Available online at www.sciencedirect.com

< scuencs@mnscr@ Informatlon
o and
sl Computation
LSEVIER Information and Computation 194 (2004) 79-100

www.elsevier.com/locate/ic

Towards an algebraic theory of information integration

Gosta Grahne™*, Victoria Kiricenko
Department of Computer Science, Concordia University Montreal, Que., Canada H3G 1 M8

Received 3 October 2003; revised 23 June 2004
Available online 29 September 2004

Abstract

Information integration systems provide uniform interfaces to varieties of heterogeneous information
sources. For query answering in such systems, the current generation of query answering algorithms in local-
as-view (source-centric) information integration systems all produce what has been thought of as “the best
obtainable” answer, given the circumstances that the source-centric approach introduces incomplete informa-
tion into the virtual global relations. However, this “best obtainable” answer does not include all information
that can be extracted from the sources because it does not allow partial information. Neither does the “best
obtainable” answer allow for composition of queries, meaning that querying a result of a previous query
will not be equivalent to the composition of the two queries. In this paper, we provide a foundation for
information integration, based on the algebraic theory of incomplete information. Our framework allows us
to define the semantics of partial facts and introduce the notion of the exact answer—that is the answer that
includes partial facts. We show that querying under the exact answer semantics is compositional. We also
present two methods for actually computing the exact answer. The first method is tableau-based, and it is a
generalization of the “inverse-rules” approach. The second, much more efficient method, is a generalization
of the rewriting approach, and it is based on partial containment mappings introduced in the paper.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Information integration; Incomplete information; Query rewriting

* Corresponding author.
E-mail addresses: grahne@cs.concordia.ca (G. Grahne), kiricen@cs.concordia.ca (V. Kiricenko).

0890-5401/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/}.ic.2004.07.003

80 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100
1. Introduction

In the mid 80s the first author, together with Serge Abiteboul, interested Paris Kanellakis in
incomplete information in relational databases. Paris immediately realized the importance of the
problem, and the profoundness of the algebraic foundation laid by Imielinski and Lipski [16] in
their landmark paper. Paris also saw that an understanding of the complexity theoretic aspects,
in particular data complexity, was lacking. This resulted in the paper [4], which has become the
standard reference for the computational complexity of incomplete information.

In this paper, we show that the problem of incomplete information is still highly relevant, due
to its application to information integration. By extending the classical framework, we are able to
provide a solid algebraic foundation for reasoning about information integration. As an additional
benefit, our approach allows an important extension of the capabilities of these applications, namely
to provide partial answers to user queries. These partial answers are important, not only because
they are more informative than the types of answers considered before, but also because they enable
query evaluation to be compositional. Without compositional query semantics, a user would not be
able to “search within the result,” i.e., pose a second query on the result of a first query, nor would
it be possible to have a view mechanism.

To illustrate the problem and to make this discussion more concrete let us consider a simple
example. Suppose we want to integrate three sources, let us call them S, S>, and S3. The sources S}
and S3 are Internet movie databases, and source S, is a Hollywood gossip website that provides
information about the cohabitation of movie stars. A small, but illustrative example of the sources
is given below.

Source S}, an Internet movie database about movie stars.

Actor Origin Domicile

Gloria Swanson UsS Sunset Blvd., Hollywood
Eric von Stroheim Germany Sunset Blvd., Hollywood
Greta Garbo Sweden Manhattan, New York

Source S5, a Hollywood gossip database about cohabitation of movie stars.

Actorl Typel Actor?2 Type?2
Britt Ekland Comedienne Peter Sellers Comedian
Elisabeth Taylor Tragedienne Richard Burton Tragic hero

Source S3, an Internet movie database about affiliations of movie stars.

Actor Affiliation
Gloria Swanson UA
Eric von Stroheim UA
Britt Ekland UA
Peter Sellers UA
Charlie Chaplin UA

Greta Garbo MGM

G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100 81

A plausible interpretation of this source collection is to stipulate the global schema as

Star (Name, Origin, Type, Domicile),thatisactor’sname,roletype,andaddress;and
Affiliation(Actor, Studio), thatisinformation of the studio of the star.

The relationship between the global schema and the schemas of S, 5>, and S3 could then be
expressed by the following definitions:!

S1(Actor, Origin, Domicile) < Star(Actor, Origin, Type, Domicile).
S»(Actory, Typey, Actora, Typey) < Star(Actor), Originy, Typey, Domicile),
Star(Actory, Originy, Typea, Domicile).
S3(Actor, Studio) < Affiliation(Actor, Studio).

Suppose now the user issues the query

O1(Actor, Origin, Type, Domicile) < Star(Actor, Origin, Type, Domicile),
Affiliation(Actor, ‘UA’).

That is, the user is interested in obtaining all available information about stars affiliated with the
United Artists studio. In all current generation information integration systems, such as [19,18], the
user would be returned an empty answer. This is because these systems do not have a way to get
tuples for the subgoal Star, and would produce an empty rewriting.

Everybody who has ever queried integrated information, especially in the case of the World
Wide Web, knows this situation very well. The next logical action of the user, who wants to get
at least partial information, is to try to make his/her query less restrictive. In our example, to get
at least some information about the stars affiliated with United Artists, the user has to modify
the original query by projecting out some of the attributes of the relation Star. Since the user
is unaware of the internals or the system, he/she has to try all possible combinations of the at-
tributes and then manually assemble the final answer. From the point of view of the user, the
system should take on this burden and compute the answer containing this partial information.
This is feasible, since the query could be rewritten as the union of the following unsafe conjunctive
queries.

O1(Actor, Origin, Type, X) < Si(Actor, Origin, Type), S3(Actor, ‘UA’.)
O1(Actor, X, Type1, Y) < Sa(Actory, Typey, Actory, Typer), S3(Actory, ‘UA’.)
O1(Actory, X, Typer, Y) < Sy (Actory, Typey, Actora, Typer), S3(Actory, ‘UA’.)

The unrestricted variables X and Y represent unknown values. The answer can then be presented
to the user as a table with some values missing, for our example as the table below.

I Note that we are using the positional version of the relational model in our queries.

82 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100

Actor Origin Type Domicile

Gloria Swanson US il Sunset Blvd., Hollywood
Eric von Stroheim Germany 1 Sunset Blvd., Hollywood
Britt Ekland L Comedienne 1

Peter Sellers L Comedian 1

Producing such partial answers is not without its intricacies. Since the missing values obvious-
ly represent nulls of the type “unknown,” there is a connection to incomplete information. This
connection was first utilized by Abiteboul and Duschka [2], who used the conditional tables of
Imielinski and Lipski [16], as extended in [9], as a tool to obtain an effective query evaluation mech-
anism and complexity theoretic results for information integration. Notably, the complexity results
for non-recursive queries in [2] are closely related to those in [4]. Here we see again an example of
the importance of incomplete information, and Abiteboul subsequently argues in his PODS 1999
invited talk [1] that the problem of information integration “should be approached with an incom-
plete information model,” and he recalls Imileinski’s and Lipski’s contribution as “the model for
incomplete information.”

