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Abstract
We study the problem of combining updates—a special instance of theory change—and counterfactual conditionals
in prepositional knowledge baset. Intuitively, an update means that the world described by the knowledge base has
changed. This is opposed to revisions—another instance of theory change—where our knowledge about a static world
changes. A counterfactual implication is a statement of the form 'If A were the case, then B would also be the case',
where the negation of A may be derivable from our current knowledge. We present a decidable logic, called V C U 3 ,
that has both update and counterfactual implication as connectives in the object language. Our update operator is
a generalization of operators previously proposed and studied in the literature. We show that our operator satisfies
certain postulates set forth for any reasonable update. The logic V C U 3 is an extension of D. K.Lewis' logic VCU for
counterfactual conditionals. The semantics of V C U 3 is that of a multimodal prepositional calculus, and is based on
possible worlds. Trie infanx>usSomj«yRu/« becomes a denvadonmle in cmrwund and complete axiomatization. We
then show that Gdrdenfors'Triviality Theorem, about the impossibility to combine theory change and counterfactual
conditionals via the Ramsey Rule, does not hold in our logic. It is thus seen that the Triviality Theorem applies only
to revision operators, not to updates.

Keywords: Belief revision, updates, conditional logic, hypothetical reasoning, theory change.

'Kangaroos have no tails.'

1 Background
The usual material implication of formal logic fails to capture many implicative statements of
natural language. Consider for instance the sentence 'if I had some oars, I could row across
the river'. If we find ourselves on the bank of a river, equipped with a boat but no oars, then
according to the classical truth-table semantics the above sentence is true, in harmony with our
intuition. But then, the truth-table method also claims that the sentence 'if I had some oars,
pigs couldfty' is true, which obviously contradicts our intuition (cf. [20]).

Much work in logic has been devoted to conditionals, that is, implications other than the
material one. (For an overview of the field, see [34].) A counterfactual conditional, or coun-
terfactual for short, is a statement of the form 'if A, then B', where, as the name indicates, the
premiss A can contradict the current state of affairs, or our current knowledge thereof.

The application of counterfactuals to knowledge bases lies in their ability to express rules
of the form 'If A, thenB', and questions of the form 'WhatifA', where the negation of A may
be derivable from the knowledge base. Among others, Bonner [5] studies a database query
language with a What //-capability. Ginsberg [20] describes a large number of AI applications
of counterfactuals.

So far, we have looked at one side of the coin. On the other side there is the problem of
changing the information represented in a knowledge base according to new facts, including
facts that contradict the information already in the knowledge base. For a simple example,
suppose that the knowledge base contains the fact that "Tweety is a bird' and the rule 'All birds
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88 Updates and Counterfactuals

canfty'. Then the newly acquired fact 'Tweety cannot fly' contradicts the knowledge base.
Thus we have to give up something. A radical solution would be to throw out all the old infor-
mation from the knowledge base, and take the new fact as the new knowledge base. There is
though a quite substantial body of work on this problem, both in the fields of AI and databases,
as well as in the field of logic. (For some overviews, the reader should turn to [26, 31, 40].)
A generic name for the problem is theory change. The agreement on theory change is that in
the case of contradictions, 'as little as possible' of the old theory should be changed in order
to accommodate the new facts, that is, the change should be minimal. In the example above,
minimal change could mean that we give up either the fact 'Tweety is a bird', or the rule 'All
birds can fly'', but not both.

The notion of minimal change also plays a role in defining the meaning of counterfactual
implications. This is explicitly expressed in the Ramsey Rule [35]. The Ramsey Rule is sum-
marized by Stalnaker [38] as follows:

Accept a proposition of the form 'if A, then B' in a state of belief [or knowledge] K, if
and only if the minimal change of K needed to accept A, also requires accepting B.

Gardenfors [ 15,17] has shown that with certain assumptions on the change operation, such
operations are incompatible with the Ramsey Rule, meaning that any logic containing the two
is trivial (in a sense to be defined later). In other words, it seems to be impossible to combine
the facility to change the knowledge base with the ability to express What //-questions, and
have counterfactual If-then-ru\es, while keeping the very intuitive Ramsey Rule. This result
is known as the Gdrdenfors Triviality Theorem.

Many solutions have been sought to the dilemma of the theorem. Gardenfors [15] consid-
ers weaker versions of the Ramsey Rule, but concludes that these versions do not satisfy our
intuition. A more promising direction, where counterfactual If-then-ui\es are forbidden in the
knowledge base, is taken by Levi [29]. By going in this direction we however lose the expres-
sive power of the knowledge base, as well as the power to express iterated counterfactuals,
that is rules of the form If (IfA, then B), then C. On the other hand, Rott [36] has tried to forbid
iterated counterfactuals while allowing (non-iterated) counterfactuals in the knowledge base,
and concluded that the triviality result still stands. The works by Makinson [32] and Cross
[8] consider the case where the inference operator is non-monotonic, instead of the classical
one, but Makinson shows that the triviality theorem holds for all reasonable inference oper-
ators. Finally, Gardenfors [15] and Arlo Costa [3] show that weakening the assumptions on
the change operator does not provide a way out of the dilemma.1

As pointed out in [1,27,28], there are two fundamentally different ways of changing know-
ledge. One can regard the new evidence as contributing to our knowledge about the real world
(e.g. the butler is guilty). On the other hand, the evidence can reflect a change in the real
world(e.g. the master of the house has been murdered). Changes ofthe former kind are called
revisions by Katsuno and Mendelzon [27], whereas the latter type is given the name updates
in that same paper. 2

Gardenfors and his colleagues [2] have set forth a set of rationality postulates for revision
operations. Katsuno and Mendelzon have done the same for update operations [27]. Now
Gardenfors' triviality result holds for the case where the change function satisfies certain (weak-
ened) postulates for revision.

1 For recent developments in belief revision theory and conditional logic, the reader is asked to consult [ 12,13,14],
and the references therein.

3 Keller and Winslett [28] use the terms knowledge adding and change recording, instead of revision and update.
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In this paper we study the problem of combining updates (as opposed to revisions) and
counterfactuals via the Ramsey Rule. Our formalism is that of a multimodal propositional
logic. Neither operation is taken as more primitive than the other, and both are connectives
in the object language (in contrast to [ 15], where the revision operator appears on the level of
models). The interpretation of the update connective is a generalization of a 'possible models
approach' previously proposed and studied in the literature. The interpretation of the counter-
factual connective is the one associated with D. K. Lewis' logic VCU [30]3 (see also [37]). It
turns out that the logic characterized by this combined class of interpretations is obtained by
adding the Ramsey Rule as a derivation rule to an axiomatization of Lewis' logic VCU. The
resulting logic, called V C U 2 , of counterfactuals and updates is decidable. We also show that
the update postulates of Katsuno and Mendelzon [27] are theorems or metatheorems in this
logic. Finally, we show that the Gardenfors Triviality Theorem does not hold in V C U 3 .

2 The language £ > 0

Let £ be the language of propositional calculus, i.e. £ = {p, : i £ w } U {->, A, _L, ( ,)}. The
symbol -L is a 0-ary connective, and denotes the constant false. The set of all well-formed
sentences of £ is defined in the usual way. Parentheses are omitted wherever there is no risk
of confusion. Let ip and 4> be sentences. We regard the sentences ip V <f>, ip —• <f>, ip «-• <j>, and
T as abbreviations of the sentences -<{->ip A -«f>), (~<ip) V <f>, (ip —* <j>) A (<j> —• ip), and ->(JL),
respectively. The language £>,<> is obtained by adding the two (non-truth-functional) binary
connectives > and o to £. This induces the set of all well-formed sentences of £>,<>• When
there is no risk of confusion, we shall by a sentence mean a well-formed £>,<>-sentence.

Intuitively, ip o <p means the 'the result of updating ip with <j>'. The intuitive meaning of
ip > <f> is 'If tp were true, then <p would also be true'.

In a knowledge base setting the language can be used as follows: Let KB be a finite set
of £> 0-sentences. If we want to update the knowledge base with some new information rep-
resented by a £>,0-sentence <f>, the new knowledge base will be represented by the sentence
KB' o <f>, where KB' is the conjunction of the sentences in KB.4 Likewise, a hypothetical
query, such as 'wouldip be true, if(f> were true?' is evaluated by testing whether KB logically
implies <f> > ip.

3 £>0-models
Changing worlds and theories

Usually a KB is incomplete, in the sense that the reality it describes allows for several (non-
isomorphic) interpretations. That is, the true state of affairs in the real world of interest is
only known to be among a finitely describable set of possibilities. We, or a reasoning agent,
do not have enough information to determine which one of these possibilities—the technical
term is possible worlds—is de facto the actual world.5 Now, when a change—as a result of an
action or otherwise—occurs in the real world, we must change our description of the world.
The change itself happens to, or in, the actual world. But since we are confined to our set of

3 VCU stands for variably strict conditionals with universality. Stria conditionals are of the form necessarily p
implies q. Universality means that all worlds are accessible from all other worlds.

4 Note that nothing (except perhaps bounded computational resources) prevents either the knowledge base, or the
sentence 4> containing the o and > connectives in an arbitrary (well-formed) combination.

5In the words of J. Hintikka [24], 'one has to keep an eye on more than one possible world'.
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possibilities, we must make the change come true in all of our candidate worlds. Semantically,
we change each one of the possible worlds 'as little as possible' in order to make the new state
of affairs hold. Our new syntactic description of the world of interest should now correctly
reflect the outcome of this set of changes. The function that maps the old description to the
new, is called an update.

The approach described above is also known as the 'possible models approach' [40]:

In updating a theory T with a sentence <j>, update each model of T separately. For each
model M of T, choose those models of <f> that are closest to M. The result is then the
theory of the union of all separate updates.

The scenario is different in the case where we have gathered some new information of what
we know is and is not possible in a static world. Our revised description of the world of in-
terest will then have to take this into account, in that the set it now describes either contains
less (expansion of knowledge) or more (contraction of knowledge) possible worlds. The most
intriguing case in this scenario is that of a revision: What should become of our description
if newly acquired information completely contradicts what we thought were among the pos-
sibilities of the truth?

Before going into the formal definitions of models, we shall give a rudimentary account of
the interpretations of sentences in £>,0.

We consider a set / of possible worlds. If a sentence <j> is true in a world i £ / , we say that
t is a 4>-world. To capture the concept of 'closeness', we will associate a total pre-order <,
with each possible world »'. Then j <i k means that world j is as 'close' to world» as world
k\s. 6

The worlds where a sentence <f> o rj> is true, are

Ui{i € / : J is a V'-world, and j is <,• minimal},

where t ranges over all ^-worlds.
The meaning of a counterfactual, such as "If kangaroos had no tails, they would topple

over', is that in any possible world in which kangaroos have no tails, and which resembles
our own as much as possible otherwise, kangaroos would topple over [30]. Thus the worlds
where a counterfactual 4> > ip is true are the worlds where the closest worlds in which <j> is
true also have ip as true. In the notation used above, the worlds were <j> > ip is true are

{t € / : the < t minimal <£-worlds are also ^-worlds}.

