A useful four-valued database logic

Gosta Grahne
Concordia University, Montreal, Canada
grahne@cs.concordia.ca

ABSTRACT

Recently there has been an effort to solve the problems caused by
the infamous NULL in relational databases, by systematically ap-
plying Kleene’s three-valued logic to SQL. The third truth-value is
unknown. In this paper we show that by using a fourth truth-value
inconsistent, all the advantages of the three-valued approach can be
retained, and that negation can be given a constructive, intuitionis-
tic meaning that allows negative knowledge to be specified in the
logic explicitly, without having to resort to extra-logical notions
of stratification or to non-monotonic reasoning. The four-valued
approach also allows for a computationally efficient treatment of
query answering in the presence of inconsistencies. This is in con-
trast to the computationally intractable repair approach to incon-
sistency management. From a practical view-point we show that
the Cylindric Star Algebra, developed by the authors, is particu-
larly well suited for evaluating First Order queries on four-valued
databases, and that the framework of data exchange can smoothly
adapted to the four truth-values.

CCS CONCEPTS

« Information systems — Structured Query Language; Data
exchange; Relational database model; » Theory of computation
— Constructive mathematics;

KEYWORDS

Relational Databases,Query Languages, Information Integration,
Cylindric Algebra, Chase, Query Evaluation, Intuitionistic Logic

ACM Reference format:

Gosta Grahne and Ali Moallemi. 2018. A useful four-valued database logic.
In Proceedings of 22nd International Database Engineering & Applications
Symposium, Villa San Giovanni, Italy, June 18-20, 2018 (IDEAS 2018), 9 pages.
https://doi.org/10.1145/3216122.3216157

1 INTRODUCTION

SQL has for decades been the standard query language for relational
databases. Its success is largely due to its declarative nature and
sound theoretical basis in first order logic and relational algebra.
However, it has long been recognized that with respect to the
infamous NULL, the semantics of SQL is a source of confusion [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IDEAS 2018, June 18-20, 2018, Villa San Giovanni, Italy

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-6527-7/18/06....$15.00
https://doi.org/10.1145/3216122.3216157

Ali Moallemi
Concordia University, Montreal, Canada
moa_ali@encs.concordia.ca

This is due to the fact that SQL interprets the NULLs in three-valued
logic, with truth-values “true,’ “false," and “unknown," whereas SQL
otherwise adheres to two-valued logic. Recently, the work of Libkin
etal. [10, 15, 16] has shown that these shortcomings can be remedied
by some adjustments that make the semantics adhere to Kleene’s
strong three-valued logic [14].

In the 1970’s Nuel Belnap [2] extended Kleene’s logic with a
fourth truth-value “inconsistent." We show in this paper that Bel-
nap’s four-valued logic can be adapted to relational databases, and
that it allows for efficient treatment of not only incomplete infor-
mation but also offers a new, efficient approach to inconsistency
management. This is in contrast to the hitherto used inherently
intractable repair-approach introduced by Arenas et al. [1]

More precisely, we show that four-valued databases can be loss-
lessly decomposed into a positive and negative part, and that any
First Order (FO) query can be decomposed as a pair of Positive' First
Order (FO") queries evaluated on the decomposed database. The
four-valued approach also makes the metalogical notion of “closed
world" semantics unnecessary, since the negative information can
be explicitly specified within the logic and stored in the negative
part of the database, thus allowing partially closed relations, in
addition to completely “open” or “closed" relations. Storing the neg-
ative information however requires the use of universal nulls, in
addition to the usual well-known existential nulls. We show that the
Cylindric Star-tables and the Cylindric Star-algebra, described by
the authors in [8], are well suited for this purpose. Any FO query
on a decomposed four-valued database can be efficiently evaluated
using the positive part of our cylindric star algebra. Finally, we also
show that all notions related to dependency satisfaction and data
exchange smoothly generalize to our four-valued framework.