However, in [2], Abiteboul and Duschka only use the certain answer aspect of incomplete infor-
mation and conditional tables. The framework of Imielinski and Lipski is much richer than that,
and we shall see below that a notion called the exact answer will play a crucial role in extending the
theory of information integration to take partial information into account.

First of all, the answer above containing nulls is essentially the exact answer, an alternative
semantic to the certain answer. Note that all previous approaches, including [2], explicitly or im-
plicitly use the certain answer. Second, the exact answer allows for composition of queries. One of
the important benefits of compositionality of queries is that it allows the user to “search within the
results.” For example, in a web based setting, the number of tuples in an answer typically is much
larger than the user wants. In such a case, to reduce the size of the answer, the user would most likely
want to make his/her query more restrictive. This means that an information integration system, in
order to be of any practical use, has to provide the user with the ability to search within the answers.

Lets assume that in our example the user is interested in knowing about the cohabitation of
MGM stars. In current generation information integration systems the user would have to write
the query as

O (Actory, Actory) < Star(Actor, Originy, Type1, Domicile),
Affiliation(Actory, 'UA’),
Star(Actor, Originy, Types, Domicile),
Affiliation(Actor, 'UA’).

Since we are able to provide the user with partial information about the join of the two first (and
two last) subgoals as relation Qy, it is easy to see that O, is equivalent to

Q/z (Actory, Actory) < Q1(Actory, Originy, Typey, Domicile),
O1(Actory, Origing, Types, Domicile).

G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100 83

From the users point of view it is obvious that he/she should “search within the results,” in other
words, issue query 0.

Can we use the results of the previous query in the computation of the answer? The answer
is yes but only if the system remembers that some of the null values in this result represent the
same unknown values. In particular, the unknown domiciles of Britt Ekland and Peter Sellers are
the same domicile. Intuitively, this is because only source Sy mentions these actors, and according
to the definition of S5 they would live at the same unknown address. Therefore, the information
integration system will now have to account for this fact in some way, for instance by presenting
the answer with marked nulls instead.

Actor Origin Type Domicile

Gloria Swanson US 14 Sunset Blvd., Hollywood
Eric von Stroheim Germany 1y Sunset Blvd., Hollywood
Britt Ekland 13 Comedienne 14

Peter Sellers 1s Comedian 14

Then we could evaluate Q) of the result of O; above, and obtain the table below. Note that Britt
Ekland and Peter Sellers occur in the output since they join on the value 14 in the fourth column.
For an exposition on marked nulls, see [26].

Actorl Actor?2
Gloria Swanson Eric von Stroheim
Britt Ekland Peter Sellers

The question that now arises is how these marked nulls should be accounted for.

The rest of this paper is organized as follows. In Section 2, we review the algebraic approach to
incomplete information. In Section 3, we describe how querying in information integration systems
amounts to querying incomplete databases, producing partial facts. In Section 4, we extend the
notion of rewriting to take into account the partial facts, and in Section 5, we give a unification
based method for computing the extended rewritings. Section 6, contains the conclusions.

2. Basic definitions and results
2.1. Relational databases
The Relational Model structures information in the form of tables. There are various ways to for-

malize this notion. The first is a direct adaptation of the mathematical concept of a relation: let the
atomic values come from a countably infinite set dom.> Let k be a positive integer. A k-ary relation

. . . . k
1s then a finite subset of dom x dom x - - - x dom, k-times, sometimes denoted dom . To have names

2 We assume for simplicity and clarity of exposition that there is only one domain from which all values are drawn.

84 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100

for relations, such as R, Ry, Ry, etc., we assume a function db that when applied to a relation name R

gives the instance db(R) of the actual tuples from domk. For a relational “schema” {R{,R>,...,R;},
the database instance consists of an instance db(R;) for each relation name R;, i € {l,...,n}. If the
schema is understood, we sometimes write simply db. Note that there are no column names in this
formalization, only positions (first column, second column, etc.).

In this paper, we adopt a variation of this modeling influenced by the logic programming ap-
proach to databases. From the domain dom and the relation names we build up a (Herbrand)
universe consisting of all expressions of the form R(ay, az, . ..,ax), where R is a relation name and
the a;’s are values in dom. Such expressions are called facts. A database instance is then simply a
finite set of facts, i.e., a finite subset of the universe, such as {Ri(ay,a3), R1(az,a3),Ry(a3,aq)}. Since
relation names are part of the facts, we do not need to list facts from different relations separately.

For more information on the various ways to formalize the relational model, see [3].

A query is an expression that defines a function from all databases to (usually) a single relation.
In this paper we focus on a simple but the most practical class of queries, namely the conjunctive
queries. For this we need the concept of an atom. An atom is like a fact, except that we allow vari-
ables, taken from an infinite set var, as well as constants. For instance, R(a,X) is an atom, whereas
R(a,b) is a fact.> The variables in the atoms are placeholders, and they stand for any domain value.
Variables will be denoted by uppercase letters, such as X and Y.

A conjunctive query ¢ is an expression of the form

head(¢) < body(yp),

where body(y) is a set of atoms over relation names in the database schema, and head (¢) is an atom
over an answer relation name not used in the database. We assume that all variables occurring in
head (p) also occur in body(yp), i.e., that the query ¢ is safe.

A conjunctive query ¢ can be applied to a database db resulting in a set of facts

o(db) = {o(head (¢)) : o(body(¢)) C db for some valuation o}.

A valuation o, is formally a finite partial mapping from var U dom to dom that is the identity on
dom.

Example 1. If the database db is {R;(a, b), Ri (¢, b), R2(b,d)}, and ¢ is Q(X) < R1(X,Y), R2(Y,Z), then
o(db) = {Q(a), O(c)}. On the other hand, if ¢ is O(X) < Ri(a, Y), R2(Y,X), then ¢(db) = {Q(d)}.

2.2. Incomplete databases and tableaux

Here we shall briefly review Imielinski and Lipski [16] algebraic approach to incomplete infor-
mation. We shall present the approach in our uniform framework.

Usually a databaseis a complete description of the state of the world modeled by it. Thisis actually
true only if we adopt the Closed World Assumption, CWA [24], according to which facts not explic-
itly stored in the database are false. For example, in the database {R; (a1, @3),Ri(a2, a3), R>(a3,as)},

3 R(a,b) is of course also an atom, since a fact is a special case of an atom.

G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100 85

the fact Ri(a3, ay) is false. The closed world assumption is convenient since there is, in general, an in-
finitude of false facts. The CWA is, however, not appropriate for modeling all situations. We might
for instance have a database db = { Affiliation(Greta Garbo, MGM), Affiliation(Charlie Chaplin, UA)}.
If we consider the fact Affiliation(Elisabeth Taylor, UA) we might not want to draw the conclusion
that Elisabeth Taylor is not affiliated with UA, we just do not have evidence recorded about it.
We then adopt the Open World Assumption, OWA, which regards the database as an incomplete
description of the world: all facts stored in the database are true, the truth value of any other fact
is unknown. Semantically this means that the stored database db actually is a finite description of a
set of possible worlds, defined as

{db' :db < db'}.