A model is then a set / of worlds, a total pre-order <, on / for each t G / , and a valuation
that assigns a subset J of / to each prepositional letter p. Then J is the set of p-worlds. The
meaning of the Boolean connectives is the usual one, e.g. the ̂  A ̂ -worlds are the worlds that
are both (^-worlds and ^-worlds.

We say that a sentence 4> is valid in a model, if all worlds are ^-worlds. A sentence (f> is
valid (unconditionally) if <j> is valid in all models.

We should now be ready for a formal description of the semantic apparatus. We shall give
three alternative classes of interpretations: one based on total pre-orders (as above), one based
on so called spheres, and one based on so called selection functions. It turns out that all three

8 A total pre-order is a binary relation that is reflexive, transitive, and connected. Note that antisymmetry is not
required. Thus it can very well be the case that j is as 'close' to i as k is, and that AT is as 'close' to i as j is, without
j and k being the same world.

Some concrete orders between possible worlds that have been proposed in the literature are reviewed in [25].
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Updates and Counterfactuals 91

types of models define the same class of valid sentences (Corollaries 3.1 and 3.2 below). Pre-
orders have mainly been used to model updates (cf. [25, 26, 27]), while selection functions
form the main semantic apparatus for interpreting conditionals (cf. [7]). Spheres have been
used by Lewis [30] and by Grove [22] to model counterfactuals and revisions, respectively.
All three classes of models will also (implicitly or explicitly) have an accessibility relation (as
in Kripke models). In the end we shall however be able to disregard the accessibility relations
altogether, i.e. all worlds will be accessible from all other worlds. This is achieved through a
condition called universality, and its corresponding axiom schemata.

Order models

A £ > i 0 -order model X is a quadruple < / , <,R, [] >, where / i s a non-empty set of 'worlds'
i, j,k,..., and < is a function that assigns a total pre-order <; over / to each member t of / ,
where R is a binary reflexive relation over / , and where [] is a function that assigns a subset [<j)J
of / to each sentence <f>. The relation <, is a comparative similarity ordering of worlds w.r.t.
world i. The relation R is an accessibility relation. Let us introduce the notational shorthand
Ri to stand for the set {j G / : iRj), for each t G / . Then j G Ri means that j is accessible
from t. The function j] is called a valuation. In addition the eight following conditions have
to be fulfilled.

(01) Centering. If j <, »then j = ».

(02) Priority. If j G Ri and k £ Ri, then k £ , j .

(03) Limit assumption. For each sentence 4>, the set mtn<, ([<£]ni£,) is non-empty, whenever
[4>] n Ri is non-empty.7' 8

The conditions for the valuation function are the following. 9

(VI) [±] = 0.
(V2) H>]

(V4) [</> > V] = {* G / : min<,(y] D

(V5) [0 o V] = U - 6 w min<,([i>] fl iZ

A sentence <£ is va/w/ in a model I = < 7, <, R, [J >, if [<̂ ] = I. A set E of sentences is
valid in a model I if all its members are valid in the model 1.

Although a quadruple < I,<,R,[\ > that satisfies conditions (Ol)-(O3) and (VI)-(V5)
above counts as an order model, there are two further conditions that can be imposed on such
a quadruple.

7Fbr J C / and « G / , m i n ^ (J) denotes the set {j £ J : if k € J then j <i k).
'Condition (Ol) states that no world is as close to a world t as t itself. Condition (O2) states that accessible worlds

are closer than inaccessible ones. Condition (03) guarantees that no set [0] n R, contains an infinite descending chain
ji >i ]2 >i h >>' ....where j' > , k, denotes the fact k < , j .andj j(j k. A discussion of condition (O3) can be
found in [3a 34].

9The conditions (VI) - (V3) state the usual Boolean semantics for the truth-functional connectives. Condition
(V4)saysthaliisa^> > V'-world iff all closest accessible (̂ -worlds also are t^-worlds. Consequently, a counterfactual
4> > 4> can be vacuoustytmc at a world I. This happens when [<£] n R, = 0. According to condition (VS), the result
of updating 4> with t/> is the closest accessible t/>-wortds, from the viewpoint of each tf>-world separately. Thus it can
happen that in a particular î -world t, there are no accessible ^-worlds. If this were true in all ^-worlds t, the result of
the update would be empty. Vacuous truth of a counterfactual and empty results of updates are, however, prevented
through a condition called universality: all worlds are accessible from all other worlds (condition (R2) below).
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92 Updates and Counterfactuals

(Rl) Local uniformity.10 If j G ifc, then flj = 7J,.
(R2) Universality. 72, = I, for all: £ I.

An order model that satisfies (Rl) is called a locally uniform order model, and if (R2) is
satisfied, it is called a universal order model. The condition of interest is (R2), universality.
Local uniformity is introduced primarily for technical reasons. It will turn out that the class of
all locally uniform order models and the class of all universal order models validate the same
set of sentences. We will return to this question shortly (Corollary 3.2).

Sphere models

A £>,<>- sphere model I is a triple < 7, $, 0 >> where I and [] are as in order models, and
where $ is a function that assigns a set $, of subsets of / to each member i of I. The function
$ is called a system of spheres, and the members of each $,• are called spheres. In addition,
conditions (SI) -(S3), (VI) - (V3), (V4') and (V5') below have to be fulfilled.

(51) Centering, {t} € $,-.
(52) Nesting. For all 5 and T in $,, 5 C T, or T C 5.

(53) Limit assumption. IfU$,n[<£] ^ 0, then the set {5 6 $,• : Sn[4>] ^ 0} has a C-smallest
member.

Let i G 7. Then [0] t denotes [4>\ f~l 5, where S is the C-smallest sphere in $,-, such that
\4>1 n S ^ 0. If no such sphere exists, then [<f>] j = 0.

(V4') M > rp] = {i € I : [<t>]$ C

Conditions (VI) - (V3) are the same as in order models. n

The conditions of local uniformity and universality in sphere models are expressed through
the sphere function and take the following forms.

(54) Local uniformity. For all j E U$,-, U$y = U$i.
(55) Universality. For all i G I, U$,- = 7.

Here the nomenclature is locally uniform sphere models, resp. universal sphere models.
We are now in a position to show the following lemma (cf modal logic S5), extending a cor-
responding result by Lewis [30] to models for sentences with the o-connective.

LEMMA 3.1

Let 4> be a sentence. Then <j> is valid in all locally uniform sphere models if and only if <j> is
valid in all universal sphere models.

PROOF. Since universality implies local uniformity, the only if direction follows. For the if
direction, let J = < I, $, [] > be a locally uniform sphere model. Then let t G 7. We define
a triple V =< P, $'', D* > as follows. Let P = U$,. Then let $} = {S D P : S £ $,-}.

1 0 An equivalent definition would be to require that R is transitive and Euclidean.
11 We see that a system of spheres is a compact description of both the comparative similarity ordering and the

accessibility relation. A world j is closer to i than fc is, if the innermost sphere in $, containing j is itself contained
in the innermost sphere containing k. The inaccessible worlds are outside all spheres in $,. In Theorem 3.1 below,
we will show how to formally transform an order model into a sphere model, and vice versa.
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Note that for each j G P, $} is obviously equal to $j. Finally, for each sentence <f>, let [<£]' =

[flnf.
Clearly $' is a system of spheres on P. Since $ is locally uniform, we have U$} = 7 \ for

each j € P. Thus $' is universal.
Next, we verify (VI) - (V3), (V4') and (V5').

(V2). [-V]1' = hV-]n/•' = (7 \ M ) n p = p
(V3). ty> Afl< = [M^]n/ • ' = [V-]1'n[4>Y

[V- > * ] ' = {i € / : [V-J$. C [0]} n /'• = {j €
P: [V]'$, c |0I'}.

(V5'). [V- o *]< = ( u i e W M $ j ) n /•• = u i 6 M ( fe] $ j n p) = u,-6M[fl'$.. Let; G [vj,

and suppose that [<£]', is non-empty. If Jb G [<£]',, then fc 6 U$j, and Jb G U$,. Since

$ is locally uniform, we have U$,- = U$t = U$J( and thus j G U$, = / ' . Consequently
C Uj€[^,]. [0J'C,. Inclusion in the other direction is obvious.

Starting from an arbitrary locally uniform sphere model 1 =< I, $, [] >, we have shown,
that for each i in 7, I* is a universal sphere model. Now, let <j> be a sentence that is valid in
all universal sphere models, and let I be as above. Let i G I. Since I 1 is a universal sphere
model, we have [</>] = / ' , meaning that t G [4>]', i.e. i G [<£j n / ' . Thus i G [<^], and
consequently [<£] — I. I

Selection models

In the literature on counterfactuals, the semantics of the >-connective is often given with the
use of selection functions (see, for example, [7]). We shall do so here also, and we will show
the correspondence between order and sphere models and models that are based on selection
functions.

Formally, a £>,<>- selection model J is a quadruple < I, f, R, [j >, where 7, 7?, and [] are
as in order models, and where / is a function that takes a tuple, consisting of a member i of
I and a sentence 0, to a subset /,(<£) of I. In order for I to count as a selection model, the
following conditions have to be satisfied.

(F2)Ift G Ul then / , (0) = {»}.

(F3) If tyj C Ul and ty] D /,•(<£) # 0, then U{i>) = [VI n /,-(*).
(F4) If ft(<f>) = 0, then [0] D Rf = 0.

The function/is called a selection function.12 Note that the conditions imply that if
[01, then fi(i>) = / , (0) , and that if [V] C [0], and Uty) # 0, then / , (^) # 0.

The requirements for the valuation in a selection model is as in order and sphere models,
except that the conditions for the >- and o-connectives are replaced by the following two con-
ditions:

<V4") [4> > tf>] = {i G 7 : fi(4>) C ( f l } .

12Intuitively, the selection function /,• directly picks the elements min<i ([<f>\ n /?,).
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94 Updates and Counterfactuals

The conditions for local uniformity and universality are (Rl) and (R2) as in order models.
Note that universality implies that if fi(<f>) = 0, then [<f>] — 0. The meaning of the names
locally uniform and universal selection models should be clear.

Model equivalence

We shall now turn our attention to the correspondence between the three different classes of
models. Call two models equivalent if they have the same set of worlds, and if the valuation
function is the same in both. The following two theorems extend results by Lewis [30] to
locally uniform and universal models, and to models of sentences with the o-connective.

THEOREM 3.2

For any (locally uniform, universal) order model there is an equivalent (locally uniform, uni-
versal) sphere model, and vice versa.

PROOF. Let I —< I, $, [] > be a sphere model. The equivalent order model will be J =<
I, <> R< D >. which obviously is equivalent to I , provided that J indeed is an order model.
In order to show this, we shall construct the qualifying function < and accessibility relation
R from the system of spheres $.

Given $, we define <, as follows: j <,• it if and only if for all spheres 5 G $j, if k G 5,
then j G S. Then <,• is obviously a total pre-order.

Foreachi G I, we define Ri = U$<. Since {»} G $,-,wehavet £ R{, that is, R is reflexive.
Also, if T is locally uniform or universal, then J is locally uniform or universal, respectively.

Let us then verify conditions (01) - (03 ) .

(01). If j <i i, then j G {t}, and consequently.; = t.

(02). If j G -ft, = U$,, and it <j j , it follows that it G Ri.

