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SYNONYMS

Uncertain information; Null values; Indefinite information

DEFINITION

Incomplete information arises in relational databases, when a fact (tuple) has to be inserted in a relation, and
values for some required columns are missing. For instance, in an employee database, the phone number of one
employee might be missing, as might also the address of another employee. There are numerous reasons for such
missing information, e.g. the insertion was done through a view, or the incomplete tuple originated from another
database that does not record these fields. In information integration and data exchange systems incomplete
information is rampant. Note that here the null values only represent unknown, existing values. The other main
case, namely the one that the column heading is not applicable to the tuple in question, is not covered here, for
a treatment, see e.g. [14].

It is easy to store missing or incomplete information, by simply using a symbol, say L, different from the symbols
of the domain of the database. As an illustration, consider the following employee database:

| Employee | Department | Home Town | Phone no. |

Jerry Sales New York 1
Elaine Accounting | L 123
George Services New York 456

In the table above, Jerry’s phone number is unknown as is Elaine’s home address. The third tuple has complete
information. So far the picture is quite uncomplicated. The difficulties arise when queries are applied to an
incomplete database. For instance, suppose the query asks for all employees living in New York. Should Elaine
be included in the answer, as it is not ruled out that she lives in New York? Her unknown hometown could very
well be New York. It seems that Elaine might be in the answer.

For another example, suppose the relation is decomposed into R(Employee, Department, Home Town) and
S(Home Town, Phone no.). Now, joining back R and S, at least the original relation. should be recovered.
However, it is not clear how to join the R-tuple (Elaine, Accounting, 1) with the S-tuple (L, 123). Nevertheless,
whatever Elaine’s home address is, the null-value in the R-tuple must clearly be the same as the null-value in the
S-tuple, as they both represent Elaine’s unknown home town. Therefore, the tuple (Elaine, Accounting, L, 125)
should surely be in the result of the join.

HISTORICAL BACKGROUND

The enormously successful relational model emerged out of algebra and logic, starting with Codd’s fundamental
1970’s papers. By the end of the decade, the problem of null values was noted and resulted in some early efforts
not covered here, see e.g. [14, 17]. Around this time Ray Reiter also promulgated the idea of “Proof theoretical”
vs. “Model Theoretical” interpretation of the relational model (see references in [11]). Roughly, one could say
that in proof theory the database is a set of ground facts in First Order Logic, and the query (also a logical



formula) answers are something to deduce from the theory by proof-theoretic means. In “Model Theory” on the
other hand, the database is a finite structure, and the queries are algebraic operators applied to the databases.
Indeed, Reiter proposed a first order interpretation of the null value: Since for a regular tuple, (a,b) € r is
interpreted as a ground fact R(a,b), it is plausible to interpret (a,z) € r, where z is a null value, as the logical
sentence 3z : R(a,x). Reiter then developed query answering algorithms for his (existentially) extended relational
theories [11].

At the same time, relational theory started developing, creating its own apparatus, containing lossless joins,
tableaux and the chase, in addition to many other useful tools and concepts, such as the “crown jewel” relational
algebra. Working along these lines, T. Imielinski and W. Lipski came out in 1981 with a VLDB conference
abstract of their landmark paper Incomplete Information in Relational Databases, published in J. ACM in 1984.
First, Imielinski and Lipski call a relation containing null values a table (as opposed to a rela-
tion).  Omne assumes two disjoint countably infinite sets of constants, denoted a,b,c, Jerry, Elaine, ...,
and of wvariables, denoted x,y,z,.... The table in the introduction, could be written (concisely) as
{(Jerry, Sales, New York, x), (Elaine, Accounting, y, 123), (George, Services, New York, 456)}

Second, [9] adopts the possible worlds interpretation of incomplete databases: an incomplete database is a set of
complete databases, one of which is or corresponds to the real world. In other words, the knowledge about the real
world, that the incomplete database has is exactly this set. In the sequel (usually infinite) incomplete databases
(sets of complete databases) are denoted by by 2, %/, ....