Each db’ represents one possible complete state of affairs (or world). Thus for instance the fact
Affiliation(Elisabeth Taylor, UA) will be true in some possible worlds, and false in others. Facts that
are true in some possible worlds are called possible facts, and facts true in all possible worlds are
called certain facts.

A database under the OWA is the simplest example of an incomplete database. To go a step
further, suppose we know that Elisabeth Taylor is affiliated with some studio, but we do not know
which one. This could be represented by the atom Affiliation(Elisabeth Taylor, X). Here again, we
have an incomplete description of the world. The world could correspond to Affiliation(Elisabeth
Taylor, MGM), or to Affiliation(Elisabeth Taylor, UA), and so on.

A very simple (and efficient) way to represent possible worlds is to allow the database to consist
of atoms, as opposed to pure facts only. A set of atoms is called a tableau [21], also known as naive
tables [16], and equality tables [4]. A tableau is denoted 7', as opposed to db which stands for a finite
set of facts (not atoms).

Example 2. Let T = {Affiliation(Greta Garbo, MGM), Affiliation(Elisabeth Taylor, X)}. This tableau
contains two atoms, the first of which actually is a fact (a special case of an atom).

A tableau T represents a set of databases. This set is denoted rep(T'), and it is defined by
rep(T) = {db : there is a valuation o such that o(7) C db}.

The definition says that a database db is represented by a tableau 7, if there is a valuation o such
that when all variables in T are replaced by their image under o, the set of facts thus obtained is a
subset of db.

Example 3. In our tableau T = {Affiliation(Greta Garbo, MGM), Affiliation(Elisabeth Taylor, X)},
we will for instance have {Affiliation(Greta Garbo, MGM), Affiliation(Elisabeth Taylor, MGM) } €
rep(T), { Affiliation(Greta Garbo, MGM), Affiliation(Elisabeth Taylor, UA)} € rep(T), etc. According
to rep(T), Affiliation(Greta Garbo, MGM) is a certain fact since it is true in all possible worlds in
rep(T), and Affiliation(Elisabeth Taylor, MGM) is a possible fact since it is true in some possible
worlds represented by 7.

There are many other ways to represent sets of possible worlds, see [9,16,4], and [10,3] for an overview.

86 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100
2.3. Querying incomplete databases and tableaux

Now, what does it mean to query an incomplete database? Since an incomplete database is a set,
each element representing a possible database, the natural answer to a query is the set of answers
obtained by applying the query on each possible database. If ¢ is a query, and X is a set of possible
databases, then

@(X) = {¢(db) : db € X}

This set of answers is called the exact answer.

Suppose now we have a query ¢ on an incomplete database represented by a tableau 7. The
exact answer would be ¢(rep(T)). But just as the original database was represented by a tableau 7,
we would like to represent the exact answer by another tableau U, such that rep(U) = p(rep(T)).
More practically thinking, given a query ¢ and a tableau 7, we would like to have an algorithm, or
evaluation mechanism, call it @, applicable on tableau, such that

rep(@(T)) = (rep(T)).

This requirement can be illustrated by the following commutative diagram.

Tableau T rep Possible worlds
rep(T)
@ v
Answer rep Exact answer

(1) p(rep(T))

Is the requirement in rep(@(T)) = @(rep(T)) achievable in general? The answer is yes, but only
if we use a representation mechanism more complicated than tableaux (see [16]). If we wish to use
tableaux we have to give up the strict equality requirement in the commutative diagram.

Since we cannot represent the exact answer to a query, it is natural to focus on the certain answer
instead. The certain answer to a query ¢ consists of those tuples that are in the answer to ¢, no matter
which possible database we consider. The certain answer is denoted ¢,, and is defined formally as

ex(X) = (1] ¢(db).
dbex

Note that ¢, (X) is a relation (a set of facts, no atoms). Then we could require instead that given a
query ¢ and a tableaux 7, there is an effectively constructible relation, call it ¢, (T), such that

ex(T)= (] o).
dberep(T)

G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100 87

However, as illustrated in the introduction, if we return the relation ¢,(7), then we cannot use
the result for subsequent querying. In other words, there are (conjunctive) queries ¢ and v, and
tableaux T, such that

(@ o)« (T) # (Y (T)).

This also means that we could not have a query evaluation mechanism, found in all real query
engines, that would operate in a uniform recursive fashion, i.e. ¢ o ¥ could be evaluated by first
evaluating v, and then ¢.

The reason that the equality (¢ o ¥)(T) = @« (¥(T)) fails to hold is that the intermediate result
contains some partial facts that are discarded by the certain answer of i, and that nevertheless
contributes to some certain facts found in ¢ o .

If we like to achieve uniform evaluation and composability of queries we, thus, have to preserve
the partial facts in the answer. We shall, therefore, require that given a query ¢ and a tableau 7,
there is a tableaux @(7'), such that

Truth Preservation Nrep(p(T)) = Ne(rep(T))
Query Compositionality @(’(E(T)) = w/o\(p(T)

for all queries ¥ applicable at a result of ¢.
Lipski [20], in an all but forgotten paper, proved that for monotone query languages, a sufficient
condition for truth preservation and compositionality is that

Coinitiality rep(e(T)) ~ @(rep(T)),

where ~-sign means that the two sets have the same C-minimal elements. In the sequel we will use
this sufficient condition.

For tableaux, it turns out that if we, for evaluation purposes, treat the variables as pairwise
distinct constants, and distinct from all “true” constants, we can apply standard evaluation and
obtain a representation of the result that is coinitial with the exact answer. To formally explain the
evaluation, we need the concept of a substitution. A substitution is a valuation, except that we allow
variables to be mapped into variables, not only constants. Thus, a substitution 6 is a partial func-
tion from dom U var to dom U var, keeping in mind that constants have to be mapped to themselves.
Then

o(T) = {O(head(p)) : O(body(p)) < T for some substitution 6}.
Theorem 1. rep(p(T)) ~ @(rep(T)).

Proof. Let db be a C-minimal element in 7ep(@(7)). Then there exist a valuation o such that o(¢(7)) =
db. Let 7 be an arbitrary fact in db. Then there is a fact u € @(T) such that o(«) = ¢, and there is a
substitution 6 such that 8(body(p)) € T and u = 6(head(¢)).

Let o/ be an extension of o that maps every variable that is in 7 but not in @(7) to a
distinct new constant. Since 0(body(p)) C T, we have o’0(body(¢)) C o'(T). It now follows that

88 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100

t = o' (O(head(p))) € @(d/(T)). Note that o’ (T) is a C-minimal element in rep(T'). From the mono-
tonicity of ¢ it follows that ¢(o’(T)) is a C-minimal element in p(rep(T)). We have established that
db C ¢(o'(T))

That concludes the proof that any C-minimal element db in rep(¢(7)) is also in @(rep(D).

For inclusion in the other direction let db be a C-minimal element in @(rep(7)). Then there is
a valuation o, such that db = ¢(o(T)). Let ¢ be an arbitrary tuple in db. Then there is a valuation
0, such that 1 = p(head(¢)) and all facts in p(body(g)) are in o(T). Now we have two cases to
consider.