(03). We shall show that min<t ([<£] D Ri) = [<£] $ . Then (03) follows. Let therefore j G
min<Xl<t>] n Ri). This means that U$, l~l [(/>) ^ 0. Let S be the C-smallest sphere in $,, such
that [4>] D 5 ^ 0. Suppose that j $ {<f\ n S, and let k G {4>\ D 5. Since U$,- ft [<f>] ^ 0,
there is a sphere T G $i, such that j G \<t>\ ("I T. If T C S, we have an obvious contradiction.
Therefore it must be that S C T, which implies that it <, j , and j <£, k; a contradiction to
the fact that; G min^^d^} D Ri).

Then, let j G [<£]$ • Then there is a sphere S in $,-, such that [<f\* = [<£B I"1 -5. We also
have that j G [<f>]r\Ri.

If mm<,([<£] (~l Rt) = 0, it means that there is an infinite descending chain j \ >i 32 >i
]3 >i • • • of elements in [1̂ ] fl Ri. It then follows that there is an infinite descending chain
S\ D S2 D S3 D •. • of spheres in $,-, such that each sphere in this chain has a non-empty
intersection with [<f>]; a contradiction to (S3).

If* G min<, ([«£]n .ft,), then i: <,• j . If j ^ , k, it means that there is a sphere T G $j,such
thatfc G 7\[<£]nT^ 0 ,andTC S; a contradiction. Thus we have that j G min<,([<£jn.ft1).

The conditions (VI) - (V3) are not affected by our transformation. Conditions (V4) and
(V5) follows from the observation in (03) above.

Conversely, let J =< I, <, R, Q > be an order model. Define J = < 7 , 5 , 0 >• We
have to show the construction of $. To this purpose we say that j and k in I are equivalent
w.r.t. i, if and only if j <,• it and it <,- j . Then equivalent w.r.t. i is an equivalence relation
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over/. For each j G 7,letj* denote the corresponding equivalence class of j . Then we define

si = u *'•
Finally, let

$i = {Si:j€Ri}.

We have to verify that $ is a system of spheres.

(SI). Now i 6 S\. If j 6 SI, then j <j t, and thus, by (01), j - i. Thus {t} = Sj G $,.

(S2). Let S? and 5* be two spheres in $i. It then follows directly from the definition of $,•
that, if j <i k, then S{ C Sf, and if k <, j , then S? C 5 / .

(S3). From (O2) it follows that U$, = 7^. So, if U$, n [tf>] # 0, then [<£] D « , ^ 0. By
(03), the set mtn<,([^] n iJ,-) is non-empty. Obviously m t n < , ( [ ^ C\Ri) = j ' n [<£], where
j G rain<,([fl !"1 7?,). Since 5/ 2 j ' , we have 5f n [<j>] ^ 0. Suppose then that there is a
sphere 5* G $,-, such that S* C 5/ , and 5* D [(/>] ^ 0. But this means that Jb <, ; , j ^ , it,
and it G [<£] n ftj; a contradiction to the fact that j G min^([(/>] (~1 /J,-). Thus 5/ is the
C-smallest sphere in $,• that has a non-empty intersection with [</>].

The remaining task for showing that < / , $ , [ ] > is a sphere model of the desired kind is
to verify (VI) - (V3), (V4'), (V5'), and (S4) and (S5).

Since U$,- = Ri, local uniformity (S4) and universality (S5) are preserved by our trans-
formation. The conditions (VI) - (V3) are not affected. In order to verify (V41) and (V51) it
suffices to show that [<p}$ = min<t ([<t>] n Ri). In (S3) above, we showed that mtn<, (!<£] D

Ri) C [<£]$ . For inclusion in the other direction, take the sphere 5/ from the construction
in (S3) above. We shall show that S{ n [<j>] C j{ n [<f>]. Let therefore k £ Sj n [<j>]. If
fc g j ' n [<̂ >], it means that t << j , j & k, and consequently that Sf C S/, and 5* n [0] ^ 0,
which is a contradiction to the fact that [0] j = 5/ n [0]. I

Thus we have established a one to one correspondence between order models and sphere
models. The next theorem shows that sphere and selection models can also be put in the same
correspondence.

THEOREM 3.3

For any (locally uniform, universal) sphere model there is an equivalent (locally uniform, uni-
versal) selection model, and vice versa.

PROOF. Let J = < 7, $, [] > be a sphere model. Our desired equivalent selection model will
be J = < 7, / , R, \\ >. As in the preceding theorem, we will construct the selection function
/ and accessibility relation R from the system of spheres $.

For each t G 7, let Ri = U$,, and for each sentence ip, let fi(ip) = [V>]« • Let us now verify
(F1)-(F4). The first two conditions are obvious. Note that /,(V>) ^ 0iffU$ITl[V'] ^ 0. Then
(F4) is immediate. For (F3), let [i>] C [<£], and let [ip] n /,(«/>) ^ 0. Let 5 be the C-smallest
sphere in $,, such that S f~) [<£] ^ 0. By our assumptions, 5 f~l [V] ¥" ®- If there is a T G $i,
such that T n [V>] # 0, and T C S, it means that T n [ ^ ] # 0 ; a contradiction. Thus (F3)
follows.

Now J —< I, f, Q > fulfils the conditions for a selection model. We have just shown
(F1HF4). The conditions (V1HV3) are not affected by our transformation. Finally, (V4")
and (V5") obviously hold, by the definition of / .
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If $ is locally uniform or universal, then, by definition, R is locally uniform or universal,
respectively.

For the other direction of the theorem, let J = < I,f,R, [] > be a selection model. The
desired sphere model is now I —< I, $, [] >. Our task is, as above, to construct the suitable
system of spheres $ from the selection function / and the accessibility relation R.

To this purpose, let

sf=

Then, let $,• = {Sf : V» is a sentence} U
Before we proceed, we shall show that, for any sentences rp and

(•) If M n S? # 0, then /,• (V) C Sf.

For a proof of (*), suppose that the precondition holds. Then there must be a sentence x> such
that [4>] C | x ] , and [V>] n /,(x) ^ 0. By the definition of Sf, we have /,-(tf> V x) C Sf. Note

Suppose now that [ip] f~l /,•(> V x) = 0. Then, by (Fl), it must be that /,(V> V x) Q [xj.
and consequently, by (F3), we have /,(x) = [x] H /,(V" V x)- But this is a contradiction to
the assumption that [ip] D /<(V> V x) = (9. Thus (F3) yields / , • (» = IV1] n /,•(> V x), and so
fiW C /i(V V X) C Sf, proving (•).

Now, let us look at (S1) - (S3).

(SI). Let V" be a sentence such that t G [ip]. Then fi(rp) = {t}. If [ip] C [^], then i e [< ]̂,
so /••(*) = {»}. Thus Sf = {»}.

(S2). From (Fl) it follows that Ri includes every sphere in $,. Then let Sf and Sf be two
spheres in $<, other that fl,-. Assume that Sf g Sf, and that Sf 2 Sf. Let it 6 5f and
m G 5f, such that k £ Sf and m $ Sf. By the definition of $,, there must be sentences
H and v, such that [ip] C [p], ft] C [i/J, i G / ,(p) C Sf, and m 6 /„•(«/) C Sf. Now,
obviously/J(/XVJ/) C 5f n5 f ,and/,(/iVi/) ^ 0. From (*) and ourassumption it follows that
lA»]n/<(/«V«/) = 0, and that [i/Jn/.C/iV//) = 0. Thus/,(/iV«/) g ^ ] , and / i (^Vi / ) g [i/J,
contradicting (Fl). Thus it must be that either ik € Sf, or m G Sf, or both, meaning that $,
is nested.

(S3). If U$,- D [ip] ^ 0, it means that Ri D [ip] ^ 0, and consequently that /,(V>) ^ 0, in
which case it is obvious that Sf n [ip] ^ 0. Let T be a sphere in $,, such that Tn[ip]^ 0.
By (*), we have fi(ip) C T. Then, let > G Sf. From the definition of Sf, it follows that
there is a sentence (£, such that [ip] C [^], and j G / i (^) . Now, since fi{i>) C [< Ĵ, we have
TD[4>}^ 0. Thus, by (*), /<(</>) C T, and consequently ; G T, meaning that Sf C T. That
is, Sf is the C-smallest sphere in $,, that has a non-empty intersection with [V>].

Now we know that $,• is a system of spheres. The remaining task is to verify (V4') and (V5').
For this, it is sufficient to show that [T/>]J = fi(ip). Taking into account the elaboration in (S3)

above, the missing piece of information is the fact that Sf D [̂ >] C fi(i>). Let j (E Sf C\ [rp].
Then theremust be a sentence <f>, such that [V>] C [0], and j G fi{4>)- Since we have assumed
that [V] n U(4>) £ 0, we get, by (F3), / . (^) = H n / . (^ ) . Thus j G /,(V).

Since U$,- = ii,-, condition (S4) follows directly from (RI), and (S5) follows directly from
(R2). I
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COROLLARY 3.4

Let 0 be a sentence. Then the following conditions are equivalent:

(i) 4> is valid in all order models,

(ii) <p is valid in all sphere models,

(iii) <p is valid in all selection models.
COROLLARY 3.5

Let <p be a sentence. Then the following conditions are equivalent:

(i) 4> is valid in all locally uniform order models.

(ii) <p is valid in all universal order models.

(iii) <p is valid in all locally uniform sphere models.

(iv) <p is valid in all universal sphere models.

(v) <p is valid in all locally uniform selection models.

(vi) <p is valid in all universal selection models.

4 Axiomatization

Our main interest is a sound and complete axiomatization of the set of sentences that are valid
in all universal models. By Corollary 3.2 it is enough to consider sentences that are valid in
all locally uniform selection models. Our axiom system consists of the following axioms and
derivation rules.

(Al)
(A2)
(A3)

(A4)
(A5)
(A6)

(A8)

(A9)

All truth-functional axioms.
<P>4>.

(<t> > -•<;

at A v;
(4>>rP)

-i{4> >.

b)^{xp:
/>)V(((0

)>x)~
'-it-*

> ~«t>)-
A tp) > x ) ̂  (<t> > (^
((V> A 0) >

V).

>̂ -L) > -L)

> -L) > -L)

x).
x)))-

The rules are the following:

(MP) Modus Ponens. (<t>, <j> —> tp) •-• V-
(CR) Counter/actual rule. For any n> 1,

((Xi A . . . A Xn) — VO ~ ((</• > Xi A . . . A <fi > Xn) — {4> > V0)-
(RR) Ramsey's rules, (x -> {4> > i>)) >-> ((x °<P)~* V").

and((x°<«-+V)~(x^(0>^))-

The intuitive interpretation of (RR) is as follows. Let original belief state be x and let <j> > ip
stand for 'If<f>,thenrp.' If<£ > rp is accepted in state x it means that x —* (4> > V')isatheorem
(see [17]). Now 'the minimal change' ofx 'needed to accept' <p, which is represented by
'also requires accepting' %p, since (x ° 4>) —* ip is a theorem, according to (RR).
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Note that if we omit (RR), we have an axiomatization of Lewis' logic VCU for counterfac-
tuals. If we in addition omit (A8) and (A9) we get Lewis' VC. We therefore name our logic
VCU 2 , where the second U stands for updates.13

The logic V C U 2 is obtained by closing the set of all axioms by the rules. Members in this
set are called £> >0-theorems, or simply theorems. If a sentence 0 is a theorem, we write I- <j>.
It turns out that the logic V C U 2 is characterized by all locally uniform selection models, and
therefore also by all universal order, sphere, or selection models. Before we show this, we
shall state some useful properties of VCU 2 .