Tables represent incomplete databases through valuations, that instantiate the null values to ordinary, known
values. Formally, a valuation is a mapping from the variables to the constants, that is identity on the constants.
Valuations are extended to tuples and tables in the obvious homeomorphic way. Now a database r represents one
of the possible worlds of T, if there is a valuation v, such that r = v(T"). For instance, let T' = {(a,x), (b,¥)}.
Pretend for a moment that domain of constants is finite and only includes a and b. Then T represents 2, where
2 = {{(a,b),(b,b)},{(a,a), (b,b)},{(a,b),(b,a)},{(a,a),(b,a)}}. Thus Rep(T), the incomplete database 2,
represented by a table T, is defined as

(1) Rep(T) = {r : r 2 v(T), for some valuation v}

Note that the open world assumption is made, when requiring only r O (7). It means that any fact not
recorded in all possible databases is considered unknown. Note further that under an open world assumption,
a complete database r actually represents all supersets of r. Since nothing is surely false, it is clear that
querying under the open world assumption cannot include negation. In a closed world interpretation, on the
other hand, any fact not recorded in the database, or not instantiable from a tuple in a table is considered
false. For tables T, the closed world interpretation of the possible databases it represents is defined as
Rep_, . (T) = {r : r = v(T),for some valuation v}. This means that a tuple that does not belong to any
r € Rep,_,.(T) is considered false.

The main insight when processing a query ¢ on an incomplete database is as follows: since the “real” database r
is one within a set 27, the “real” answer should ideally be ¢(r). However, given only £, what can be captured
with query ¢ is the set ¢(Z") = {q(r) : r € Z'}. In particular, if 2" is represented by a table T, it would be
desirable to find a table, denote it §(7'), such that

(2) Rep(q(T)) = q(Rep(T)).

This is where the technical development can begin.

SCIENTIFIC FUNDAMENTALS

First, note that the open world assumption itself is causing a subtle difficulty when trying to satisfy the
commutativity requirement (2). Consider the table T' containing a single tuple (a,b). After applying a selection
0a=q on T one would (correctly) expect that the tuple (a,b), and nothing else, is in the resulting table G4—g (7).
However, equation 2 is not satisfied, since for instance (c, d) occurs in some 7 € Rep(Ga—q(T)), whereas (c,d) ¢ r,
for all r € 0 4—4(Rep(T)), as such tuples have been dropped by the selection. Unless the closed world assumption
is adopted — in which case clearly Rep,, (0a—a(T)) = 0a=a(Rep,,,(T)) — condition 2 has to be relaxed.

The key concept for achieving this purpose is the notion of certain answer. Let ¢ be a query and £~ an incomplete
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database. The certain answer to ¢ on 2" consists of those tuples that are in ¢(r), for every possible database
r € 2, that is, the certain answer is N.c 2 q(r) = N(¢(Z")).

Given a fixed query language, two incomplete databases are not distinguishable if they give the same certain
answer to every query in the language. Formally, let Q be a query language (the set of all queries expressible in
the language). Then incomplete databases 2~ and % are said to be Q-equivalent, if N(q(Z")) = N(q(#)), for all
q € Q. This Q-equivalence is denoted 2" =g #. There is another equivalence relation on incomplete databases
called coinitiality. Now 2 is coinitial with %, in symbols 2" ~ &, if 2" and # have the same minimal (w.r.t.
subset) elements. Let Qp be the set of all queries expressible in positive relational algebra (no negation, no
inequalities in selection conditions), and let Qg4 be the set of all queries expressible in the full relational algebra.
It turns out that provably 2 =¢o, # iff 2 =~ %, and 2 =qg,, ¥ iff Z =% [9, 4].

Therefore, if the open world assumption if followed, the best approximation of equation 2 is to weaken it to

3) Rep(q(T)) =g q(Rep(T))

for some query language Q. This led [9] to the notion of representation system. Let T be a class of tables, Rep
the interpretation function, and Q a query language. Then the triple (T, Rep, Q) is a representation system if
for all T € T, and all ¢ € Q, there is a §(T') € T, such that equation 3 is satisfied. Then the certain answer
N(q(Rep(T))) is clearly equal to N(Rep(¢(T))). This means that the certain answer can be extracted from §(7T),
in some cases efficiently, as will be seen below.