Case 1: The valuation o is one-to-one. Then there is an inverse o', and hence o~ (p(body(¢))) C
o N(o(T)) = T, and consequently 0 ~1(¢) = o~ (p(head (¢))) is in @(T). Since o(@(T)) € rep(@(T)),
it follows that 1 € o(@(T)) € rep(¢(T)). Likewise, if ¢’ is any other tuple in db = ¢(o(T)), it
is generated by some valuation p/, and we have o~ !(¢) = o~ (' (head(¢))) € @(T). Therefore
db € o(p(T)).

Case 2: There is (at least one) pair of distinct variables X and Y in T, such that o(X) = o(Y).
If o(X) = p(U), and o(Y) = p(W), for U # W, then the valuation w, that is like o~! o p, except
w(U) = X,and w(V) = Y, gives us w(body(p)) C T,and o~ (¢) = w(head(¢)) € §(T).Consequent-
lyt=0(c"1 (1) € o@(T)).

Suppose then that o(X) = o(Y) = p(W), and that there are (at least) two occurrences of W in
body(¢p). Consider now the valuation o/, that is exactly like o, except it maps Y to a fresh constant,
say a. Clearly ¢t ¢ ¢(c'(T)), and any fact in ¢(o’(T)) is also in ¢(o(T')) (because there is an embed-
ding of o/(T') into o(T').) Therefore, we have a contradiction to the assumption that 7 belonged to
a C-minimal element of p(rep(T)). O

Theorem 1 means that the diagram on page 8 commutes with respect to ~, i.e., coinitiality.
Furthermore, the certain facts of ¢(rep(T)), that is N(¢(rep(T))), can be obtained from @(7) by
retaining only the pure variable-free atoms. Moreover, the resulting tableau @(7') contains all the
facts necessary for subsequent query evaluation.

Example 4. Let T = {R(a,b),R|(d,X),R2(b,c),R2(X,e), R2(Y, f)}, and ¢ = O(X,Y,Z) < R|(X,),
Ry(Y,Z). Then ¢(T) = {Q(a,b,c),0(d,X,e)}. The only certain fact in the answer is Q(a,b,c).
If o = OQ(X,b) < Ri(X,b) we have ¢(T) = {O(a, b)}. This fact is also certain.

Theorem 1 was first discovered by Imielinski and Lipski [16], and independently by Vardi [28].

3. Global databases: The meaning of integrated information

Information Integration systems [27,14,15,17] aim to provide a uniform query interface to multi-
ple heterogeneous sources. One particular and useful way of viewing these systems, first proposed
within the Information Manifold project [19], is to postulate a global schema (called a world view)
that provides a unifying data model for all the information sources. A query processor is in char-
ge of accepting queries written in terms of this global schema, translating them to queries on
the appropriate sources, and assembling the answers into a global answer. Each source is mod-
eled as a materialized view defined in terms of the global relations, which are virtual. Note the

G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100 89

reversal of the classical model: instead of thinking of views as virtual artifacts defined on stored
relations, we think of the views as stored, and the relations that the views are defined on as
virtual

A question of semantics now arises: what is the meaning of a query? Since a query is expressed in
terms of the global schema, and the sources implicitly represent an instance of this global schema,
it would be natural—at least conceptually—to reconstruct the global database represented by the
views and apply the query to this global database.

Well, it turns out that the global database actually is incomplete. In other words, there might be
several (usually infinitely many) global databases that are consistent with the definition of, and the
data in the sources.

Example 5. For a simple example, suppose we have a global relations Affiliation(Actor, Studio), and
two sources: Source S has definition (X, Y) < Affiliation (X,Y) and extension s | = {}j(Greta
Garbo, MGM)}. Source S, has definition 75 (X) < Affiliation (X,Y) and extension s, = {V5(Elisabeth
Taylor)}. Then itis natural to think that any database that contains at least the facts Affiliation(Greta
Garbo, MGM) , and Affiliation (Elisabeth Taylor,a), for some a € dom, is a possible global database
for S = {81, S2}.

Formally, for a source collection S = {51, 52, ...,S,}, where each S; has as definition a conjunctive
query v;, and a finite set of facts s; over the relation name in head (;) as extension, we call its set
of possible databases poss(S), and define it as

poss(S) ={db : s; C y;(db),i € {l,...,m}}.

Now the set poss(S) can be conveniently represented by a tableau, denoted 7(S), over the re-
lation names in the bodies of the definitions v, such that rep(T) = poss(S). To construct T we
shall follow the approach in [11] (see also [12,13]). We define a function, which, by abuse of nota-
tion, we also denote 7, from source extensions s, with definition , to tableaux over the relation
names in the body of . We also need an auxiliary function refresh, that, when applied to a set of
atoms, replaces each variable with a distinct unused (“fresh”) variable. Given a source S = (v,),
we set

1(S) = | {refresh(a(body(}))) : o(head () = t},

tes
for some valuation o.

Example 6. Let S have definition ¥ = NX,Z2) < R|(X,Y),R>(Y,Z) and extension s = {Ma,b),
e, d)}). Then T(S) = {Ri(a, 11), Ro(11,b), Ri(c, 2), Ry(Ya,d)}, where Y7 and Y5 are fresh variables.

4 Whether the views are actually stored at each source or materialized by other means, and whether they consist of
relations or semi-structured objects or files are issues irrelevant to our discussion and hidden from the query processor
by appropriate wrappers.

90 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100

When there are several sources in S we set

T(S) = U 7(S).

Ses

Example 7. For the source collection S = {1, S>} presented in the Example 5, we have T(S) = {Affil-
iation(Greta Garbo, MGM), Affiliation(Elisabeth Taylor, X)}.

The tableau constructed by the function 7" has the following desirable property.
Theorem 2. rep(7(S)) = poss(S).

Proof. Let db € rep(7(S)). To prove that db € poss(S) we need to show that for all sources S; =
(¢¥i,8) In S, we haves; C ¥;(db).Sincedb € rep(T(S)) there is a valuation o such that o(7(S)) C db.
Let S; = (y;,s;) be an arbitrary source in S, and let ¢ be an arbitrary fact in s;. Then there must be
a substitution 6, such that ¢t = 6(head (v;)) and all facts in 8(body(y;)) are in T(S). It follows that
O(o(body(¥;))) € db and, consequently, 6(a(head(y;))) € db. Since 6(o(head (V;))) = t, we have
s; C v¥;(db) as desired.

For inclusion in the other direction, let db € poss(S). From construction of 7(S) it immediately
follows that there is a valuation o such that o(7(S)) C db and, thus, that db € rep(7(S)). O

Theorem 2 is illustrated in the following diagram.

Source collection S

T Poss

T(S)i rep Possible databases
poss(S)

In definition of the set of possible databases we made a version of the OWA. The facts in the
sources are considered to be sound, in the sense that they all are generated by facts in the global
database. An alternative view would be to state that a source can contain (spurious) facts that do
not stem from facts in the global database. In this case the source would be considered complete,
but not necessarily sound. If the sources are required to be both sound and complete, they are called
exact’> The situations where sources are allowed to be both sound and complete are treated in
[2,11]. The presence of complete sources, however, usually increase the computational complexity
of decision problems related to integration, see [2,11]. In [22], the authors consider a generalization
of the sound/complete view assumptions. Each source is considered to be both partially sound, and

5 If all sources are complete, the definition of poss would be poss(S) = {db : s; 2 ¥;(db), i € {l,..., m}}, and for
exact sources we would have poss(S) = {db : s; = ¥;(db),i € {L,...,m}}.