LEMMA 4.1

The following sentences are £>iO-theorems:

(A10) For any n > 1 : ((<£ > fa) V . . . V (</. > Vn)) — (4> > (fa V . . . V Vn))-
(All) For any n > 1: ((<f> > fa) A . . . A ($ > ^ n ) ) <- (<j> > (fa A . . . A Vn))-

(A13) (<f> > ± ) - (V > -<£)•

PROOF. (A10). Since h Vi; - • (V"i V . . . V V>n). for all» € { 1 , . . . , n}, we have, by (CR),
h (<j> > ipi) ->• (4> > (fa V . . . V V>n)). for all concerned t:s. Thus h (</> > fa) V . . . V (<j> >
W - » * > W i V . . . V rpn).

(All). By(Al),h faA...Aipn -* fa A.. .Arpn, and thus, by (CR),h (<j> > fa) A.. .A(</> >
4>n)^4>> (V'lA.-.AV'n)- Since t- faA...Aipn -^-faJoraWie { 1 , . . .,n},(CR) yields
\- 4> > {fa A ... Arf>n) ^ <f> > fa.

(A12). By (A2) we have h <j> > <j>. Thus I- i/> —• (4> > 4>), which gives us r- ip o <f> -+ <j>, by
(RR).

(A 13). From (CR), we get (<j> > ±) -> (<j> > - i ^ ) . Then (A3) yields the desired result. I

The following 'substitution of equivalents'-properties will be useful is various proofs.

LEMMA 4.2

(i) If h rl> -»<f>, then h ( X > 1>) - (x > <t>)-

(ii)If I- V «-> ̂ , then h (V- > x) ^ (0 > X).

PROOF, (i) follows directly from (CR). For (ii), we note that since h V > fa (CR) yields
r- 4> > <̂ . and by a symmetrical argument we get t- <f> > rp. Using (CR), we get h (ip > x) —>
(rj> > (<f> —* x))- Using truth-functional tautologies, we get

f- (V- > x) -
(V> > (<A -* x)) A (V- > - ^ ) v
W >(<!>-> x) ) A -(V- > - ^ ) .

Let us look at the first of the disjuncts following the implication. This disjunct implies,
by substituting equivalent right-hand sides, rp > -up. Then we get \j> > L, from (All) and

1 3 Lewis' axiomatization of VC and the stronger logics does not contain (A3). Instead there is an additions] deriva-
tion rule: If h ip «-• <t>, then I- (^ > x) ** (<t> > x)- This rule is, however, derivable in our system, as we show in
Lemma 42 (ii) below.
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Lemma 4.2 (i), and <j> > -<ip, from (Al 3). Now we have <f> > X, and applying (CR), we obtain

Then to the second disjunct. Now (A4) tells us that

\- (-(v- > -4) A (V- > (<t> - x))) - (W A 4>) > x ) .

By (A5), we have I- ((V> A <f>) > x) - " ((</" A V1) > x)- If ^ > ""V". then <p > X, and
consequently ^ > x- If —»(̂  > ->V0> then, by (A4), h ((0 A VO > x) —> (<£ > {i> —y x))-
Since h </> > V>, we can apply (Al 1) and (CR) to obtain I- (<f> > (V> - • x)) - • ("A > x)-

In summary, we have shown that h (V1 > x) —* {4> > x)» provided that \- ip *->• <f>. The rest
of the proof is obtained by interchanging ip and <f> in the deduction above. I

Some further useful properties are expressed in the following lemma.

LEMMA 4.3

The following sentences are £>0-theorems:

(A14) «4> > V) A (V > -L)) - (* > ±) .
(A15) ((< î > ±) A {4>2 > -L)) -» ( (^ i V <t>2) > -L).

PROOF. (A14). From (A13) and Lemma 4.2 fi), we get ((^ > rp)A(<f>> ->rp)) -^{4>> X).
It follows from (A13) that (if> > 1 ) -+ (<f> > -•xp). Therefore, we have (A14).

(A15). From(A13)weget(<£i V <f>2) > -><i>\, and (fa V <f>2) > -><f>2- Then we use (All) and
substitution of equivalents to derive (</>i Vc^j) > ^ i V ^ j ) . By (A2) we have (<j>\ V $2) >
(<̂ i V«^2)- Then we apply (All) and substitution of equivalents once more to get the desired
result, (fa V 4>2) > -L. I

Then some definitions and terminology: We say that a sentence rp is inconsistent, iff h V" —*
X (or, equivalently, iff I—'V0- The sentence i}> is consistent, if it is not inconsistent. A set £ of
sentences is consistent iff every finite subset of E is consistent. Otherwise E is inconsistent.
A finite set {iplt.. .,ipn} is consistent iff it is not the case thath (V>i A . . . A V'n) —* X.

Now, rp entails ip, denoted ip h <£, iff h V —•• 4>- Let E be a set of sentences. Then E h <f>,
if there is a finite subset {^1, - - -, i>n} of E, such that V>i A . . . A ipn I" 4>-

A maximal consistent set of sentences, is a consistent set of sentences not properly included
in any other consistent set of sentences. The proof of the following lemma is the standard one.

LlNDENBAUM'S LEMMA 4.4
If E is a consistent set of sentences, then E can be extended to a maximal consistent set of
sentences.

In the sequel we will lean on the properties of maximally consistent sets of sentences, such
a s c ^ A ^ e E i f f ^ e E and ip € E, and if h <j> then <j> £ E, etc. (see [6]). Since our system
includes truth-functional logic, the following theorem obviously holds.

DEDUCTION THEOREM 4.5

Let E be a set of sentences, and let <j> and rp be sentences. Then E U {<f>} h rp if and only if

5 Soundness
SOUNDNESS THEOREM 5.1

If a sentence is a £>|0-theorem, then it is valid in all locally uniform selection models.
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PROOF. (A2). 10 > 4>\ = {i € / : fi(4>) C [01} = / .

(A3). Ift G [<?!>> --0l,then/j(^) C [-w£J. Thus it must be the case that/,;(<f>) = 0. Then(F4)
tells us that [0] n R,; = 0. Consequently we have / i , C [->^J, and so, by (Fl), /,(V>) C
meaning that i G [V* > ~"i>\-

(A4). Suppose that i £ [<£ > ->Vl- This means that /,(<£) D [^] ^ 0, and since [<£] n fi(<j>) =
fi(<f>), we have the prerequisites for (F3):

Thus /,(</> A ^ ) = [ ^ A ^ ) n /«(<£). the latter set being equal to [ip] D fi{4>).
Now we get /,(<£ A ^) C [x] if and only if £(<£) C (/ \ li>\) U fa]: Let j G /<(*). If

jf G IV-], then j G fa]. If i £ [V-J. then j £ ( / \ [</>!)• Conversely, le t ; G /,((£ A V)- Then
j £ /«(<£)> and consequently j G fa].

(A5). Since [<j> A V»J = bP A 0], we have /,(<£ Krp) = fi(i>A 4>), for all« G / .

(A6). Leti G [^ > V1]. Ift £ [0],thent G [<?i> ->• t/>]- Ift G [<j>], then» G /,(<£)• Since

(A7). Let» € fo A # Then » G [^],and » G [V>J. Now /,(<£) = {«} C [V-|.

(A8). Let i e{<f> > -L]. Then /,-(0) = 0, and [<£] D iZ,- = 0. Suppose that j G / ,H<£ >
-L)). Thenj G /Z,-. If /,((/>) = 0, then j G [<?!>> ± ] , a contradiction. If//(<£) ^ 0,
then [0] n Rj ^ 0, a contradiction to (Rl). Thus it must be that U(->{4> > 1)) = 0, and
i G [ H * > ±) > ±)]

(A9). Let * G {-<(4> > ± ) ] . Then /,(</>) ^ 0, and consequently [</>] D iE,-^ 0. If j G /,(fli> >
1_), then ; G {4> > -L], and ; G i?,-. Now we get fj[<f>) = 0, and thus [4>\ D i2j- = 0; a
contradiction to (Rl). Thus /,•(<£ > 1) = 0, and t G {(4> > ±) > 1 ] .

(CR). Suppose that [(xi A . . . A Xn) — i>] = I- Then ([xi] D . . . n [xn]) C [V]- Suppose
men that/,(<£) C[xfcJ, for all * G { l , . . . , n } . T h e n / i ( 0 ) C [ xi J n . . . D {Xn ] C [ VI-
Thus i G [ (f> > ip J, and consequently [(<£ > xi A . . . A <t> > Xn) —*• 4> > V1] = >̂

(RR). Suppose that fa] C { i £ / : /<(*) C [^]}. Now fa o 4>] = U , e [ x ] A(^) C M-
For the second part, suppose that U.€[x] /•(<^>) ^ [V1]- Then faj C {i G / : /,-(< )̂ C [ip]}.

I
THEOREM 5.2

Let E be the set of all £>i0-theorems. Then E is consistent.

PROOF. If E is inconsistent there is a finite set {4n,..., <pn} G E, such that h (<f>\ A . . . A
<j>n) —»• ±. By the soundness theorem this amounts to [<£i A . . . A <£„] = 0, in all selection
models. Consider the selection model I = < {i},f,'R, Q >, where [p] = {t} for every
prepositional variable p, where R = {(t, i)}, and where /,(<£) = {t}, for every sentence (j>,
such that [0] ^ 0. Then [0] = {t}, for every <j> that is an axiom. Since the rules preserve
validity, it follows that [<f>] = {j}, for every <j> G E. Thus E must be consistent. I

6 Completeness
We will show completeness of our logic using the canonical models construction. We note
thet similar proofs (for conditional logics) have been constructed by Segerberg [37].
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COMPLETENESS THEOREM 6.1

If a sentence 4> is valid in all locally uniform selection models, then </> is a £>0-theorem.

PROOF. We define the canonical model X = < 7, / , R, [J >, where

7 = { i: i is a maximal consistent set of sentences },

and where

for all sentences ip. Let i G 7. Define

Ri = {j g 7 : if 0 G j , then -.(<£ > ±) G »}•

Then define

0,(0) = {tl> : <f> > $ G »}.

Note that, by (CR), Oi (<f>) is closed under entailment. Furthermore, let

Qi(4>) = {j G 7 : j is a maximal consistent extension of 0,

Finally, let
/i(0) = e,-(^)n72j.

Next we verify that J is a locally uniform selection model. The first point is that 7 is non-
empty. By Theorem 5.2, the set of all £> |0-theorems is consistent. Thus this set can be ex-
tended to a maximally consistent set. To show that R is reflexive, suppose to the contrary that
i £ Ri. Then there must be a sentence ip, such that ip G i, and ip > ± G ». From (A6), it
follows that -*ip G «; a contradiction, since i is consistent.

The remaining task is to verify (F1HF4), (Rl), (V1HV3), and (V4") and (V5").

