taken by the algor-
ithm to answer to the query p(V,Y) 1s

0(lG(o,V,h) | log({tacts+IG(p,V,h)l)),

where h 1s the number of iterations exe-
tacts 1s the number of tuples in the
base relations consulted, 1G(p,V,h} |

1s the number of nodes in G(p,V,h) o

cuted,
and

Here we have assumed that the base
relations, and the gravh G(p,V,h), are
stored using a data structure from which
data 1tems can be retrieved in log taime
Observe that only the nodes, not arcs, of

G(p,V,h) need be stored

Theorem 3. (The regular case) If e

does not contain any occurrence of a dg—
rived relation, the time needed to answer
to the query p(V,Y¥) 1s O(n log n), where n
1s the number of tuples 1in the base rela-
tions (and the evaluable predicates) ap-

oearing 1in ep. o

Theorem 4 (The linear case) Assume

that the equation for o is

(L) p = e U e, e,

where e and e, do not contain occur-

o' €1’ 2
rences of derived relations. Denote by El

(1 2 0) the expression defined by:

when 1 = 0;

(eg U e, E _q-€y), when 1 > 0.

The time taken by the algorithm to answer

to the query p(V,Y}) 1s the same as the time
taken to evaluate the same query in the
regular case p = E,/ where h 1s the number
of 1terations needed in the linear case
(L) .

the query p(V,Y) 1s O(h n log(h-n)), where

Hence the time needed to answer to

n 1s the number of tuples in the base rela-
tions (and evaluable predicates) aprearing
in ey Ue; Ue, and (1) h 1s the length of
the longest path 1in e1|V when e1IV 1is
acyclic and (2) h 1s |domain{(pl|V) |
|range (plV) | when e1lV 1s cyclic. (Here
r|V denotes those portions of r that are

reached from nodes in V) o

Observe that the expression E, 1s

equivalent to the exoression

e

an that i1t denotes exactly the same rela-

By
tor of h) smaller than E

tion However, 1s essentially (bv a fac-

1
he
As an example assume that the rules for

derived relations are

sqg (X,X)
sg(X,Y) - parent(X,X'),sqg(X',¥Y'),
child(y',Y).

chi1ld(X,Y):- parent(Y,X).

The time needed to determine the set of all
versons Y such that john and Y are cousins

at the same generation, 1s

289

O((k0+
|narent|+k0+.. +kh)),

+kh) log(lneonle| +

where h 1s the number of generations from
john to his remotest ancestor and kl 1s the

number of persons v satisfying

john varent™ ch1ld’ v,

for some jJ, 0 £ 3 £ 1. We cannot 1imagine

a solution more efficient than thas!

1 and

k2 be distinct praime numbers and let €5

To exemplify the worst case let k

ey and e, be the following relations

F——@~ L—O

@—)
°2 @:@——G}@—*@

Now 0(k1k2) 1terations of the main loop of

-

the algorithm are needed to produce the
entire answer to the query p({u1},Y), when

P = e, U e,'p e,. Thais 1s because (u1,w)
belongs to the relation denoted by
k.k k.k
172 172
€1 "€ €2

but does not belong to any e? eo-eg, where
k < k1k2. Observe that the algorithm per-
forms periodically k1 successive 1terations
duraing which nothing new is added to the
answer set. (This 1s an example of a case
in which a bottom-up evaluation method,

such as Naive Evaluation, shows 1ts best!)

We conclude this section by noting that
the algorithm outlined above could be used
as such to evaluate the query p(X,Y), where
the entire relation p, not only an image
p(V), is wanted. We simply execute the
algorithm for all v = {u}, where u 1s a
term in the domain of p. This yields the
time bound O(ldomain(p)| n-log n) in the

regular case However, the graphs

G(p {u},1) mas 1irtersect for different u's,
which means duplication of work. This du-
plication can be avoided by aoplying Tar-
jan's strong components algorithm [16] (cf.