The original paper [9] considers the classes consisting of Codd Tables, Naive Tables, and Conditional Tables.
Other classes of tables can be found in [2, 4, 15, 13]. Here, the attention is restricted to the original three table
classes.

A Codd table is a table where each occurrence of a null value is represented by the same symbol (as for example
in the table in the first section of this entry). Let for instance the symbol L denote a null value. Evaluating
a query ¢ (i.e. computation of ¢(7') in equation 3) proceeds as in regular relational algebra, with the additional
evaluation rules saying that L # 1, and 1 # a, for all constants a, and as long as the selection conditions are
atomic, i.e. of the form 04—, or 0 4+,. This is in fact the solution proposed by Codd, and currently implemented
in most commercial database management systems. However, the largest query language that Codd tables can
support consists of queries expressible in relational algebra using only projection and selection, where, notably,
inequalities are allowed in selections. Using any more operators from the relational algebra makes it impossible to
satisfy equation 3, that is, for some such queries ¢ there is no Codd table §(7') satisfying 3. The same holds under
the closed world assumption. In addition to this, selections can have arbitrary Boolean combinations of atomic
selection conditions, but then testing whether a tuple satisfies such a condition becomes coNP-complete. This is
due to the fact that any propositional formula can be encoded as a compound selection formula. Note however,
that the coNP-completeness depends on the fact that the query is part of the input (expression complexity). For
data complexity, the evaluation can be carried out in time polynomial in the size of the table.

A Naive table is a table using distinguishable nulls, denoted by variables z,y,,.... Query evaluation uses the
rules © # a,x # y,x = z, for all variables x,y and constants a. Thus the tuple (FElaine, Accounting, 1) would
indeed join with the tuple (L, 123), resulting in tuple (FElaine, Accounting, L, 123). These tuples would of course
be represented as (FElaine, Accounting, x), and (x, 128). It turns out that if Qp is chosen as query language, then
(Tw, Rep, Qp), where Ty is the class of all Naive tables, indeed forms a representation system. It has also been
shown that Naive tables can handle recursion, i.o.w. one can add any positive datalog program as a query, and still
be able to ~~-represent the result [4]. More generally, one can note that query evaluation, i.e. computation of §(T"),
proceeds by treating the null-values as constants, pairwise distinct, and distinct from all the “real” constants.
Thus query evaluation in Naive tables has the same computational complexity as in the regular case. A similar
result was also independently proved in [16].

Much has been written about certain answers in the database literature, but not always with complete
transparency. Recall that the certain answer to a query g on 2, are those tuples that are in the answer
to ¢ for every possible database r € 2. In other words, the certain answer to ¢ on 2" is N(g(2Z")). Note
that ¢(T) is a Naive table that satisfies equation 3, for all positive datalog programs, or algebraic expressions
in Qp. Conveniently, the certain answer can be obtained by retaining all variable-free tuples in ¢(T'), as
it is easily seen that 2 =~ % implies NZ = N%. The certain answer however looses some information
from ¢(T). For a simple example, similar to the one in the introduction, let T = {(a,x,c)} with schema
(A,B,C). The certain answer to both w4 g(Rep(T)) and 7p c(Rep(T)) is empty. On the other hand, the
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certain answer to ma c(ma.5(Rep(T)) < m5.c(Rep(T))) = {(a,c)}. Here 74 5(T) = {(a,2)}, 75.c(T) = {(z,¢)}
and {(a,z)={(z,c)} = {(a,¢)}. Note how variables can be shared over several tables, above the x the the left-
hand side of the join is the same as the x on the right-hand side of the join. (On the other hand, for instance
{(a,2)5{(y,c)} = 0.) Thus, if the query answer is to be used as a view for further querying, the answer should
consist of all of §(T'), not just the variable-free tuples. This aspect has been emphasized in [5]. Furthermore, as
Lipski has shown in an all but forgotten paper [10], if query evaluation is to be uniformly recursive (such as the
one for Naive tables), all tuples in §(7T) need to be stored in the view.