(VI). The sentence h -L —•• ± is a theorem. Thus ± is inconsistent, i.e. _L ^ i, for all i G 7.

(V2). We have i G [->^1 iff -*}> G i iff 4> $ i iff» ^ [V>] iff t G 7 \ [V-J.

(V3). Now i G [i> A i^], iff V- A <f> G i, iff rp G J and <A G i, iff* G [V1] l~l [< Ĵ.

(Fl). If V> > ± G »', then Oi(ip) is inconsistent, and consequently Qi(ip) = 0. Thus (Fl)
holds. Suppose then that ->(^ > ±) G ». By (A2), ip > ip G i. Thus ip G ^(V*). and t h e n

©i(V0 C [V>]. This means that f{(rp) = 6,-(^) n 7*,- C [^J n 7?,.

(F2). If i G [V>J. then rp G i. Let <j> G ^.(^). Then xp > 4> E i, and, by (A6), r/i - n ^ € i,
and thus 0 G i. Conversly, let <£ G t. Now tp A (̂  G », and from (A7) we get rp > 4> G i, and
thus <0 G ^(V")- Consequently t = Oi(ip), and since i is maximally consistent, 0,(^0 = {*}•
Since the relation 7? is reflexive, we have i € Ri- Now (F2) follows.

(F3). We shall show that if [4>] C ty], and [VI n /,(<^) # 0, then 0,-(tf) = [V-J D 6,(^) . If
this is true, then (F3) follows. Suppose therefore that the precondition holds.

First we note that Oi(rp) must be consistent, since otherwise ip > J_ G i, which is a contra-
diction to the fact that 0 # [V>1 n /,•((£) = [rp] D 72,- D 0,(0) .

We shall then collect a few prerequisites. If ip > -xf> G »', then 0;(VO C f-^J; a contradic-
tion, since 0,(V) C [V>] C [^]. Therefore

-i(V> > ->^) G i.
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If9i(ip) does not entail <j>, then 0{(rp) U {-•<£} is consistent, which is a contradiction to the
fact that Bi(ip) C [V>] C [<p\. Thus

rpXpei.

If <j> > ->r(> 6 »', we get a contradiction to the fact that [V>] n 0,(<£) ^ 0. Hence

^(4> > "-VO G ».

Let x be a sentence. Now rp > \ G * implies, by (All), that rp > (</> A x) G »'• Since
l - ( ^ A x ) - * W - » X). (CR) yields ^ > (<t> —• x) G *• From (All) it now follows that
i> > (4> A {<j> -* x)) G t. Now I- (^ A {4> -> x)) -* X- Then . by (CR), we have rp > x G «•
Thus we have that

i> > x e »
iff

V- > (4> -> X) G i.

Obviously 0,(i/i) = [rp} ("16<(^) if and only if, for all sentences x it is true that $i(rp) h x
iff 0i(4>) U {iP} \- X- Now

iff (since ^(V") is closed under entailment)

X £ Oi{rP)

iff

i> > x e «
iff

V- > (0 -* X) G »

iff(by(A4))
(rp A ^) > x G i

iff(by(A5))
(^ A V) > X G »

iff(by(A4))
<t> > (V- — X) G i

iff (by definition)

iff (by the Deduction Theorem)
*.-(*) u {V-} i- x-

(F4). Suppose that /.(V1) = 0. If 6,-(V0 = 0. then 0,(VO is inconsistent. Then 0,(tf>) h ± ,
and thus xp > X € ». Suppose then that j G [V1] n ii, . We have rp € j , and since j G iJ,-,
->(^ > -L) G j ; a contradiction.

Next we show that if 9i(rp) £ 0, then Bi{rp) D R,; ^ 0. Then (F4) follows. We shall
construct a maximal consistent set j , such that j is in both Qi(rp) and Ri- Let
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Let T denote the set {->4> : <p > X G »}. Suppose that F is inconsistent. Then there are
sentences-i«^i,..., ->0ninF, suchthatl—'(-><£iA.. .A-><£n),i.e. b <£iV.. .V<£n. Thus at least
one of the disjuncts, say <f>t. is in i. Since <j>k > X G i, we get from (A6) that <£t —• X G »',
and thus that ->4>t G ». We now have a contradiction. Consequently F is consistent.

We assumed that 0,-(rp) is consistent. Suppose therefore that 6i(rp)uY is inconsistent. This
means that 0,-(V>) r- <£iV.. .V4>n, where {-><£i, ...,-.«/>„} C F. ThenV1 > (<AiV.. .V<£n) G t.

From the definition of Fit follows that <£t > X G t, for a l i i G { 1 , . . , n } . Then a repeated
application of (A15) derives the fact that (<pi V . . . V <f>n) > X G ». Now we can apply (A14)
and get a contradiction, namely the fact that rp > X £i, contrary to our assumption that 0i (rp)
is consistent. Thus it must be that E is consistent.

Next, we extend E to a maximal consistent set j . Clearly j is in Qi{rp). If J is not in Ri,
then there is a sentence <p G j , such that <f> > X G »'• But this means that -><£ is in F, and
consequently in j , which is impossible.

(Rl). Let j G Ri, and * G % If </> G ib, then -<<£ > X) G j . If <t> > X G i, then, by (A8)
-.(<£ > X) > 1 G i. Thus /,(->(^« > X)) = (9. But [ - ^ > X)J C\Ri ^ 0; a contradiction.
Thus it must be that -i(0 > X) G », and so Jb G Ri, and consequently Rj C Ri.

Then, let i; G ii,- If 4> G fc, then ->(^ > X) G t, and consequently, by (A9), (<j> > X) >
X G t. If <t> > X G J, then j £ Ri. Thus ->(<£ > X) G j , and so k G i?/, meaning that
RiCRj.

(V4"). We shall show that

[V > <£] = {t G / : e,(V) n Ri C [^]}.

If V> > </> is inconsistent, then ip > <j> cannot belong to any consistent set of sentences, and
thus [ip > 4>] = 0. Also, from (A7) it follows that [tp A <f>\ = 0. Suppose then that there is an
t G / , such that 6,(V>) n Ri C [(/>]. If Qi(rp) = 0, then ip > X is in », and by (CR) rp > <j>
is also then in i, which is a contradiction. Thus it must be that 6,(t/<) ^ 0, and in connection
with (F4) above, we showed that then it must also be that Ot(tl>) n Ri ^ 0.

Then, let j G Oj(V>) n i^. Since V> G ^(V1) we have V> G j , and since 6,(V0 n iJ< C [0J,
we have <f> G j . Thus V1 A <j> G j , a contradiction to the fact that rp A <£ is inconsistent. Now
we have that, if rp > <j> is inconsistent, then {J G / : 6<(V0 f~l .ft, C [«̂ >]} = 0.

Suppose now that rp > <j>is consistent. Let i G [rp > <p\, i.e V> > </> G i. Then 4> G 0.(V").
and if j G Qi(rp), then 0 G j . Thus e.^V1) C [</>], and consequently ©j(V>) n Ri C [0].

Suppose then that 6,(V0 C [0J. Then 0,(V>) I- <̂ , since there otherwise is a j G 6,(V0.
such that-><^ G j , which is a contradiction. Since0j(^) is closed under entailment, (/> G Oi(rp),
and thus rp > <j> G i.

Next, we show that if 0,(VO H Ri C [(^], then V> > <f> G t. The first possibility is that
6,(V0 n Ri = 0. Then there must be a sentence x> such that 0;(^) h x. and x > -L G i. Thus
V1 > X G «. X > -L € i, so (A14) gives V> > X G t, and then (CR) hands us rp > <j> G t.

The second possibility is that 0 ^ 6 , (^) D Ri C [0]. In this case it must be that 9i(rp) U
{~"X : X > -L G *} I" 4>< since we showed in (F4) above that all maximal consistent extensions
of the set 0,(V>) U {--x : X > -L € «} are in e<(V>) n Ri. If6i(rp) U {-̂ x : X > -L G t} is
consistent with -u£, then 8,(V0 n i?, is not a subset of [$].

From the entailment it follows that there are sentences ->xi, • • •. ~"Xn. where xi > X , . . . ,
Xn > X are in i, and such that $i(rp) U {->xi A . . . A ->Xn} I" <̂- By the Deduction Theorem
this is equivalent to 6i(rp) \- (--Xi A. . .A->Xn) ->• 4>- Thus^ > (->(xi V. . .VXn) — <t>) G ».

As in (F4) above we then have that (xi V . . . V \n) > X G ». Then (A13) yields rp >
-•(Xi V . . . V Xn) G t. By using (All) and (CR) we get rp > <f> G i.
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(V5"). We are going to show that

tyo*]= (J (6,(^) n

Suppose that tp o <j> is inconsistent.Then, as in (V4"), (V1 ° 4>\ — 0- We then also have that
I- ^ o $ —> -.<£. From (RR) we get I- 0 — <£ > -K£. SO, if i> G i, then <j> > -xf> e ». By (A2)
4> > cf> E i, and therefore <£ G 0,(</>),-i0 G 0,(<£), meaning that 0,(<£) is inconsistent. Thus

e,W = e.
Suppose then that ip o <f> is consistent. Let i G [V1]. i-e. V1 £ »• Now \-ipo<f>-+ipo(f>,

and from (RR) we get h V -1- <£ > i> ° 4>- Thus i> o <j> e 9i(<f>), and so 6,(0) C [tp o <f>}.
Consequently 0,(0) C\ Ri C [ip o <f>].

Conversely, let j G [V1 ° <£]. ie. V" ° <i> £ j - We shall construct a maximal consistent set i,
such that V> G i, j G 0,(0), and j e Ri.

Define

We claim that E is consistent. If this is not the case, then there i s a n g w , such that {xi, •• •,
Xn] C j , and {ip} U {->(<£ > ->Xi) : 1 < t < n} is inconsistent. This means that h ip —>
{4> > ~>Xi) V • • • V (4> > -Xn)- Since (CR) yields h (<f> > ->Xk) — (4> > ~>(xi A •. • A *„)).
for all *G { l , . . . n} ,wege th tp —> (<f> > ->(xi A.. .AXn))- By (RR), we have h \po<t>->
->(Xi A . . . A Xn). meaning that ->(xi A . . . A Xn) € j , which is a contradiction.

Thus S is consistent. Next, we extend E to a maximal consistent set i. Then 0,(0) is con-
sistent. Otherwise we have 0i(4>) h -L, and since #,•(<£) is closed under entail men t we have
-L G ^i(^), and thus <f> > A. G i. If 0 > -L is in t, (CR) tells us that <j> > ->$ also must be
in i. On the other hand, from (A 12) it follows that 4> is in j . Thus ->{<j> > ->4>) is in E, and
consequently in i, which means that we have a contradiction.

Suppose then that j U #,(<£) is inconsistent. Then there is a finite subset {xi, • • • ,Xn} of j ,
and a finite subset 6' of #,(<£), such thath 9' —* ->(xi A . . . A Xn), and, as above, ->(xi A. . .A
Xn) G ^i(^), meaning that <j> > -i(xi A . . . A Xn) G »', which obviously is a contradiction.