G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100 91

partially complete. A soundness of say 80% would say that the source contains 80% facts that are
derived from facts in the global database, and 20% of “spurious” facts. A completeness of 80% says
that 80% of the facts derivable from the global database are in the source.

Now that we have seen that a source collection S actually defines an incomplete database poss(S)
that we can represent by a tableau 7(S), and that an incomplete database represented as a tableau
can be queried using the g-evaluation of a query ¢, we have a method for computing a representa-
tion of the exact answer to a query ¢ posed on the global database: first compute the tableau 7(S),
then apply ¢ to obtain @(7(S)). Theorem (1) gave us rep(9(T)) ~ ¢(rep(T)), for any tableau T, and
since Theorem (2) gives rep(7(S)) = poss(S), we get

Theorem 3. rep(p(T(S)) ~ ¢(poss(S)).

In other words, we combine the two previous commutative diagrams, and get the following
illustration of Theorem 3.

Source collection S

T POSS
T(S) rep Possible databases
poss(S)
@ @
Answer rep Exact answer
a(T) p(rep(T))

Example 8. In Examples 5 and 7, if the query ¢ were the identity, i.e., it asked for the facts in the Affil-
iation -relation, a representation of the exact answer would be the tableau { Affiliation(Greta Garbo,
MGM), Attiliation(Elisabeth Taylor, X)}. The certain fact in this answer is Affiliation(Greta Garbo,
MGM).

4. Using rewritings to answer queries on global databases

In the previous section, we saw how to answer a query ¢ by first constructing the tableau repre-
senting all possible global databases. However, computing 7(S) might involve a lot of redundant
work, since it amounts to constructing the tableau corresponding to the entire source collection
S, whereas the global relations that are in the body of ¢ might be mentioned in only few source
definitions. Furthermore, the query might have selections and joins that could be computed directly
at the sources.

92 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100

Let {y1,...,v¥,} beaset of source definitions, and ¢ a query whose body mentions relation names
in {body(Yr;)}i. A rewriting of a query ¢, with respect to {y,...,¥,}, is a query x with the same
head-relation name as ¢, and body-relation names in {head (V;)};.

The idea of a rewriting is that it can be evaluated on source extensions. It appears that rewritings
were first proposed for a restricted setting in [29]. They were generalized in [18,19]. The correctness
criteria for rewritings were defined in terms of a certain containment between the rewriting and the
original query.

Example 9. Let S ={51,5}, with N(X,Z2) < R(X,Y), R (Y,Z), and h(X,Z) < Ri(X,)),
R3(Y,Z) as definitions. Let ¢ be the query Q(X,Y) < R|(X,7). According to the correctness
criteria in [19], the desired rewriting ¢’ would be the union of Q(X,Y) < V(X,Y), and Q(X,Y) «
nX, D).

The correctness criteria did not however state what the answer produced by the rewriting meant.
It was subsequently shown in [8,11] that the rewritings actually produced the certain answer
N(p(poss(S))). This is easy to see in Example 9. Source S; contains facts of R; that join with a
fact in Ry, and S, contains facts of R; that join with a fact in R3. Since the sources provide us no
information about R, and R3, there is a possible database where R, and R3 are empty. Therefore,
the facts of R that are in every possible database is the union of the facts in S; and S», which is
exactly what the “correct” rewriting would produce in Example 9.

The first algorithms for constructing rewritings essentially explored the whole (finite) solution
space to find all x’s. Later more efficient algorithms were developed. These include the set-cov-
ering based algorithm in [11], its more detailed implementation MiniCon [23], the CoreCover al-
gorithm [6], and the algorithm [5] taking arithmetic comparisons into account. Other extensions
of the basic technique are surveyed in [14,15]. The cases where the queries defining the sources,
as well as the user query, are allowed to be more general than conjunctive ones are analyzed in
[2].

However, perhaps since the relationship between information integration and incomplete infor-
mation had not been clearly articulated, there were no algorithms for computing the exact answer.
To see the difference of the certain and exact answers in information integration applications,
consider the following example.

Example 10. Suppose that the global schema contains two relations, Affiliation(Actor, Studio), and
Star(Name, Type). A fact Affiliation(Greta Garbo, MGM) means that Greta Garbo is affiliated with
the MGM studio, and a fact such as Star(Elisabeth Taylor, Tragedienne) means that Elisabeth Taylor
is a Tragedienne. We have two sources, S and S, with definitions. (X, Y) < Affiliation(X,Y),
Star(X,7), and V>(X, Z) < Affiliation(X,Y), Star(X,Z). The user issues the query ¢ = Q(X,Y,2) <«
Affiliation(X,Y), Star(X,Z). Using the correctness criteria in [19], we get an empty rewriting, and
thus an empty query result for the user. However, suppose the extension s; = {}j(Greta Garbo,
MGM)}, and sy = {V>(Elisabeth Taylor, Tragedienne)}. Then T({S1,S»2}) = {Affiliation(Greta Garbo,
MGM), Affiliation(Elisabeth Taylor, X1), Star(Elisabeth Taylor, Tragedienne), Star(Greta Garbo,X>)},
and @(T({S1,52})) = {O(Greta Garbo, MGM, Y1), Q(Elisabeth Taylor, Y>, Tragedienne)}. This exact
answer tells the user that Greta Garbo is affiliated with MGM and is an actress of an unknown
type, and that Elisabeth Taylor is a Tragedienne and is affiliated with an unknown studio. This is

G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100 93

all the information we can deduce based on the incomplete information about the global relations
provided by the sources.

We now proceed as follows. In the remainder of this section we first generalize the notion of
query containment, which enables comparisons between different reformulations of queries, to p-
containment. Next we define p-rewritings based on this more general containment. Then we extend
the standard query evaluation so that given a p-rewriting, it computes the exact answer. In Section
5, we provide a unification-based method for actually producing the p-rewritings.

4.1. P-containment and p-containment mappings

We can broaden the classical notion of query containment as follows.

Let ¢ and ¢, be conjunctive queries. A query ¢ is said to be p-contained in ¢>, denoted ¢1 S, @2,
if and only if there exists a conjunctive query ¢, where ¢ is equivalent to 1 (¢) (i is relational pro-
jection), for some list L of columns in sead (¢) taken in the original order, such that for all databases
db, ¢(db) C ¢ (db). Note that p-containment is a generalization of query containment since L can
be the list of all columns in ¢;.

To facilitate testing of p-containment, the classical notion of a containment mapping [7], can be
generalized to define p-containment mappings. A p-containment mapping from a conjunctive query
@2 to a conjunctive query ¢ is a mapping u, from variables of ¢; to variables and constants of ¢,
such that

(1) u(body(p2)) < body(e1), and
(2) for every variable X in head(¢;) there is a variable Y in head (¢>), such that u(Y) = X.