[141)

3 Transforming n-ary queries into bainary

queraies

A typical set of rules for a regqular

n-ary relation p can be represented as

p(i1,§2)'- r0(21,22)
P(Xy,X,) - r1(Y,,¥,), P(Z,,2,),
(%) pr1(X,,¥,),
rip(¥,,2,),
pp(Z,,X,)
Here X 22, ?1, Yz, 21, and Z. are vectors

2
No variable has two

’
of dlsllnct variables
occurrences 1in a vector, and no two vectors
have common variables The length of the
concatenated vector i}'iz 1s n. The vectors
X, and Z, have equal length. The relations
r0, r1, prl, rip, and po are nonrecursive
relations (base relalions, evaluable vred-
1cates, or derived relations). r0 and ril
are range-restricted To guarantee that
the system indeed 1s reqular, we require
that the relation pp satisfy the following

"transitaivity" condition

pp(z,X) whenever X, y, and z are equal-
length vectors of terms and
pp(z,y) and po(y,X).

The pair of rules (R) captures the
essence of a regular n-ary relation. We
argue that for a large class of regular
relations the rules can be automatically

transformed into form (R)

consider a data-
The

extensional database consists of facts of

As a simple example,

base representing airline flights [1]

the form

flight(s,dt,d,at),

290

where s and d are the source and the desti-
nation of a flight and dt and at are the
devarture and arrival times. The problem
1s to evaluate the derived relation tran-
sitflight defined by:

transitflight(s,DT,D,AT) -
£light(s,DT,D,AT)

transit flight(S,DT,D,AT) -
flight(s,DT,D1,AT1),
transitflight(D1,DT1,D,AT),
AT1 < DT1

The pair of rules 1s equivalent to the

following set of rules.

transitflight(s,DT,D,AT) .~
flight(s,DT,D,AT)

transitflight(S,DT,D,AT) -
flight(s1,DT1,D1,AT1),
transitflight(82,DbT2,D2,AT2),
pril(s,DT,s1,DT1},
rip(D1,AT?,82,DT2),
pp(D2,AT2,D,AT).

or1(s,DT,S81,DT1).~ S = 51, DT = DT1

rip(D1,AT1,82,DT2) - D1 =82, AT1< DT2

pp(D2,AT2,D,AT):~ D2 = D, AT2 = AT

This set of rules 1s of the required form
(R) flight = Also note that

po 1s trivially transitive

liere r0 = r1.

To make possible the use of the eval-
uation algorithm presented in the previous
section we have to shift from n-ary rela-
tions to binary relations. For any pair of
rules of the form (R) we cdefine binary re-
lations ririb, r1rOb, and prib by.

ririb(tail(¥,),ta1l(d,)) -

r1(U1,U2), r1p(Y2,Z1). pr1(Z1,U1)
r1r0b(ta11(§2),ta11(22)) -

r0(Z,,2,), rip(¥,,2,).
prib(head(X,),ta1l(¥,)) -

r1(§1,§2), pr1(i1,§1)-

Here ii’ ?1, ?2 21, 27, ﬁ,, 52 are vectors
of distinct variables. The vectors ?2 and

U2 are of the same length as the vector Y2
in (R). The vector 22 18 of the same length

as the vector %, 1n (R)

2

For example, in the "flight" database

we have:

ririb(tail(d,at),tail(d1,at1)) 1f and
only 1f flight(d,dt,d1,at1) and
at < dt for some dt.

rtr0b = rirtb.

prib(head(s,dt),tail(d,at)) 1f and only
1f flaght(s,dt,d,at)

We have used compound terms with func-
tion symbols (head, tail) to group together
attribute values 1in the original tuples.
Observe that r1rib, ri1r0Ob, and prib are
all range-restricted because r0 and rl1 are
so. Hence from the point of view of the
evaluation algorithm we may regard ririb,
rir0b, and prib as evaluable predicates.
For example, given a compound term head(§1)
the evaluation of or1b(head(x1),tail(Y2))
w1ll generate the set of all terms tall(yz)
such that for some vector Y, the clauses
r1(y1,y2) and pr1(x1,y1) are true. In thas
generation, the standard retrieval mecha-
nism of the extensional database 1s used
(together with a simple inference mecha-
nism involving only nonrecursive predi-

cates)
Theorem 5 Let
pb = prib.ririb*.-r1rob.

