
NAIVE TABLES

Gösta Grahne
Department of Computer Science

Concordia University, Montreal, Canada
grahne@cs.concordia.ca

SYNONYMS
Relations with marked nulls; Extended Relations

DEFINITION
The simplest way to incorporate unknown values into the relational model, is to allow variables, in addition
to constants, as entries in the columns of relations. Such constructs are called tables, instead of relations. A
table is an incomplete database, and represents a set of complete databases, each obtained by substituting all
variables with constants. Different occurrences of the same variable (marked null) are substituted with the same
constant. The substitution is thus a function from the variables and constants, to the constants, such that the
function is identity on the constants. A table T then represents the set of relations, denoted rep(T ), defined as
{v(T ) : v is a valuation }. Then the certain answer (crossref) to a query q on a table T , denoted sure(q, T ) is the
set of tuples that occur in every answer obtained by applying the query to every database in rep(T ). In other
words the certain answer to q on T is sure(q, T ) = ∩q(rep(T )).
MAIN TEXT
To illustrate the above concepts, let tables T1 and T2 be as below, and let q be the relational expression
σA=a∨A=c(πAC(R1 on R2)). (The schema of Ti is that of Ri, i = 1, 2.) Then applying q to T1, T2, which is
denoted σA=a∨A=c(πAC(T1 on T2)), yields table q(T1, T2) below.

T1 A B

a X

Y b

c b

T2 B C

X d

b Z

q(T1, T2) A C

a d

c Z

The variables/null-values are written in uppercase, to clearly distinguish them from the (lowercase) constants.
Note however that q(T1, T2) is not (necessarily) yet the certain answer. How was q(T1, T2) derived from q and
T1, T2, and how is the certain answer sure(q, (T1, T2)) obtained from q(T1, T2)? The answer to the second question
is very simple: just drop all tuples containing variables from q(T1, T2). The remaining tuples form the certain
answer. In the example the certain answer consists of tuple (a, c) only. The answer to the first question is
not much more complicated: evaluate q on the tables, treating variables are “constants,” pairwise distinct, and
distinct from all “real” constants. This is also known as the Naive evaluation of q on T [2, 3]. In the example
above, tuple (a,X) joined with tuple (X, c) since they have the same value, represented by X, in the join column.
This is done even though the “actual” value of X is not known, since in any valuation v the two occurrences of
X are mapped to the same value. On the other hand, when performing the selection σA=a the tuple (Y, Z) is not
picked, since there is a least one valuation v, for which both v(Y ) 6= a and v(Y ) 6= c. A characterization of the
correctness on the Naive evaluation is given below.
Before going to the characterization, note that is not always ideal to return the certain answer only. Namely, if
the answer to q is to be materialized as a view for further querying, essential information is lost if the tuples with
variables are dropped. For a simple example, if evaluating πA on sure(q, (T1, T2)) gives tuple (a) as sure answer,
whereas evaluating πA(q(T1, T2)), puts tuples (a) and (c) in the sure answer. As a consequence, query evaluation
would not be compositional, unless q(T1, T2) is stored as an “intermediate” answer. This “intermediate” answer is
called the exact answer in [1], where the theory of query rewriting in information integration systems is extended
to use the exact answer, instead of the certain one.

1



The correctness and completeness criteria for tables and query-evaluation is formalized using the notion of
representation system [2]. Here an alternative, equivalent formulation given in [3] is used: Consider a class
of tables T, and a query language Q. A triple (T, rep,Q) is said to be a representation system if for every table
T ∈ T, and for every applicable q ∈ Q, there exist a function (here also named) q, such that

∩ rep(q(T )) = ∩q(rep(T )), and(1)
q′ ◦ q(T ) = q′(q(T )),(2)

for all applicable q′ ∈ Q.
Condition (1) says that the system can correctly compute the certain answer, and condition (2) states that the
computation has to be uniformly recursive, following the structure of q. The important result is now that the class
of Naive tables, and the class of all negation-free relational algebra expressions, together with Naive evaluation
form such a representation system. And this result comes without any computational penalty.

CROSS REFERENCE
Incomplete Information, Naive tables, Certain answer, Maybe answer.

RECOMMENDED READING

[1] Gösta Grahne, Victoria Kiricenko: Towards an algebraic theory of information integration. Inf. Comput. 194(2):
79-100 (2004)

[2] Tomasz Imielinski, Witold Lipski Jr.: Incomplete Information in Relational Databases. J. ACM 31(4): 761-791 (1984)
[3] Witold Lipski Jr.: On Relational Algebra with Marked Nulls. PODS 1985: 201-203

2