Since j U #,(<£) is consistent, and j is a maximal consistent set, we have #,(<£) C j , which
means that j G Oi(<j>)-

It remains to show that j G /E,-. If this is not the case, then there is a sentence x € j ,
such that x > -L € *. From (A 13) we then get that <j> > ->x m u s t ^so be in i, which is a
contradiction, since »is an extension of E.

We have thus verified that I is indeed a locally uniform selection model. Now we have
that 4> is a £>|O-theorem iff <j> is valid in I : If <j> is a £>i0-theorem, then ^ belongs to every
maximal consistent set of sentences. Thus <j> is valid in I .

If 4> is not a £> |0-theorem, then -><£ is consistent. Thus there is a maximal consistent set
t G / , such that -><j> G t. Consequently <f> £ i. Thus <f> is not valid in J . I

COROLLARY 6.2

If a sentence <p is valid in all universal order, sphere, or selection models, then ip is a £>,<,-
theorem.

7 Decidability

We shall show that our logic has the small model property, and that it thus is a decidable logic.
First, however, we need some auxiliary definitions and lemmata
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A model I = < I, f,R,\\> is said to be finite, if 7 is of a finite cardinality, and said to be
of cardinality K, if K is the cardinality of 7.

Let E be a set of £> 0-sentences, such that E is closed both under truth-functional composi-
tion of its members,14 and under subsentences. Wesay that a quadruple J = < / , / , R, [] >
is a E pre-model, if J is a universal selection model, except that the functions / and [] are de-
fined only on members of 7 x E and of E, respectively.

LEMMA 7.1

Let I = < 7, / , R, 0 > be a finite E pre-model. Then there is an extension / ' of / , and and
extension [] ' of [], such that < 7, / ' , R, Q' > is a finite universal selection model.

PROOF. We proceed much as in the proof of Theorem 3.1. Define

sf = U

Then, we define $< = {Sf : rp G E} U
Then, as in Theorem 3.1, we show that if [ip] n Sf # 0, then /,(^>) C Sf, except that this

time the property will hold only for sentences ip and 4> in E. Since E is closed under truth-
functional composition, all sentences used in proving the above property are in E.

Then we show that $ is a universal system of spheres.

(SI). Since E is closed under truth-functional composition, there will, for all i G 7, be a
sentence ^ g E , such that i G [V1!- Then we proceed as in Theorem 3.1.

(S2). We look at the proof of (S2) in Theorem 3.1, and note that the sentences n,v, and /i V;/
are sentences in £.

(S3). Since 7 is finite, the limit assumption is immediate.

(S5). Universality is fulfilled, since R is universal.

Thus $ is is a universal system of spheres. Then define [p]', for all letters outside E. The
choice of values at this point is irrelevant for our construction. Let [ip]' = [VJ> for all sen-
tences r / i gS . For the remaining sentences, define Q' inductively, using the equations (VI)-
(V3), (V4') and (V5'). As in the proof of Theorem 3.1, we can show that [V]j = /i(V>). this

time, however, only for sentences ^~in E. Now < 7, $, Q' > is a universal sphere model.
Finally we define

fl(1>) = W$i,
for all sentences rp. Since, by our construction, we have Ri = U$,\ it follows from Theorem
3.1 that < 7, / ' , R, 0 ' > is a universal selection model.

The function Q' is by definition an extension of Q. It remains to show that / ' is an extension
of/, i.e. that//(V>) = /i(V"). for all i G 7, and for all ip G E.

Since [rj>]'$ = /,(V>), for all V G E, we have that //(V-) = |V-]'$. = /,(V0- •

THEOREM 7.2

Let ip be a sentence. Then rp is valid in all universal selection models, if and only if V is valid
in all universal selection models of a finite cardinality bounded by a function of the number
of subsentences in ip.

14Thal is, X e E, and if <j> and ip are in E, then -«j> and ̂ A^arc also in £.
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PROOF. Let I —< I, f, R, [] > be an arbitrary universal selection model, and let ip be a
sentence. We shall construct the filtration!* of I through rp.

Let Svb(ip) be the set of all subsentences of rp (we regard rp as a subsentence of itself).
Then, let E be the closure of Sub(rp) under A and ->. Also, let

r = £ U { x > - > * : * € £ , * € £ } .

We use the name A for the set {x >-«f> : X 6 E, 4> G E}.
We define a relation ~ on / x 7, where i ~ j iff for all <j> G I\ i G [<£] iff j € [<£]. Then

~ is an equivalence relation on I. For each i G /, let t* denote a unique representative of the
equivalence class of i.

Now, consider the quadruple < /* , /* , R*, Q* >, where 7* = {i* : t G 7}, and the three
last component are to be denned shortly. Then we can verify that the cardinality of 7* is less

than or equal to 2 n + 2 , where n is the number of subsentences in rp. 15

Then we define /£,* = R,; (~l 7*. Obviously, R* is universal (wrt /*) .
Recall at this point that E is a subset of T. Then, for each i G /*, and for each <f> G E, let

The valuation []* is as follows: For each prepositional letter p G E, let[p] ' = [p]O/ ' . Let
also [J_]* = [±] (~1 7*. For compound sentences </> G E, [</>]* is defined inductively through
equations (V1)-(V3), (V4") and (V5").

We are going to show that < 7*, /*, R*, Q* > is a E pre-model.
We say that a sentence <f> G E is invariant (w.r.t. *) iff

We will show that all sentences in E are invariant. The proof is by a structural induction.
For the basis, we note that all propositional variables, and the constant ± , are invariant, by

definition. For the induction step, let <f> and \ be invariant sentences in E.

(V2). H » r = f \ [4>Y = r \ ([4>] nr) = (i\ [<f>])n r .
(V3). yAxY = [4>Yn\xY = ([fln7')n([x]n7*) = ([<j>]n[x])n/• = foAX]n/•.

1&Letcar<f(v4) denote the cardinality of the set J4. LetO be a set of sentences, such that it contains a finite number
n of classes of equivalent sentences (two sentences^ and ip are equivalent, if h 4> <-•• V)- Let J = < / , / , / 2 , Q >
be a selection model. Then we define a binary relation ~ n over / as follows:

i ~ n 3 ' f and o n l v if for all 0 e fl. t 6 [<t>] iff j 6 [̂ >].

Then ~ n is an equivalence relation over / . Let 7° be the quotient set of / induced by ~ n • Then it is easily verified
that the cardinality of Z11 is less than, or equal to2n . Also, if 0 ' is (1 closed under A and-\ then the card(/n ) =
card(In).

Furthermore, let {fti, Oi} be a partition of ft. Then it is also easily verified that

card{In) - c

Now the relation ~ defined in the text above is the same relation as ~ r - Letn = card(Sub(tt>)). Then we note
that card(ISab('1')) = card(I^)' < 2n. Now, the number of non-equivalent sentences in E is bounded by 22*
(the cardinality of the powerset of 7E). Then we use the substitution of equivalents property (Lemma 4.2) to get the

fact that the number of non-equivalent sentences in A is less than or equal to 2 2 * . Thus card( / A ) < 22

Finally, we get that card(I') = card(V) = c o r d ( / E u A ) = card(Iz) x card( / A ) < l"*2'"*1
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(V4"). We have to show that

{«• € r : /?(*) C [xl*} = { i € / : /,(<*) C [x]}r>7*.

Let t € 7*. such that /,*(<£) C [xl*. By the definition of /* we have that /,(<£) D 7* C
[x] n 7*. Then, let j G / , (0) . If j = ;*, then j G [x]. If j # j * , then j * G /,(<A) n 7*, and
consequently j * G [xl- Since j ~ j * , and x G F, we have j G [xl- Thus /,(<£) C [x], and
therefore {i G 7* : /?(*) C [xl*} C {i G / : / . (^) C [x]} n 7*.

For inclusion in the other direction, let t G /*, such that /,(<£) C [x]. Since </> > x € I \
we have that if j — i, then / , (<£) C [x]. Consequently fj(<j>)fM' C [x] fl 7*. Now we have

(V5")- We must show that

U

Let t G [(^] D / ' , and it G / ; (x ) - Then k G / , (x ) n 7*. for some j ~ t. Since <f> G T, we
have; G [0]. Consequently it G U e M ( / < ( x ) n 7') = (U,- e W /<(x)) n 7' .

To show inclusion in the other direction, let» G [<£J, and k G /t(x) n ^*- Since i ~ i*.
* G /*. (x)- Since <f> G T, we have t" G [<̂ >]. By definition, we have »'* G 7*.

Thus all sentences in E are invariant. It remains to show that /* satisfies (Fl) - (F4), for
all sentences in E.

(Fl). Since 7?* is universal and all sentences 4> in E are invariant, it is enough to show that
ft (</") Q [</>] n /*, for all j in 7*. Let k G /, ' (0). Then J: G fj (</>) n 7*, for some ; ~ i. Since
/ satisfies (Fl), we get k G [<£] n 7*.

(F2). If t G [<t>]*, then » G [</>], and so /,(<£) = {t}. If j ~ », then j G [4>], and thus
/;(«^) = {]}• Consequently/^^) = {»}.

(F3). Suppose that [^]* C [xl*, and let t G [<£]• Since ^ G E C T, we have Jb* G [(j!>l*, and
thus i* G [x]*- Now x is also a member of F, so we get k G [xl- Thus [(/>] C [x].

Suppose then that [^]* D /,*(x) ^ 0- This is the same as saying that ([<£l n 7*) n ( / t (x) f~l
/") ^ 0 , for some k ~ t, which implies that [<f>] D / t ( x ) ^ 0. Thus fk{4>) = [^1 D / t (x ) -

Then let j ~ t , and suppose that [<j>] n / 7 (x) = 0- This means that j G [x > ->^]. We
also have that ifc ^ [x > ->4>\. Now 0 and x are sentences in E. Thus x > ~"l> G F, which
contradicts the fact that j ~ i . Consequently it must be that [0] D / ; (x) ^ 0, for all j , such
that; ~ t. We then have that fj(4>) = [<j>] (~l / , (x ) . whenever j ~ i. Thus
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(F4). lff-(4>) = 0, we have /,((£) = 0. This means that [<j>] D R,-, = 0, and consequently that
y>y n 72? = 0.

Thus the quadruple < 7", /*, R", Q > is a E pre-model. Now Lemma 7.1 tells us that
/* and 0* can be extended to all sentences. Let /*' and Q*' denote these extensions. Then
J* = < /*, f',R', Q* > is a universal selection model. Note that, for each </> € E, we
have /,* (<f>) = /,*(<£), and [<f>}' = [<£]*. Thus all sentences in E remain invariant when / '
is replaced with /* , and []* with |Q* .

In particular, the sentence ip, that served as the filter, is invariant. If ip is valid in all universal
selection models, then ip is valid in all finite universal selection models. Suppose then that ip
is not valid in all universal selection models, and let 1 = < / , / , R, Q >, be such a model,
where [ip] £ I. Then there is a i E I, such that i £ [VJ. Let I* be the filtration of I through
ip, extended to a universal selection model. Consequently t* £ \ip\ H 7*• This means that ip

, ,3*+ '

is not valid in I* . Furthermore, the cardinality of I* is less than or equal to 2 n + 2 , where
n is the number of subsentences in ip. I
THEOREM 7.3

There is an algorithm that, given a sentence ip as input, returns 'yes', if V is a £>0-theorem,
and 'no', otherwise.