Related work. As mentioned above, the four-valued logic was
defined by Nuel Belnap in 1977 [2]. It subsequently generated a lot
of attention in the Al and Non Monotonic Reasoning communities,
as a consequence of Matt Ginsberg’s generalization of Belnap’s
four-valued truth-space into so called Bilatticies [7]. Follow ups
are too numerous to survey here, but the work of Melvin Fitting
(see e.g. [5, 6]) offers a systematic overview. The adaptation of
Belnap’s logic to data exchange was described in [9], where the
notion of negative answer was defined. Negative answers was also
the topic of Libkin’s paper [15]. Guagliardo and Libkin [10, 16]
have also made efforts to show that SQL can be made consistent
with Kleene’s three-valued logic, thereby providing means to clean
up the SQL NULL-mess. The four-valued logic offers in addition
a sound and efficient inconsistency management. Universal nulls
were first considered by Biskup [3]. The possibility that universal
nulls and its algebra can be extracted from the work of Henkin,
Monk, and Tarski [11, 12] was recognized by Imielinski and Lipski
in [13], but the approach was not fully developed before [8].

A positive FO-formula does not use negation, but universal quantification is allowed.

https://doi.org/10.1145/3216122.3216157
https://doi.org/10.1145/3216122.3216157

IDEAS 2018, June 18-20, 2018, Villa San Giovanni, Italy

Outline. The rest of this paper is organized as follows. The next
section introduces the notions used throughout the paper, along
with Belnap’s logic that plays a central role in this paper. Section
3 describes the formula decomposition of FO queries, followed by
Section 4 dedicated to interpretation and implementation of the uni-
versal null. Section 5 demonstrates the algebraic evaluation of the
decomposed queries. Sections 6 and 7 show that dependencies can
be given a four-valued interpretation, and that our decomposition
technique can be applied to dependencies, and that the classical
chase-process adapted to the four-valued approach. Conclusions
are drawn in Section 8.

2 BELNAP’S FOUR-VALUED LOGIC

This section introduces Belnap’s four-valued logic [2] in the context
of databases. We first formally define our database model.

Schema. Throughout this paper we assume a fixed schema % =
{R1,...,Rm,~}, where each R is a relational symbol, with an asso-
ciated positive integer ar(R), called the arity of R. The symbol ~
represents equality.

Language. Our calculus is the standard domain relational calculus.
Let {x1,x2, ...} be a countably infinite set of variables. Sequences of
variables, such as e.g. x1, x2, . . ., X} are denoted x. We define the set
of FO-formulas (over) in the usual way: R(xi,. .., Xi,, g,) and
xi ~ xj are atomic formulas, and these are closed under A, v, -, 3x;,
and Vx;. If a formula ¢ has free variables X, we sometimes empha-
size this by writing ¢(x). A formula without free variables is called
a sentence.

Four-valued instances. Let D = {ay, az, ...} be a finite or count-
ably infinite domain. Elements of D are called constants, and se-
quences of constants, such as eg. a,az,...,a are denoted a. In
a four-valued instance I (with universe D) each relational sym-
bol R determines a mapping jrl Dar(R) - {1,0,T, 1}, where
the codomain represents truth-values true, false, inconsistent, and
unknown, respectively. In other words, for each R € % and each
ae Dar(R), we have RI(d) €{1,0,T,1}. Equality ~ is (for now) in-
terpreted as identity, and equality atoms are consequently assigned
only values 1 and @. The Boolean part of Belnap’s four-valued logic
is characterized by the following truth-tables. Note that the logic is
an extension of Kleene’s strong three-valued logic, which again is
an extension of classical two-valued logic.