Example 11. Consider the following queries:

o1 = 01X) <~ Ri(X, D), R (Y, Y),R3(Y, 2)
¢ =0X.Y) <« RX,Y),R(Y',Z")

There is a p-containment mapping u = {X'/X,Y'/Y,Z'/Y} from ¢; to ¢.

As a consequence, we can now use p-containment mappings to test p-containment of conjunctive
queries.

Theorem 4. A query ¢y is p-contained in a query ¢, if and only if there is a p-containment mapping
from @3 to 1.

Proof. Let i be a p-containment mapping from ¢; to ¢1, and let db be an arbitrary database. A fact
in ¢1(db) is generated by some valuation o. Then o o w is a valuation that generates the correspond-
ing fact £, in @2 (db). To see that this is indeed so, let b € body(¢z). Then o o u(b) = o(c) € db, for
some ¢ € body(¢1). Therefore, o o u(b) € db. From requirement 2 of a p-containment mapping it
follows that o o u(head(p2)) = mp(o o w(head(gr))), where L is a list of variables in head (¢>) in the
original order. Thus, ¢1 S, ¢».

94 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100

Let ¢ €, ¢2. Let db be the canonical database that is the “frozen” body(¢), that is, db =
p(body(¢1)), where p is an injective valuation (the “freezing mapping”). By the definition of p-con-
tainment there exist a conjunctive query ¢, such that ¢(db) C ¢>(db) and ¢; = 77 (¢) for some or-
dered list L of columns in sead (¢). Obviously, ¢ (db) contains a fact ¢, which is the “frozen” head (¢).
Since ¢ = 77 (¢) there must be a fact # in ¢(db), such that 7 () = #1. Since ¢(db) C @ (db), we
have ©, € ¢,(db).

Let o be a valuation that generates the fact 7, in ¢;(db). Let p be the “freezing” mapping, which
also is a valuation that generates the fact # in ¢;(db). Then p~' o & is a p-containment mapping
from ¢; to ¢.

To see that this is indeed so note two things. First, that each atom b € body(¢;) is mapped by o
to some fact in db, which is a frozen version of some atom ¢ € body(g1), so p~' o ¢ maps b to the
unfrozen fact, that is to c itself.

Second, note that those variables in head (@) that are also in head(¢;) are mapped by o to con-
stants in the fact ¢, which is the frozen head(¢1), so that all of the head variables in ¢; are covered.
Thus p~! o o maps corresponding variables in kead(¢2) to the unfrozen head(¢;). Thus, p~' o o is
a p-containment mapping from ¢; to ¢;. [

4.2. P-rewritings

We will now extend the classical notion of rewriting [18,27] to p-rewriting.

Think of a set of source definitions {y, ..., ¥} for a class of source collections. Let x be a query
over relation names V; in {head (;)};. Then the expansion of x, denoted x**P, is defined only if, for
each 7;(.) in body(x), there is a containment mapping u from head(y;) to V;(.). In this case P
is obtained from x by replacing all the ¥;(.)’s in body(x) with w(body(y;)). Existential variables in
u(body(r;)) are replaced by fresh variables when constructing x®*P.

A query yx is a contained rewriting of ¢ if x**P C ¢. The query y is a p-contained rewriting of ¢ if

Xexp gp .
Let x be a p-contained rewriting of ¢, and S a source collection with definitions {v, ..., ¥,} and
extensions = U{sy,...,s,}. We define the g-evaluation of x on S, denoted x,(S), as follows:

Xo(S) = {oy(head(p)) : a(body(x)) S s},

where u is a p-containment mapping from ¢ to x**P and o is a valuation. Suppose a head variable
X of ¢ is mapped by u to a variable in the expansion of the atom V;(X,...,X;), and w(X) is the jth
existential variable in the definition ;. Then the extension o, of o is defined by setting

X) = o(n(X)), if w(X) occurs in head (x)
on) = fij(o(X1),...,0(X;)) otherwise.

To define ¢(S), the evaluation of conjunctive queries with function symbols in the head, we need
an auxiliary function replace that, when applied to a set of atoms with function terms, replaces each
unique term with a unique variable. Now we set

#(8) = replace ({Jxo(s) : x™ S, 1)

and state the following important result:

G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100 95

Theorem 5. For all source collections S with definitions {y, ..., V¥u},

P(S) = p(T(S5)),

up to renaming of the variables.

Proof. Let 7 be an arbitrary atom in ¢(S). Then there was a conjunctive query y in the union of
all p-rewritings of ¢ and a g-evaluation of x, using a valuation o, such that t = o, (head(¢)), and
o(body(x)) Cs, where u is a containment mapping from ¢ to x“*P.

Let the extension of S be s. Since a(body(x)) Cs, it means that all atoms in o(body(x**P)) are in
7(S) (with fresh existential variables). Since u is a containment mapping from ¢ to x**P, we have
o(u(body(p))) € I(S). Thus o(u(head(p))) € P(1(S)). Now o(u(head(¢))) isequal to o, (head (¢)),
except for positions that don’t occur in kead(y), these have been replaced by function terms in
o, (head(p)). Now let us consider the case that a given term appears somewhere else in ¢(S). There
are two cases, either the repeating term appears in the same atom or it appears in a different atom.

Case 1: (See Example 12 further.) The repeating term appears in the same atom. This means
that either there were repeating variables in sead () and it is obvious that in ¢(7(S)) there are two
occurrences of the same variable. Another possibility is that in x**P there were two occurrences of
the same existential variable. In this situation in 7(S) there would be two occurrences of the same
variables and since @ always substitutes variables of the query for the variables of the tableau they
would also appear in 9(7(S)).

Case 2: (See Example 13 further.) The repeating term appears in some atom ¢’ in ¢(S). In this
case there are two possibilities, either # was produced by the g-evaluation of x or by the ¢-eval-
uation of some other rewriting x'. In either situation both terms originated from the same fact
in s and, moreover, from the same existential variable because function terms are subscripted
with variable index. It is obvious that there would be two occurrences of the same variables in
7(S).

For the proof of inclusion in the other direction, let 7 be an arbitrary atom in ¢(7(S)). Sup-
pose body(g) consists of atoms by, by, . .., b,. Then there is a substitution 6, such that 6(b;) € T(S),
for all i € {1,...,n}. But each atom 6(b;) is in 7(S), which follows from the fact that there is
a source Sj;, Wlth definition Vi, and extension Si; & valuation i) and a fact li; € Sij, such that
ti; = oj;(head(Y;;)) and 0(b;) € re fresh(oi,(body(;)))). If we take a query ¢ such that body(¢) =
o1, (head (Y,)),62 (head(Yr2))), . .., 0on; (head(lﬂn), and head(¢) = (01, Uo, U---Uoy)(head(¢)),
we have a p- contalnment mapping (namely 9) from ¢ to x°*P. Consequently X Will be an ele-
ment in the union of queries that ¢ considers, and obviously x generates the fact + when applied
to s. Now let us consider the case that a given variable appears somewhere else in ¢(7(S)). Again
there are two cases to consider, either the repeating variable appears in the same atom or it appears
in a different atom. In both cases, the same variables are in ¢(7(S)) because there were the same
variables in 7(S)—remember that ¢ always substitutes variables from the query for the variables
from the tableau. The same variables could appear in the tableau only if they come from inversion
of the same fact and, moreover, from the same existential variable in the query defining the view.
And since this is the case it is obvious that in the corresponding atoms in the g-evaluation on S
there will be the same terms in the corresponding positions. [