PROOF. Let /and J be two sets of the same cardinality. Then it is quite obvious that for every
universal selection model < 7, / , R, Q >, and bijection h : J —* I, there is a universal
selection model < 7, / ' , Rf, [ ] ' >, such that h is an isomorphism, i.e. /i([<£j) = [4>\' for all
sentences <f>.

Thus the 'content' of the set J in a model is irrelevant.
Then, let A be a subset of the set of propositional letters of £> | 0 . Let < 7, / , R, Q > be a

universal selection model, and let < 7, / , R, [] ' > also be a universal selection model, where
IPY = | p j . for all p e A, and where \p\ = 0, for all p £ A. Then we have that [<j>\ = [<£],
for all sentences cj> formed only from letters in A.

Finally, let ip be the sentence the theoremhood of which is to be decided. Let n be the num-
ber of subsentences in ip, and let A be the set of all propositional letters occurring in ip. Then

choose a set 7 with 2 n + 2 members, for instance the set of all naturals less than this num-
ber. Let M be the set of all models < JJ,R,[\>, where J C 7, and where [pj = 0, for all
p £ A. Obviously there is a finite number of models in A416.

If xp is a£>o-theorem, then, by the soundness theorem, rp is valid in all universal selection
models, and in particular in all models in M- If tp is not a theorem, then by the completeness
theorem, there is a universal selection model 1, such that ip is not valid in 2. Let I* be the
filtration of I through ip, extended to a universal selection model. From Theorem 7.1 and the
observations above, it follows that there is a model in M, that is J*, in which ip is not valid. I

Since V C U 3 includes propositional calculus, deciding theoremhood is at least as hard as in
the propositional case. As a special case, if there are no occurrences of > or o in the sentences
<f> and ip, then the complexity of checking whether the 'flat' sentences of the forms 4> > ip,
and 4> o ip are theorems, is the same as for propositional calculus.

THEOREM 7.4

Let <j> and ip be ^-sentences (propositional sentences). Then the problem of deciding whether

16Disregaiding the infinitely many selection functions /,- (<j>) = 0, where <t> mentions letters outside A.
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the sentence (poip is a £>|O-theorem, and whether the sentence <£ > ip isa£> o-theorem, are
both in co-NP.

PROOF. By (A12), t- V ° 4> only if I- <f>. Obviously h ^ o T M
Thus h xp o <j> if and only iff- ip f\4>.

By (A6), h 4> > rp only if I- tj> ->• rp. Suppose then that h 0 - • V- By (A2) we have
h </>></>, and then, by (CR), we get h <£ > V1- Thus h <£ > V' if and only if\-<f>—np. I

Recently Friedman and Halpern [ 13] have shown that determining the satisfiability of sen-
tences in VCU is complete in exponential time.

In [21] the attention is restricted to a particular order model I = < I, < , [ ] > , where I is
set set of all finite subsets of the set {p, : i G w} of all letters, where [p<J = {j G I : p, G
j}, and where < is a partial order based on the symmetric difference between worlds.17 It
turns out that determining whether a sentence is valid in this particular structure is complete in
polynomial space. On the other hand, validity in afinite substructure J of J can be determined
in time polynomial in the cardinality of J (i.e. data complexity). When the complexity is
based on the size of the sentence (i.e. expression complexity) the problem is in [21] shown to
be complete in polynomial space.

8 On updates and revisions

Postulations for change operators

As already briefly discussed, there are (at least) two fundamentally different ways of chang-
ing a theory. The first interpretation of some new piece of knowledge is that the world has
remained the same, it is only our knowledge about it that is becoming more accurate. This
class of changes is called called revisions. The other interpretation of a new piece of knowl-
edge is that the world has undergone a change, and that we are to adapt our knowledge to the
new situation. Such adaptions are called updates.

To highlight the distinction between the two change operators, we borrow an example from
J. Biskup [4], who studies the problem of updating relational databases containing 'null val-
ues' : Suppose that a database contains information about parts in the stock of some enterprise,
and that the current state of the database is 'there are balls of an unknown colour in the stock'.
The change request is to 'insert' the fact that the stock now contains white balls. There are two
ways in which the change request can be interpreted. If, for instance, we have inspected the
stock and determined that the existing balls are white, then the change should be a revision,
and the resulting database should represent the fact that the stock contains only white balls. If,
on the other hand, we have received a new shipping of white balls, the change request is ob-
viously an update. Then the resulting database should represent the facts that there are white
balls in the stock, and also balls of an unknown colour, possibly white, possibly some other
colour.

For other examples of revisions versus updates, see [27, 39].
Another fundamental distinction can be seen in the way different works models theory

change. As we shall see, a change operator can either be a meta level mapping, or an object
language connective.

Gardenfors and his colleagues have set forth a set rationality postulates that any reasonable
revision operator should satisfy [2]. This approach studies revisions as mappings between

17 Of course, since 7 is based on partial orders instead of total pie-orders, the axiomatization is different than the
present one, see [21]. Note that axiomatization in [21J is not proved to be complete.
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abstract structures called 'belief sets'. In particular, belief sets can be infinite. The postulates
are then conditions on the mappings, and as such, formalizations of our rationality.

In the framework described in this paper the formalization of rationality appears on the level
of models: there is a set of possible worlds, and a comparative similarity ordering associated

- with each possible world. This approach is in the spirit of Kripke models for modal logic. The
update is then a connective in the object language, and the interpretation of this connective in
in terms of our formalized intuition of possible worlds and similarities. In this setting, we
obviously restrict ourselves to updating finite (or finitely axiomatizable) theories. We do not
however regard this as a serious restriction, since any knowledge base that is to be used in
practice is inherently finite.

The two formalizations of change operators are evidently intertwined. Gardenfors [16]
shows how to construct a system of belief set from a selection model (without the condition
for the o-connective).18

As we shall see below, the conditions on a change operator become theorems and metathe-
orcms in the logic having change as a connective.

Next we consider the rationality postulates themselves. In order to avoid introducing any
new formalisms and notations, we shall use the formulation of Katsuno and Mendelzon [25],
who treat a belief set as a sentence <j> in prepositional calculus. The update operator o is then
a mapping from pairs of propositional sentences to propositional sentences. That is, <j> o ip
should be seen as the denotation of some propositional sentence, and the various postulates as
required properties of the mapping o.

Some additional notation is however unavoidable at this point. Let S be a set of sentences
containing at least all truth-functional tautologies. Then \~s 4> denotes the fact that <j> € S.
A sentence 4> is said to be consistent in S if and only if it is not the case that -<<f> £ S. The
sentence 4> is complete in S if and only if, for all sentences ip in the language for S we have
either <j> —up € S,or<f> —> (-<ip) € S. Note that consistent (unqualified) means consistent in
V C U 2 , and that h 4> means the same as h V cu* 4>-

Then, let P be the set of all truth-functional tautologies. The postulates by Gardenfors etal.
[2] for the mapping o as a revision function are then the following:

(Rl) hp <f> o ip - , V-

(R2) If <f> A ip is consistent in P, then I-P (<j> o ip) <-• (<j> A ip).

(R3) If ip is consistent in P, then 4> o ip is also consistent in P.

(R4) If hp <f> <-f ip and hp \ *-* " . then hp (<f> o x) «-» (V1 ° ")•
(R5) h P {(4> o rp) A X) - {4> o (V- A *)).
(R6) If {<f> o rp) A x is consistent in P then h P (<£ o (ip A x)) —> ((<A ° V1) A x)-

For instance, the rationale behind (Rl) is that the new sentence ip should be true in the new
knowledge base. Postulate (R4) assures that the result of the revision is independent of the
syntax for the knowledge base <\> and the new sentence ip. For an intuitive account of the rest
of the postulates, see [2].

The crucial postulate is (R2). It is precisely this postulate that is incompatible with the Ram-
sey Rule, and which is the major distinction between revisions and updates. If our knowledge
of the real world is represented by a sentence 4> and if we gain some additional knowledge ip,
it is of course quite plausible that our new knowledge should be represented by the sentence
<t> A ip, in the case <f> A ip is consistent. But the situation for updates is different. Consider the

18 Sec also [22], and the corresponding remarks in [33] and [19].
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following example from the domain of artificial intelligence [26] (cf. also [39]): A room has
two objects in it, a book and a magazine. Suppose p\ means that the book is on the floor, and
P2 means that the magazine is on the floor. Let the knowledge base be (pi V p?) A ->(pi A p?),
i.e. either the book or the magazine is on the floor, but not both. Now we order a robot to
put the book on the floor, that is, our new piece of knowledge is pi. If this change is to be
taken as a revision, then we find that since the knowledge base is consistent with pi, our new
knowledge base will be equivalent to p\ A -ip2, i.e. the book is on the floor and the magazine
is not.

But the above situation is inadequate. After the robot moves the book to the floor, all we
know is that the book is on the floor; why should we conclude that the magazine is not on the
floor? Thus an update would have been more appropriate in this situation.

In determining a set of appropriate postulates for an update function, we have seen that (R2)
cannot be used. The set of postulates for the mapping o as an update functions are then (Rl),
(R4), (R5) and (Ul) - (U5) below [27]:

(Ul) If r-p <f> —• rp, then r-P (0 o if>) <->• <j>.

(U2) If both <f> and rp are consistent in P, then <j> o ip is also consistent in P.

(U3) If hp (<f> o rj,) — x and h P (<f> o x) — i>, then (-P (<j> o V>) ~ {4> o X).

(U4) If (f> is complete in P, then h P ((<£ o ^ A ^ o x)) - " (4> ° (i> V x))-

(U5) hp ((0 V V) o X) ~ ((t o x) V (V o x))-

For an intuitive account of these postulates, see [27]. That paper also explains the model
theoretic differences between updates and revisions. 19

It turns out that the o-connective of our logic V C U 3 satisfies the update postulates in the
sense that postulates are theorems or metatheorems in V C U 3 .

THEOREM 8.1

Let <p, xp, x, and u be £- sentences. Then

(Rl). h 4>orl>-*J>.

(R4). If h <p <-> V1 and h ^ H i / , then h (<j> o x) *-• (ip o 1/).

(R5). h ((0 o V) A X) - {4> o (V A x))-

(Ul). I f h ^ - f V, t henh^oV- ) <-*<(>.

(U2). If both (̂  and ip are consistent, then <j>oip is also consistent.

(U3). If I- (4> o rl>) — x and h (^ o x) — V. then h (^ o V>) «• (<A o x).

(U4).20 If <̂  is complete in V C U 2 , then h ((4> o V) A {<j> o x)) — (^ o (^ V x)).

(U5). r- ((0 VV) o x) - ((^ o X) V (V o x))-
19 Katsuno and Meodelzon give a model-theoretic characterization of the update postulates in terms of partial prc-

orders on possible worlds. Since a total pre-order also is a partial one, our models satisfy the characterization. We
are currently axiomatizing a logic of counterfactualj and updates based 00 partial prc-orders.