A1 e T oL vilt e 1 L -4
1711 @ T 1 T 1 1 1 1 1 | e
20 0 o0 o e |1 o T 1L 0 |1
T|T 0 T o T oT T 1 T|T
1]1 e o 1 L1 11 ¢ I

FO-sentences ¢ can now be assigned truth-values in {1,0, T, L}
recursively as follows:

(orp)' = o' A%yt
(ovi) = o' viy!
o) = ="
(Bxe(x) = vipe@'
(Vxp(x))' = Abepo(a)

Gosta Grahne and Ali Moallemi

Queries and answers. Queries are expressed in FO and interpreted
on four-valued databases. Let ¢(x) be an FO-formula with free
variables x. A valuation v is a (partial) mapping from variables to D.
Applying v to ¢(x) consists of replacing each variable x in x with
v(x). This is denoted ¢(v(x)). The result of applying query ¢(x)
to a four-valued instance I will yield the following four types of
answers:

true(p.) = {0(®): p(0(x) =1}

The true answer

false(p,]) = {v(x):p(v(x))! =0} The false answer

. N . _\NT . .

inc(p,I) = {ov(x):¢(v(x)) =T} The inconsistent answer
unk(p,I) = {v(x):(v(x))! =1} The unknown answer

Example 2.1. Consider binary relations F(ollows) and H (obbies),
where F(x,y) means that user x follows user y on a social media
site, and H(x, z) means that z is a hobby of user x. Let the database
instance I be the following.

F | F! H H'
Alex Bob 1 Alex Movie T
Bob Alex | T Alex Music 1
Bob Alice | 1 Alice Music 1
Bob Movies | @

Facts given in I state that Alex follows Bob, but not himself. There is
no information as to whether Bob follows himself or not, while there
is contradictory information about Bob following Alex. Unequivo-
cally Bob follows Alice. All other possible facts about the Follows
relation are unknown. Thus for instance F I(Alice, Alex) = 1. The
facts about relation H are interpreted similarly. Let the query ask
for people who are following someone who does not have Movies
as hobby. This is formulated in FO as ¢(x), where

¢(x) = JyF(x,y) A ~H(y, Movies).

Then, assuming that D consists of the values in the instance only,
@(x) will be evaluated as follows.

p(Alex)! =
Vi (F(Alex, a)T A%(<*(H(a, Movies)")))
(F(Alex, Alex)T A% (=*(H(Alex, Movies)[)))
v* (F(Alex, Bob)! a*(-~*(H (Bob, Movies))))
F(Alex, Alice)! a*(~*(H (Alice, Movies)!)))

(
- (EM‘*(H N) vt (1a1(-10)) v (1a%(-11))

LAt T) (41)v(1/\ 1)

1TvEviL =1

v

Similarly for Bob and Alice,

e(Bob)! = aeD (F(Bob a)l At (—-4H(a Movies)))
p(Alice)! =v4 _ (F(Alice, a)! a* (=* H(a, Movies)!)) =

We thus have true(o,I) = {(Alex)}, false(¢p,I) = {}, inc(p,I) =
{(Bob)}, and unk(¢,I) = {(Alice)}.

A useful four-valued database logic

3 DATABASE AND FORMULA
DECOMPOSITION

It turns out that any four-valued instance I can be losslessly rep-
resented as a pair I* = (I",I”) where I'* and I are two-valued
instances. More precisely, for each relation symbol R and sequence

of constants a € Dar(R),
' -

RU(a)=1iffR'(a) e {1,7}, and R' (@) =1 iff RI(a) € {0, T}.
Conversely, given a pair of two-valued instances (I*,I”), we can
construct a four-valued instance I* ® I~, where

"I 2y _ 16l (7) = I"(a) = o
R (a)=1ifR" (a)=1andR" (a) =0;
IO\ _oirpl (7) = I(a) = 1-
R (a)=0ifR (a)=0andR (a)=T1,
QI -y _raepl (7)) = I (a) =1
R (a)=TifR (a)=1andR" (a)=1;
I'®I7 N _ ycopltroy 172y =
R (a)=LifR (a)=0and R (a) =0.
Also, o1 = {(a.a):aeD},and~' = {(a,b):a,beD,a+b}. The

following lemma follows directly from the definitions and verifies
that I* indeed is a lossless decomposition of I.