96 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100

Example 12. For example, let the source collection be S = {S1,5>}, where ¥ = (X1, X3) <
R1(X1,X2), Ra(X2,X3), s1 = {N(a,0)}, Y2 = Va2 (X)) < R3(X1,X2), and s; = {}2(c)}. Let the query ¢
be QX,Y,Y,Z, W) < RI(X,Y),R(Y,Z),R3(Z, W). In this case there is one (minimal) p-contained re-
writingof g, namely x = O(X,Y) < (X,), 12(Y). Applying x, gives us the atom O(a, fi2(a), fi2(a),
¢, f22(c)), and applying the replace function yields the answer {Q(a,Y,Y,c, W)}. Had we used the
tableau method instead, we would have gotten 7(S) = {Ri(a, ¥), R2(Y,¢), R3(c, W)}. Then applying
¢ to T(S) would have given {Q(a, Y,Y,c, W)}.

Example 13. For an additional example, consider the following source collection: S = {8}, S>, S3},
where Y] = N(X1,X3) < R1(X1,X2,X3),81 = {(V(a,b)}, 2 = Va(X1,X2) < R2(X1,X2),82 = {V2(c,a)},
Y3 = N3(X2) < Ra(X1,X2),ands3 = {}3(a)}. Letthequerypbe Q(X, Y, Z, W) < Ry(X, V),R1(Y,Z, W).
The two (minimal) p-contained rewritings of ¢ are i, which is Q(X, Y, W) < (X,), (Y, W)
and x», which is Q(Y, W) < 13(Y), (Y, W). Applying (x1), and (x2), gives us two atoms Q(c,a,
fi2(a,b),b) and O(f31(a),a, fia(a,b),b), and applying the replace function yields the answer
{O(c,a,Z,b),0(X,a,Z,b)}. Had we constructed the tableau for this source collection first, we would
have gotten 7(S) = {Ri(a,Z,b),R2(c,a), R2(X,a)}. Then applying ¢ to T(S) would have given
{O(c,a,Z,b),0(X,a,Z,b)}.

Theorem 5 can be illustrated by the following diagram.

Source collection S T(S)
~ @
¥
Answer
P(T(5;)
=¢(S

Note that since ¢(S) computes a tableau that is equivalent to ¢(7(S)) the result of this compu-
tation can be used for subsequent querying.

5. Unification-based rewriting

The definition of a p-rewriting in the previous section is purely declarative. We now provide a
constructive method for producing a p-rewriting given a query ¢, and the description {y,..., ¥}
for a class of source collections.

A unifier for two atoms b and b, is a substitution 6 such that 6(b;) = 6(b3). A substitution 6 is
more general than a substitution ¢ if for some substitution ¢’, £ = 6 o . A most general unifier for
a and b is a unifier 6 such that, for each unifier ¢ of @ and b, 6 is more general than ¢.

Let o be a subset of the atoms in {body(v;)};, such that « unifies with the set of atoms in body ().
Let the mgu that achieves this unification be 6. If 6 does not equate any view variable X to any other

G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100 97

view variable or constant, unless X appears in the head of its view then do the following. Choose a
subset {1, . .., ¥} of the view definitions, such that every atom in o occurs in some body(y;;) and
every body(y;;) contains at least one atom in . Now, define x as

w1 (O(head(p)) < O(head (Yr;))), . ..,0(head (V;,)),

where L is a list of all variables in 6(head (¢)) that are also in 6(head (;,)), . . ., O(head (Y;,)).

The output, rew(¢), of the algorithm is the union of all possible x’s thus constructed. Note that
there is a finite number (modulo renaming) of such x’s since each one is based on a subset « of the
atoms in the bodies of the view queries, and there is a unique (up to renaming) mgu for each pair
of atom sets. Furthermore, there is a finite number of ways of choosing the “covering” subset « of
the view atoms.

Theorem 6. rew(p) is equivalent to the union of all p-contained rewritings of ¢.

Proof. To prove that rew(¢) contains only semantically correct rewritings we need to show that for
each x € rew(yp), there is a p-containment mapping from ¢ to x**P. Let x be an arbitrary element
in rew(g) and let 6 be the mgu that was used to produce x. Consider the expansion of x

xP = ny(head (0(p)) < 0(body(Vi)), . .., 0(body(Yr)).

It is obvious that 0 also gives a p-containment mapping from ¢ to x**P. Thus x is p-contained in
Q.
To prove that the method computes all semantically correct rewritings we will show that for
each p-rewriting x of a given conjunctive query ¢, there will be a query x’ in rew(¢) such that
x <X
Suppose yx is of the form

head(x) < V;,(.),.... V; (L),

where each Vj;(.) comes from head (;;). Without loss of generality we assume that no variable is
unnecessarily projected out from head (x).

Since x is a semantically correct rewriting, we know that there is a p-containment mapping
from ¢ to x**P. It now follows that there is a subset « of the atoms in the bodies of {y;;,...,v¥;,},
such that y is an unifier for @ and body(¢). Suppose that w is actually the most general unifier. Then
the query x’ obtained as ny (head (¢)) < O(head (Y;))), . . . ,0(head (y;,)), where L is a list of variables
X € head(0(p)), such that X € O(head (Y;,)), . ..,0(head(Y;,)), will be in rew(¢). Obviously, the
identity function will be a containment mapping from x’ to .

Suppose then that 0 is not the most general unifier for « and body(¢). Then there will in rew(¢)
be a query x/, such that the body of x®*P is a more specific instance of the body of the expansion of
x'. This guarantees that there will be a containment mapping from x’ to x.

The claim of the theorem now follows from the characterization of equivalence of unions of
conjunctive queries by Sagiv and Yannakakis [25]. O

98 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100

Example 14. In Example 10 the unification method would produce as rewriting the union of
O0X,Y) < NN(X,Y) and Q(X,Z) < 1h(X,Z). When using the g-evaluation on this rewriting ap-
plied to the sources in Example 10 would produce the result {Q(Greta Garbo, MGM , Y1), O(Elisabeth
Taylor, Y, Tragedienne)}.

Obviously it would be desirable to compute a rewriting that encodes the containment mappings
wu needed in the @ evaluation in the rewriting directly, rather than recompute the ©’s at evaluation
time. To do that we can extend our unification based method as follows. Everything up to producing
a rewriting y remains the same but for every rewriting x, where

body(x) = O(head(Viy)), . . ., 0(head (V;,)),

we set head(x) = n(6(head(p))), where n is defined as follows. Suppose a variable X of ¢ is unified
by 6 with a variable in an atom in body (), 6(X) is the jth distinguished variable in the body (),
and existential variables in ;, are Xj, ..., X;. Then the

_ o), if 8(X) occurs in head (i)
1 =1 £ 6.6(X)) otherwise.

The union of all rewritings produced by our extended method can then be evaluated on the source
collection in the usual manner and replace function can be applied to the resulting set.