Then p can be evaluated using the non-
recursive rules

p(X1,X2) - r0(x1,X2)
p(X,,X,) - pb(head(X,), tail(Z,)},

pp(Zz,Xz)

Now 1f M 1s the number of tuples in the
relations orib, ri1rib, and rirOb, we con-
clude from Theorem 3 that any query of the

form
query(xz):- p(v1,X2)

can be evaluated in time O(M log M) 1In the
worst case M may be quadratic in N, the

number of tuples in the original relations
r0 and r1. Hence the worst case time bound

for the query 1is O(N2 log N).

However, in most cases we can tighten
this bound by a factor of N. Thas 1s pos-
sible when r0 and r1 are base relations
and when the data structure used to imple-
ment these relations implies a linear order
on the tuples and the retrieval mechanism
allows tuples to be retrieved efficiently
in this order. More specifically, we as-
sume that for base relation r the following
predicates are efficiently computable.

rfirstaddr(A).- "A 1is the smallest
address of a tuple 1in r".

rnextaddr (A,B) - "B is the smallest
address ol a tuple in r satisfying
A < B".

1tuple(d,¥):- "¥ 1s the tuple of r
at address A".

Now define-

r1firstb(ta11(?2),t(?z,A))z’
rifirstaddr(a).

rinextb(t(¥,,A),t(¥,,B)):-
r1nextaddr (A,B).

r1r1downb(t(§2,A),tail(ﬁz))z—
r1tuple(A,51,52), r1p(§2,§1),
pr1(z1.U1)-

Clearly, ri1firstb, rinextb, and riridownb
are all of linear size and

ririb = r1firstb rinextb*.r1ridownb.

Similarly, we may define lincar-size rela-

tions r0firstb, rOnextb, rirOdownb, and

oridownb satisfying

r1rOb = r0firstb rOnextb* rir0downb,

prtb = rifirstb.rinextb* pridownb.

Now pb can be exvressed as

r1firstb rinextb*.pridownb
(r1firstb rinextb* riridownb) *
r0firstb rOnextb* ri1rOdownb

pb =

All arguments 1in this cxoression are of
size linear in the size of the original
relations r0 and r1 and hence we get the
time bound O(N log N)

The above 1deas can easily be genera-
lized to the linear case. A typical set of
rules for a linear n-ary relation can be
reoresented as

p(X,,X,) - ro(X,,X,)

p(i1,iz):—
(L) r1(Y,,¥,), plZ,,2,), r2(W,,W,),
pri(X,,¥,),
r1p(§2,21),
pr2(§2,h1),
X

r2p (W

2 %y) .

Here §1, iz, ?1, ?2, 21, 22, W1, and Wz
are vectors of distinct variables. No
variable has two occurrences in a vector,
and no two vectors have common variables.
The length of the concatenated vector
i1,§2 1s n The vectors 22 and Z, have

equal length. The relations r0, ri1, r2,

ori, rip, pr2, and r2p are nonrecursive
relations. r0, r1, and r2 are range-
restricted

For examnle, the pair of rules

89 (X,X)
sg(X;,X,) - parent(X,,X3), sg(X],X}),

parent (X,,X}).

292

1s equivalent to.

sg(x1,X2) - equal(XT,Xz)

sg(h1,X2) - Darent(Y1,Y2), sg(z1,z2),
ch11d(W1,W2),
equal(x1,Y1),
equal(Yz,Z1),
equal(Zz,W1),

equal(wz,xz).

equal(X,Y) - X = Y.

ch11d(X,Y) .- varent(Y,X).

Theorem 6. Let the rules for p be of
the form (L)
restricted binary relations prib, ririb,
r1rOb, rO0r2b, and r2r2b such that when

Then there are range-

pb = prib.pb', and

pb' = rl1r0b r0r2b U ririb.pb'-r2r2b,

tiaen p can be evaluated using the non-

recursive rules

p(x1,x2) roxx1,x2).

p(X,,X,) -~ pb(head(X;),ta1l(#W,)),

r2p(W2,X2).