LEmMa 3.1. Let I be a four-valued instance, and I* = (I",17) its
decomposition. ThenI"® I" = I.

Example 3.2. Consider binary relations F(ollows) and H (obbies)
from Example 2.1. By applying the decomposition to relations
F! and H', the two-valued relation F’ " is populated with tuples
(a1,az) € D?, where Fl(ay,az) € {1,T}, and relation H i pop-
ulated with tuples (ay,a3) € D?, where H! (a1, a3) € {1, T}. Simi-
larly, T is populated with tuples (ay, a) € D? where F! (a1, az) €
{0,7}, and H is populated with tuples (a1,az) € D?, where
H!(ay,a;) € {0, T}. Note that unknown tuples are not stored in the
decomposition. The following four tables represents the two-valued

+ - + -
decomposition of relations FI and M! into F! , FI R H' andH' .

FI" FI
Alex Bob Bob Alex
Bob Alex
Bob Alice
" H
Alex Music Alex Movies
Alex Movies Bob Movies

Alice Music

The above are the relations actually stored in the database, and
FO-queries on the four-valued instance will be decomposed and
executed against these two-valued relations. In the following A2
and v? denote the classical two-valued operators. Of course, when
restricted to {1,0}, two- and four-valued "and" and "or" agree.

Before we define the FO-formula decomposition, we note that +
and ® can be seen as mappings from {1,0, T, L} to {1,0} x {1,0},
an the other way around, respectively. In other words, 1* = (1,9)
and1®0=1;0*=(0,1)and0®1=0;T* = (1,1) and 1®1=T;
1* = (0,0) and ® 0 = 1. Then next lemma is a straightforward
consequence of these definitions.

IDEAS 2018, June 18-20, 2018, Villa San Giovanni, Italy

LEmMA 3.3. Let p,q € {1,0,T,1}. Suppose p* = (p*, p”), and
g =(q", q7). Then
prtg = (pTAg)e (Vi)
pva = (vig)elp Ag)
~p = pO®P
The next definition describes the decomposition to be used in
the evaluation FO-formulas on decomposed four-valued databases.

We emphasize the fact that the decomposed formulas do not use
negation.

Definition 3.4. Let ¢ be an FO-sentence, I a four-valued instance,
+ + =
and I* = (I, I") its decomposition. Then ¢! = (¢!, ¢!) is
defined recursively as follows:

0 o' o
R(a) R(a)f R(a)"
-y v v
a; » aj (aiJrz a]) N (aiiz aj)17
283 yh a2 ¢ yh v
YvE ¢I+V2 Sr1* lpr A2 gr
3 () Vi ¥ (@) Abep ¥ (a)

Wy (x) Apyl@) Vi (a)

We can now verify the desired property of the decomposition of
instances and FO-formulas.

THEOREM 3.5. Let ¢ be an FO-sentence, I a four-valued instance,
and I* = (I*,I") its decomposition. Then

+ -

I_ T 1
=9 ®¢.

Proor. We do a structural induction on ¢. If ¢ equals R(a) or
a; =~ aj the claim follows directly from Lemma 3.1. For the inductive
step, if ¢ = ¥ A £, we have

o' = (wae) =yt at

I_ Ity o I” I _ It I
where we assume that " = ¢ ® ¢ ,and & = ¢ ® ¢ .ByLemma
3.3 we then have

I I It It I~ I
Prate = (¥ APE ey VEE).
Definition 3.4 now tells us that
It It I~ I~ It I~
W AE ey ViE) =9 0g,

+ -
showing that indeed an = q)I ® (pI .
For the next case of the inductive step, suppose ¢ = -/, where
+ z
the assumption is that 1,//1 = lﬁl ® l,&l. We have

ol = (=) = Al = fle pl) = yle yl= ole ol

The case for disjunction is similar that of conjunction, and since
the quantifiers V and 3 are defined in terms of A% and v* the result
holds in these cases also.]