Conditional tables. Naive tables form a representation system for the positive fragment of relational al-
gebra (and for positive recursion). However, allowing set difference or inequalities in selection conditions
in the queries might produce results not expressible as Naive tables. Consider for instance oa.q(Rep(T)),
where T = {(a,b),(c,d),(x,e)}. A moments reflection will reveal the fact that ocax.(Rep(T)) =
{{(c,d)},{(c,d), (a,e)},{(c,d), (b,e)},{(c,d),(d,e)},...}. It is easy to see that there is no Naive table that can
represent this set. The problem is that the minimal elements in this set either has one tuple (when x = a), or
two tuples (when = # a). The minimal elements in Rep(T'), for any (non-redundant) Naive table T, each have
the same number of tuples. This problem can be overcome by using a stronger class of tables, albeit on the
expense of tractability of query evaluation. This stronger class is called Conditional tables, here denoted T¢. A
Conditional table is like a Naive Table, with the addition that each tuple has an associated condition, formed
by a Boolean combination of atoms of the form x = y,z # y,x = a,x # a,a = b,a # b, for constants a,b and
variables z,y. Note that for two distinct constants a and b, condition a = b is tautologically false, and condition
a # b is tautologically true. In our previous example, 0 4.,(Rep(T)) can be represented by the Conditional table
U={(c,d);a=a,(x,e);x #a)}. The incomplete database represented by a conditional table T is defined as

(4) Rep(T) = {r D v(T) : v is a valuation, v(T) = {v(t) : t € T and v makes the condition in ¢ true}}

For example, if v is the valuation x +— a, and v’ the valuation x — b, then, for U as above, v(U) = {(¢,d)} as the
condition of the second tuple (z, d); x # a becomes false. On the other hand, v'(U) = {(c, d), (b,e)}, since v'(x # a)
becomes b # a, which is true. Set difference is treated in a similar manner, for instance, subtracting {(c,b), (e, b)}
from {(x,b)} results in the conditional table {(x,b);x # ¢ A x # e}. More details are given in (crossref). All
in all, it holds that (T¢, Rep, Qp=), is a representation system. Here Qp» denotes the query language obtained
from Qp, by allowing inequalities in selection conditions. If set difference is to be incorporated, the closed world
assumption has to be adopted. In this case it holds that (T¢, Rep,,, ., Qra), is a representation system, actually
satisfying the stronger condition 2. Positive datalog recursion can also be added both under the open and the
closed world assumption.

For the computational complexity of query evaluation, recall that query evaluation in the system (T, Rep, Op)
is polynomial in the number of tuples in T. Conditional tables are more complex. For all ¢ € Qg4 and conditional
tables T', the conditional table ¢(7) can be computed in polynomial time. However, the conditions in table ¢(T")
can have a convoluted structure. Thus testing whether a tuple ¢ is in the certain answer, i.e. if ¢ € N(Rep(¢(T)))
is a coNP-complete problem. This result holds even if T is a Codd table, in which case a query ¢ € Qgr4 is needed
to get the lower bound (here the fact that ¢(7T') is not a Codd table is ignored). On the other hand, if taking
an arbitrary table T' € T¢, the query can be identity. In other words, the set N(Rep(T)) has a coNP-complete
membership test. These, and further complexity results can be found in [2].

The theory of representation systems has also been extended to incorporate dependencies, see [9, 4]. Let 2" be
an incomplete database, and ¥ a set of equality and weakly acyclic tuple generating dependencies. Denote by
Y(Z") the set of all minimal relations s, such that s O r, for some r € 2, and s satisfies all dependencies in X.
It has been shown that for all Naive tables T, there is a Naive table X(T), such that Rep(3(T)) ~ X(Rep(T)). If
conditional tables are used, the coinitiality can be replaced by equality.