As ain the regular case we may repre-
sent the relations prib, ri1rib, ri1r0b,
rO0r2b, and r2r2b as expressions containing
only linear-size arguments This 1s possi-

ble when r0, r1, and r2 are base relations
and the predicates rfarstaddr, rnextaddr,
and rtuple are available for these rela-

tions.
4_Conclusion

We have presented an efficient strategy
for evaluating a subset of regularly and
linearly recursive queries The strategy 1is
pased on a graph traversal algorithm that

can solve linearly recursive equations

invelving bainaiv relations anld the onera-

tions U (union), (comoosition),
The

algorithm 1s a generalization of an algor-

transitive closure), and -1 (1nverse) .
1thm originally presented by Hunt, Szymans-
k1 and Ullman [7] for evaluating binary

relational exnressions.

We believe that our strategy avplies
to a fairly large set of recursive queries
However, the
first of all
because the underlying coraoh traversal ‘

encountered in practice.

strategy has 1ts limitations,

algorithm only allows for binary relations
the set of operations {U,-,*, '}. An inter-
esting question 1s whether or not this set
can be extended without compromising the
efficiency stemming from graph traversal.
Another important tooic of further research
1s to develoo algorithms that, given an
arbitrary query, can detect whether or not
this query can be evaluated using our
strategy, that is, whether or not the
query can be transformed into one of the

forms (R) or (L) considered in Section 3.

Acknowledgement

The authors are indebted to Mr Juhani
Kuittinen for fruitful discussions on the
topics of Section 2. Kuittinen has imple-
mented a system for evaluating bainary
relational expressions [10]

References

1 A.Aho and J.Ullman. Universality of
data retrieval languages. Proc. 6th
ACM Symp. on Praincivles of Programming
Languages.

2 F Bancilhon: Naive evaluation of re-
cursively defined relations. In: On
Knowledge Base Management Systems -
Integrating Database and AI Systems.
Springer-Verlag, 1985.

F.Bancilhon, D.Maier, Y.Sagiv and J.
Ullman: Magic sets and other strange
ways to implement logic vrograms. Proc
5th ACM SIGMOD-SIGACT Symp. on Princa-
ples of Database Systems, 1986.

4 F Bancilhon and R.Ramakrishnan: An ama -
teur's introduction to recursive query

* (reflexave

293

10.

11.

12.

13.

14.

15.

16.

17.

vrocessing strategies Proc. ACM SIG-
MOD'86, SIGMOD Record (ACM) 15 2 (1986)

C.Chang: On the evaluation of queries
containing derived relations in rela-
tional databases. In: Advances 1n Data
Base Theory, Vol 1 Plenum Press,
1981.

L.Henschen and S Naqvi. On compiling
queries 1n recursive first-order data
bases. J. ACM 31:1 (1984)

H.Hunt, T.Szymanski and J.Ullman: Oper-
alions on svmarse relations. Comm. ACM
20 3 (1977).

M Kifer and E.Lozinskii. A framework
for an efficient implementation of de-
ductive database systems. Proc. 6th
Advanced Database Symp., Tokyo, 1986.

M.Kifer and E.Lozinskii: Filteraing data
flow in deductive databases. Internat.
Conf. on Database Theory, Rome, 1986.

J.Kuaittinen: Binary relations and rela-
tional expressions (in Finnish). In-
ternal Report, Dept. of Computer Sci.,
Univ. of Helsinki, 1986.

E.Lozinskii: Evaluating queries in de-
ductive databases by generating. Proc.
11th Internat. Joint Conf. on Artifai-
cial Intelligence, 1985.

D.Saccd and C Zaniolo: The generalized
counting method for recursive logic
queries Internat. Conf. on Database
fheory, Rome, 1986.

S.Shapiro and D.McKay. Inference with
recursive rules Proc 1st Annual Na-
tional Conf on Artificial Intellai-
gence, 1980.

S.S1ppu and E.Soisalon-Soininen: On the
use of relational expcessions in the
design of eificient algorithms. Automa-
ta, Languages and Programming, 12th
Colloquium. Springer-Verlag, 1985.

T.Szymansk1i and J.Ullman: Evaluating
relational expressions with dense and
sparse arguments. SIAM J. Comput. 6°1
(1977).

R Tarjan: Dcoth-first search and linear
graph algorithms. SIAM J. Comput. 1-2
(1972).

L.Vieille: Recursive axioms in deduc-
tive datahases: the Query/Subgquery ap-
oroach. Proc. 1st Internat. Conf. on
Expert Database Systems, 1986.