IDEAS 2018, June 18-20, 2018, Villa San Giovanni, Italy

COROLLARY 3.6. Let ¢ be an FO-sentence, I a four-valued instance,
and I* = (I*,I7) its decomposition. Then

N
true(p,I) = (pI N (pI
T It
false(p,I) = ¢ N ¢
. N & I~
inc(p,I) = ¢ N ¢
unk(p,I) = (<p1+ U (pr)

Example 3.7. Let ¢(x) be the query 3y F(x,y) A—~H(y, Movies).
o
from Example 2.1. Then (¢!, ¢!) is evaluated as follows
(pI+ (Alex) =VZ (FI+ (Alex, a) A* H! (a, Movies)) =1
o' (Alex) = A (FI_ (Alex, a) v? HI" (a, Movies)) =0
Similarly
(pI+ (Bob) =1 and ¢! (Bob) =1
(p1+ (Alice) = 0 and ¢! (Alice) = @

The evaluation of each of there two-valued queries leads to the
following results:

. -
o e
Alex Bob

Bob

The final answers can now be composed according to Corol-
lary 3.6, yielding true(¢@,I) = {(Alex) }, false(¢,I) = {},inc(p,I) =
{(Bob)}, and unk(¢,I) = {(Alice)}.

4 UNIVERSAL NULLS

In this and the next section we assume that the domain D is un-
bounded (countably infinite). We show how the star tables intro-
duced in [8] can be used to compactly store the two-valued positive
and negative parts of a four-valued database. Since in the negative
part we want to be able to record potentially infinite set of facts,
we need universal nulls "*," where a tuple, say (a, *), represents all
ordinary tuples {(a,b) : b € D}. We then show how the cylindric
star algebra described in [8] can conveniently be used to evaluate,
on the two-valued positive-negative star-tables, the FO* -queries
resulting from the decomposition of an FO-query posed on the four-
valued database. The following example represents the positive part
of a database, and only true tuples are shown.

Example 4.1. Consider binary relations F(ollows) and H (obbies)
from Examples 2.1 and 3.2. This time, let the database be the fol-
lowing.

FI+ HI+

Alice Chris Alice Movies
* Alice Alice Music
Bob * Bob Movies
Chris Bob

This is to be interpreted as expressing the facts that Alice follows
Chris and Chris follows Bob. Alice is a journalist who would like to
give access to everyone to articles she shares on the social media site.
Therefore, everyone can follow Alice. Bob is the site administrator,
and is granted the access to all files anyone shares on the site.
Consequently, Bob follows everyone. “Everyone” in this context
means all current and possible future users. The query below, in

Gosta Grahne and Ali Moallemi

domain relational calculus, asks for the interests of people who are
followed by everyone:

¢(x4) = Ixz3x3Vxy (F(X],Xz) AH(x3,x4) A (2 » X3)) (1)
The answer to our example query is {(Movies), (Music) }. Note
that star-nulls also can be part of an answer. For instance, the query

+
@(x1,%3) = F(x1,x) would return all the tuples in F! .

Example 4.2. Continuing Example 4.1, suppose all negative in-

formation we have deduced about the H(obbies) relation, is that

we know Alice doesn’t play Volleyball, that Bob only has Movies as
hobby, and that Chris has no hobby at all. This negative information

about the relation H is represented by the table H T below.

2Ll

Alice Volleyball

Bob * 2 + Movies
Chris *

Note that the second tuple has a conditions that says the symbol *
in the second column represents all domain values except “Movies”
Suppose the query ¢ asks for people who have a hobby, that is

o(x1) = 3x2 H(x1,x2).

Then the positive part is evaluated as

(p1+ (Chris) = Vgaep a (Chris, a) =

HI" (Chris, Movies) v H" (Chris, Music) v
HI (Chris, Movies) vHT" (Chris, .) v =
O0vovovov:-.=0.