The natural question at this point is whether mere exists a finite axiomatization of a logic with updates but no
counterfactuals. Indeed, it could be possible to replace the axioms (A2MA7) with axioms that only include the o-
connective. But in order to verify (U2), we need the effect of axioms (A8) and (A9). It seems that this effect is not
achievable without at least a modal operator of necessity. Therefore, we might as well use the >-connective, since it
u more natural in the present context. Note that the sentence [-«j>) > X has the same meaning as the sentence O<f>
in modal logic SS (modal logic T, in absence of axioms (A8) and (A9)).

20In this case we assume that the language is finitary.
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PROOF. Note that if hp <j>, then I- <j>. Also, if <f> is consistent (in VCU 2 ) , then <f> is consistent
in P. In light of our soundness and completeness theorems we are free to replace theoremhood
by validity, and vice versa.

In the following, unless otherwise stated, the valuation [j refers to an arbitrary universal
selection model < / , / , R, [J >.

(Rl). This is our axiom (A12).

(R4). If h <f> *-*• ip, and I- x *~* "> then [<£] = [V"l. and [x] = [J / ] , and consequently
[4 ° x] = bP ° v]-
(R5). Leti € [ ( f lW) A xl - Then i G [^oV-],and i G [x\. Thus there must be a j G [<£j,such
that i G fj(ij>). By (Fl) we have i 6 [^]. Thus j G [V> A x] . and from (F3) it then follows
that: G [<t> ° ($ A x)Y

(Ul). Let [4>] C [ip]. Then, if j G [<£], we also have i G [V>]. and by (F2) we have /,(V>) =

(U2). Let <j>, and V" be £-sentences that are consistent. Consider the universal sphere model
< / , $ , [ ] >, where I is the powerset of all sentence letters in £>,<>, where %i = {{»},/}, for
all i G / , and where [p] = {»' G / : p G »'}, for all letters p. For compound sentences | ] is
defined through equations (V1)-(V3), (V4') and (V5')- Since <j> and ip do not contain the o or
> connectives, it follows that [4>] ^ 0, and {ip] ^ 0. From universality it then follows that
\(f> o ip] ^ 0. By the soundness theorem <j> o ̂  is consistent.

(U3). If [^ o 0] c Ix], and [0 o X\ C [V], then /,(V) C [x], and / , (x) C ty], whenever
« 6 [</•]• From (F3) it then follows that/j(V> Ax) = [V"]n [xjn/.^V1), and that/,(V> Ax) =
M n Ix] n / , (x) . Thus fi(i>) = fi(X), for all i G [0].

If [x]is empty, then it follows from (U2) that [rp] or {4> is empty. Anyhow, (U3) follows.
The case where [rp] is empty is similar. (U4). Since <j> is complete in VCU 2 , we have either

h <\> —* (ip > ->x) or h 0 —> ->(ip > ->x)- I" m e first case (RR) gives us\- (4> o rp) -* ->x-
From truth-functional reasoning we obtain h x —• ~1("^°V')- By(A12)wehaveh (^>ox) —+ x-
Thus h (<̂  o x) —* ~'{<j> oip), meaning that (<f> o ip) A (<f> o x) is inconsistent, and consequently,
that (U4) holds.

Suppose then that h <f> —* -<(ip > -<x)> and that (4> o ip) A (<£ o x) is consistent. Let
< / , $, 0 > be a universal sphere model, and let k G [(<£ o ip) A (<f> o x)]. Since fc is also a
member of [4> o x ] , there must be a i € [<j>], such that k G [xl$ • Let 5 be the C-smallest
sphere in $,, such that 5 n [xj ^ 0, i.e. 5 n [x] = [x]$-

Now, if k G [V> V x]$ . then k G [<A ° (ip V x)J. Suppose therefore to the contrary, that
* £ [V1 V xl$.- Let T G $,• be such that T n [^ V xl = [i> V xl$ • Obviously T C 5 . Since
* i U> V x]$'.» « must be that T C 5, and T D [x] = 0, and that T D [ip V x] = T D [V>J.
Consequently we have [V>]jj C [-.x].ie- i £ [^ > ->xY W e get» G [4> -* (rp > ->x)].
which is a contradiction to the assumption that h 4> —*• -<(ip > ->x)-

(U5).
[(^V^oxl

= U
»€[*vi

= U
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U /••(*)u U

= {<f> o x] u

Some further properties of V C U 3

In addition to the update postulates, there are some validities concerning the o-connective, that
are of interest. The following theorem contains a list of these validities.

THEOREM 8.2
The following £>0-sentences are £>0-theorems.

(iii). (4>o4>)<r+ 4>.

(iv). ((<j> o V>) o $) <-> (4> o $).

(v)-(To^f
(vi). ( ^ O T ) H 4,.

(vii). (J_ o <t>) ^ ±.
(viii). (^ o ±) ~ ±.
(ix). ((0 V ^ ) o X ) « ((<£ o X) V (V- o x)).
(x). ((^ A V) o x) - ( ( * o X ) A (V o x))-
(xi). (^ o (V V x)) - ( ^ orP)V(4>o x)).
(xii). ((^ o V) A (4 o X)) - (* o (V- A x))-

PROOF. AS in the proof of the previous theorem, the valuation Q used below will refer to an
arbitrary selection model < / , / , R, [] >, unless otherwise stated.

(ii). If» 6 \4> A V], then /,(V>) = {«}•

(iii). Axiom (A12) gives the first half, and the second half follows from the fact that if i € [<£],

t h e n / , ( * ) = { . } .

(iv). Follows directly from (A12) and (Ul).

(v). Since [4>\ C [T], we have [</>] C.{To<f>].

(vi). For all i, we have / , (T) = {»}.

(vii) and (viii) follow (semantically) directly from the definition of the o-connective.

(x).

= U f*(x)Q
•EWnW

= U /•(*)n U /•(*)

 at C
oncordia U

niversity on June 16, 2014
http://logcom

.oxfordjournals.org/
D

ow
nloaded from

 

http://logcom.oxfordjournals.org/


114 Updates and Counterfactuals

(xi). Consider a sphere model < I, $, Q >. Let j G [rp V xj$ . and let S be the C-smallest
sphere in $,-, such that S D [V> V x] ^ 0. Now j is a member of 5 D [V>] U [xj. If ; G [V1].
there can be no properly C-smaller sphere T in $j, such that T n [j/>] ^ 0, since we then also
would have T n [^ V x] ^ 0- Therefore j G [̂ >] « . The case where j 6 [x] responds to the
same argument. Thus j G [V"J$. U [x]$. •

(xii). Since h (<f> o x ) — x, (by (A12)), we get h ((<j> o V) A (c£ o x ) ) —((</> o rp) A *) . Sim-
ilarly to the proof of (R5) in Theorem 8.1 we the get h ((<£ o V>) A x) —• (4> ° (^ A x))- 1

A non-triviality result

GSrdenfors has shown that any logic with the Ramsey Rule and with a change connective sat-
isfying postulates (Rl), (R2) and (R3) is trivial in a certain sense [15, 17]. Gardenfors shows
his theorem in the context of belief sets, but we shall rephrase and reprove it in the current
formalism. In the following we assume that all logics include the truth functional tautologies.
We shall also need the following auxiliary result.

LEMMA 8.3

Let L be a logic with o and > connectives satisfying Ramsey's Rules (RR). Then hi, 4> —*• i>
implies hi, (<f> o x) —• (V> ° x)-

PROOF. Let/i be an arbitrary sentence, such that hL (V'ox) —* /*• By(RR), we have hi, ip —•
(X > fi). Consequently hL <f> —> (x > p). Applying (RR) again, we get hL (<f> o x) —•• fi. I

A logic L is said to be non-trivial if there are at least four sentences <f>,i>,Xy and fi in the
language for L, such that the sentences rp A x, i> A ft, and x A fi are inconsistent in L, and the
sentences <j> A rp, 4> A x. and <f> A fi are consistent in L. Otherwise the logic L is trivial.

GARDENFORS' TRIVIALITY THEOREM 8.4

Let L be a logic with o and > connectives, such that L satisfies Ramsey's Rules (RR) and
postulates (Rl), (R2), and (R3). Then L is trivial.

PROOF. Suppose to the contrary that L is non-trivial, and let <j>, rp, x, and fi the sentences that
verify the non-triviality. From (Rl) we get the fact that hi, ((<£ o rp) o (x V fi)) —> (\ V fi).
From (R3) it follows that (<£o^)o(xV>)is consistent in L. Thus (<j>orp)o(xVfi)is consistent
with x or with ft in L. Assume that (<f> o rp) o (x V fi) is consistent with fi in L; the other case
can be proved in a parallel way. Since <f> A rp is consistent in L,(R2) implies that hx (<f>orp) —•
(^A(V-Vx)). From Lemma 8.1 we get h L {(<f> o if>) o (x V fi)) -* {(<f>A(rp Vx) )o(x V/i)).

Thus (<f> A (rp V x)) ° (x v p) ' s consistent with /i in L.
On the other hand, from the assumption about the four sentences, it follows that the sentence

(<^A(V>Vx))A(x V/i) is consistent in L. Thus (R2) implies that hL ((<£A(^>Vx))o(xV^)) -+
(<£A(^>Vx)A(xV/0). Since rpAfi is inconsistent in L.'we have hi, (<M(^Vx)A(xV/i)) *^
<P Ax-

Since (<j> A x) A fi is inconsistent in L, it follows that (<p A (rp V x)) o (x v ^) is inconsistent
with /i in L; a contradiction. Thus L must be trivial. I

The proof of Gardenfors' Triviality Theorem does not apply to V C U 3 , since postulate (R2)
is not satisfied. We shall also explicitly show that the our logic is non-trivial.

THEOREM 8.5

The logic V C U 2 is non-trivial.
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PROOF. Let pi , P2, P3, and p4 be propositional letters. Let <f>,rp, \, and /i be the sentences
Pi i (P2 A ->P3 A ->P4), (P3 A -ip2 A -ip4), and (p4 A ->p2 A ->P3), respectively. It is clear that
the sentences ^ A x , ^ A / i , and ^A/ i a r c inconsistent.

Consider the quadruple < / , <, R, \\ >, where / is the powerset of all sentence letters in
£>,o, and where [p] = {t G / : p G »}, for any letter p. Define j <; Jfc iff the cardinality of
the set { i \»}U{» \ j} is less than or equal to the cardinality of the set { fc \ i}u{ i \ / t} . Then
it is easily verified that <, is a total pre-order on / , for each t G I. 21 Let R = I x I, and
for compound sentences, define [] through equations (VI) - (V5). Then < I, <, R, [] > is a
universal order model.

Now[0AV>] / 0, since for instance {pi,p2} G [<pW\- Likewise, we have that [<Mx] ^ ®>
and [ ^ A / i ] ^ 0. It now follows from the soundness theorem that V C U 2 is non-trivial. I

9 Conclusions

The logic V C U a provides a semantics for updating knowledge bases, with the obvious advan-
tage of decidability. The question of how to specify the orders on possible worlds, pertaining
to some particular application—an analogue to the frame axioms—requires further studies.
One possible avenue would be to assign priorities to the sentences in the knowledge base, as
in [ 18] and [11]. Another possibility is to adapt the model checking approach of [23]: Instead
of a theory, a knowledge base is a finite model, and query evaluation amounts to checking for
validity in that model. This direction is pursued in [21].
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