The following lemma directly follows from Theorem 6 and the construction of skolemized
rewriting by our extended unification based method.

Lemma 1. The union of all rewritings produced by the extended unification based method relative to a
query ¢ is equivalent to rew(p).

Proof. It is obvious that the union of all rewritings produced by our extended unification based
method contains one skolemized rewriting for each p-contained rewriting produced by the original
method. The claim follows from the Theorem 6 and the fact that function terms are inserted by our
extended method in the same way as by ¢. [

Example 15. In Example 14, the extended unification method would produce as rewriting the union
of the queries O(X, Y, f1.1(X,Y) < NX,Y) and QX, f1(X,Z),Z) < V2(X,Z). The extended eval-
uation of the rewriting on the source collection in Example 10 will indeed produce {Q(GretaGarbo,
MGM, Y1), O(Elisabeth Taylor, Y», Tragedienne)}.

6. Conclusion

Query answering in Information Integration systems can now be summarized by combining the
previous commutative diagrams into the following.

G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100 99

Sources § poss
(S rep Possible databases poss(.S)
¢ ¢ 2
rep
Answer @(T'(Exact answer ¢(poss(.S))
=¢(S5) %repE@ET(S))
= rep($(9))

We note that the computational complexity of query evaluation does not change when moving
from certain to exact answers. This means that the basic complexity results, such as those in [4,2]
carry over to our more general theory. It does not mean that the theory does not open up any new
complexity questions, they will be the topic of future papers.

References

[1] S. Abiteboul, On views and XML, in: Proceedings of the 18th Annual ACM Symposium Principles of Databases
(PODS ’98), Philadelphia, Pennsylvania 1999, pp. 1-9.
[2] S. Abiteboul, O.M. Duschka, Complexity of answering queries using materialized views, in: Proceedings of the 17th
Annual ACM Symposium Principles of Databases (PODS *98), Seattle, Washington, 1998, pp. 254-263.
[3] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, Reading, MA, 1995.
[4] S. Abiteboul, P.C. Kanellakis, G. Grahne, On the representation and querying of sets of possible worlds, J. TCS 78
(1) (1991) 158-187.
[5] F. Afrati, C. Li, P. Mitra, Answering queries using views with arithmetic comparisons, in: Proceedings of the 21st
ACM Symposium on Principles of Database Systems (PODS ’02), Madison, Wisconsin, 2002, pp. 209-220.
[6] F. Afrati, C. Li, J.D. Ullman, Generating efficient plansfor queries using views, in: Proceedings of the ACM SIGMOD
International Conference on Managementof Data (SIGMOD °01), Dallas, Texas, 2001.
[71 AK. Chandra, P.M. Merlin, Optimal implementation of conjunctive queries, in: Proceedings of the ACM SIGACT
Symposium on the Theory of Computing (STOC °77), 1977, pp. 77-90.
[8] O.M. Dushka, M.R. Genesereth,Query planning with disjunctive sources, in: Proceedings of the AAAI Workshop
on Aland Information Integration, Madison, Wisconsin, 1998.
[9] G. Grahne, Dependency satisfaction in databases with incomplete information, in: Proceedings of the 10th Interna-
tional Conference on Very Large Databases (VLDB ’84), Singapore, 1984, pp. 37-45.
[10] G. Grahne, The problem of incomplete information in relational databases, in: Lecture Notes in Computer Science,
vol. 554, Springer-Verlag, Berlin, 1991.
[11] G. Grahne, A.O. Mendelzon, Tableau techniques for querying information sources through global schemas, in:
Proceedings of the 7th International Conference on Database Theory (ICDT ’99), Jerusalem, Israel, pp. 332-347.
[12] G. Grahne, V. Kiricenko, Obtaining more answers from information integration systems, in: Proceedings of the Fifth
International Workshop on the Web and Databases (WebDB °02), Madison, Wisconsin, 2002, pp. 67-76.
[13] G. Grahne, V. Kiricenko, Partial answers in information integration systems, in: Proceedings of the 5th ACM CIKM
International Workshop on Web Information and Data Management (WIDM ’03), New Orleans, Louisiana, 2003,
pp- 98-101.
[14] A.Y. Halevy, Theory of answering queries using views, SIGMOD Rec. 29 (4) (2000) 40—47.
[15] A.Y. Halevy, Answering queries using views: a survey, VLDB J. 10 (4) (2001) 270-294.
[16] T. Imielinski, W. Lipski Jr., Incomplete information in relational databases, J. ACM 31 (4) (1984) 761-791.
[17] M. Lenzerini, Data integration: a theoretical perspective, Invited tutorial, in: Proceedings of the 21st ACM Sympo-
sium on Principles of Database Systems (PODS ’02), Madison, Wisconsin, 2002, pp. 233-246.

100 G. Grahne, V. Kiricenko | Information and Computation 194 (2004) 79-100

[18] A.Y. Levy, A.O. Mendelzon, Y. Sagiv, D. Srivastava, Answering queries using views, in: Proceedings of the 14th ACM
Symposium on Principles of Database Systems (PODS ’95), San Jose, California, 1995, pp. 95-104.

[19] A.Y. Levy, A. Rajaraman, J.J. Ordille, Querying heterogeneous information sources using source descriptions, in:
Proceedings of the 22nd International Conference on Very Large Databases (VLDB *96), Mumbai (Bombay), India,
1996, pp. 251-262.

[20] W. Lipski Jr., On relational algebra with marked nulls, in: Proceedings of the Third ACM Symposium on Principles
of Database Systems (PODS ’84), Waterloo, Ont., 1984, pp. 201-203.

[21] A.O. Mendelzon, Database states and their tableaux, ACM Trans. Databases Syst. 9 (2) (1984) 264-282.

[22] A.O. Mendelzon, G. Mihaila, Querying partially sound and complete data sources, in: Proceedings of the 20th ACM
Symposium on Principles of Database Systems (PODS °01), Santa Barbara, California, 2001, pp. 162-170.

[23] R., Pottinger, A.Y. Levy, A scalable algorithm for answering queries using views, in: Proceedings of the 26th Inter-
national Conference on Very Large Databases (VLDB ’00), Cairo, Egypt, 2000, pp. 484-495.

[24] R. Reiter, On closed world databases, in: H. Gallaire, J. Minker (Eds.), Logic and Databases, Plenum Press, New
York, 1978, pp. 56-76.

[25] Y. Sagiv, M. Yannakakis, Equivalence among relational expressions with the union and difference operators, J. ACM
27 (4) (1980) 633-655.

[26] J.D. Ullman, in: Principles of Database and Knowledge-Base Systems, vol. II, Computer Science Press, Rockville,
MD, 1989.

[27] J.D. Ullman, Information integration using logical views, in: Proceedings of the 6th International Conference on
Database Theory (ICDT ’97), Delphi, Greece, 1997, pp. 19-40.

[28] M.Y. Vardi, Querying logical databases, J. Comput. Syst. Sci. 33 (1986) 142-160.

[29] H.Z. Yang, P.A. Larson, Query transformation for PSJ Queries, in: Proceedings of the 13th International Conference
on Very Large Data Bases (VLDB ’87), Brighton, England, 1987, pp. 245-254.