The relationship between tables and constraint databases is explored in [12]. The relationship between tables and

probabilistic databases, and between tables and data provenance is elegantly captured in the semiring framework
of [7].

KEY APPLICATIONS
Three important applications of incomplete information will be discussed here. The first one is the problem of
view updates (crossref). In this scenario, a view is defined by a query ¢, but the view is virtual, and only the
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database is materialized. As queries almost never are one-to-one functions, when a tuple ¢ is inserted through a
virtual view ¢(r), it has to be translated to an insertion of a tuple, say £, into r, s.t. ¢(r U{}) = q(r) U{t}. There
is also a further requirement, that essentially guarantees the “minimality” of the change caused be the insertion
of t. Since there in general are several, sometimes infinitely many, insertions ¢ that qualify, there actually is a
set of possible databases {r U {{} : f qualifies }. For example, for ¢ = R > S, where R(A, B) and S(B,C), the
deletion of a tuple (a, b, c) from a view ¢(r, s), can be accomplished by either deleting the tuple (a,b) from r, or
deleting the tuple (b,¢) from s. This can easily be achieved if the database is stored as a conditional table, by
simply replacing the tuples (a,b) in 7, and (b,¢) in s, with the conditional tuples (a,b);x = 1, and (b,¢);z # 1,
where z is an arbitrary fresh variable.

The views in the view update scenario are virtual. If views are materialized, they can be used to speed up
query processing. The case where all views are materialized, and the database virtual is the classic information
integration scenario (crossref). The views represent data sources, and the database schema represents the
integrated schema that queries are formulated over. Intuitively, one can imagine that the integrated database
exists, the view-defining queries are executed, and the views are accordingly populated. After this, the integrated
database disappears. It is easy to see that a set of materialized views represent a set of possible databases, each
satisfying the requirement that the current content of the views can be derived from it. Note that there is an
open world assumption, as the requirement is that the view tuples are a subset (not necessarily proper) of ¢(r),
for all view definitions ¢ and possible databases r. The closed world assumption would require equality, not just
subset. For query answers, the certain answer is usually desired. The certain answer means in this context the set
of tuples that are in the query result, for every possible database. To answer queries over the integrated schema,
one can either rewrite the query in terms of the view-schemas, or reconstruct a representation of all the possible
databases, and evaluate the original query on this representation. It perhaps speaks for the robustness of the
concept of conditional tables, that they can do the job of representing the set of possible databases, whenever the
views are queries in Qp=, or in Qg4 if the closed world assumption is adopted [1, 6].

The last application is that of data exchange (crossref). The setting is a peer-to-peer system, where each peer has
a relational database and wants to exchange tuples with other peers. The schemas of any two peers, say p; and ps
are usually different from each other, so the data has to be converted when exchanged. This is achieved by defining
a mapping from p; to pe. This mapping could for instance be expressed as an equation ¢; (p1) C g2(p2). When we
export data from p; to pa, we evaluate ¢; on py, and make sure that the resulting tuples are in ga(p2). Since the
tuples have to be inserted into ps, it is easy to see that this is similar to the familiar problem of view updates, and
thereby also incomplete information. For a very simple example, suppose the schema of p; is R(A, B), and the
schema of py is S(A, C). Consider then the equation m4(R) C m4(S). If » contains a tuple (a,b), it is clear, that
in order to satisfy the equation, a tuple (a,z) has to be in s. It has for example been shown [8], that if ¢; € Qp
and ¢o only uses projection, then given null-free instances of p; and po, there is a naive table py/, containing ps,
representing all minimal solutions to the equation, that is g1 (p1) C g2(r), for all r € Rep(p}), and the equation is
not satisfied by any proper subsets of these r’s.

FUTURE DIRECTIONS

It is clear that new applications, new data models, and new query languages will encounter the problem of
incomplete information. In order not to “re-invent the wheel,” any solution should build on the foundation laid
in [9]. A step in this direction has for instance been taken in [3].
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