(p1+ (Alice) = Vgep HI" (Alice, a) =

HI" (Alice, Movies) v HI" (Alice, Music) v
HT" (Alice, Movies) v HT " (Alice, ..) v+ =
Ovivovov-.=1.

(pI+ (Bob) = Vaep H" (Bob, a) =

HI" (Bob, Movies) vH (Bob, Music) v
HI" (Bob, Movies) vHI (Bob,.) v =
Ovovivov--=1.

The negative part is evaluated as

@' (Chris) = A H' (Chris,a) =1ATATA--=1.
aeb

Note that H! (Bob, Movies) = @, which yields ¢! (Bob) = 0. Like-

wise ¢! (Alice) = 0. To summarize, true(p,I) = {(Alice), (Bob)},
false(¢,I) = {(Chris)}, inc(¢,I) = {}. For all other possible users
the result is unknown.

5 ALGEBRAIC EVALUATION

The n-dimensional cylindric star-algebra [8] consists of operators
star union U, star intersection M, outer c; and inner 3; cylindrifica-
tions on dimension i, diagonals d;j, as well as complement. Comple-
ment will however not be used in this context, as FO-formulas are
evaluated in the four-valued semantics by decomposing them into
positive and negative parts, neither of which uses negation. The
star-algebra acts as an evaluation mechanism, and an FO-formula ¢
with n variables is translated into an equivalent n-dimensional star

A useful four-valued database logic

algebra expression Ey. At run-time, all star-tables will be expanded
to have arity n by filling empty columns with “+." These run-time
tables are called star-cylinders, and denoted C, C’ etc. Note that star-
cylinders and -tables can have an extra column containing equality
constraints which are a Boolean combinations of atoms of the form
(i=j)and (i =a),forie{1,...,n} and a € D, where columns i
and j contain the “+"-symbol.

Example 5.1. Continuing Example 4.1, in that database the atoms
F(x1,x7) and H(x3,x4) of query (1) are represented by star-tables
Cr and Cg, and the equality atom is represented by the diagonal
cylinder dgs. Note that these are positional relations, the “attributes”
X1, X2, x3, and x4 are added for illustrative purposes only.

Cr Cy
X1 X2 X3 X4 X1 X2 X3 X4
Alice Chris * * %+ Alice Movies
* Alice * = * * Alice Music
Bob * * % * * Bob Movies
Chris Bob * %
das
X1 X2 X3 X4
* * * * 2=3
C/
X1 X2 X3 X4
* Alice Alice Movies
* Alice Alice Music

Bob Alice Alice Movies
Bob Alice Alice Music

Bob Bob Bob Movies
Chris Bob Bob Movies
C// C///
X1 X2 X3 X4 X1 X2 X3 X4
* Alice Alice Movies * * * Movies
* Alice Alice Music * * % Music

The star union U is carried out as a set theoretic union of the
star tuples in the arguments. The star intersection is obtained by
combining the star tuples in the arguments, where for instance
{(a,*, %)} mn {(*,b,%)} = {(a,b,*)}. The outer cylindrification
c; represents Jx; and is obtained by replacing column i by an
unconstrained “+." Inner cylindrification ; represents Vx; and is
carried out be selecting those star tuples where column i contains
an unconstrained “+." A detailed definition of the cylindric star
algebra can be found in [8]. The translation of query (1) is the
cylindric star-algebra expression

Cz(C3(31((CF QCH)mdzg))) (2)

The intersection of Cg and Cp is carried out as star-intersection m.
The result will contain 12 tuples, and when these are star-intersected
with dy3, the diagonal cylinder dy3 will act as a selection by columns
2 and 3 being equal. The result is the left-most star-cylinder C’ =

IDEAS 2018, June 18-20, 2018, Villa San Giovanni, Italy

(Cr m Cyg) M da3 above. Applying the inner star-cylindrification
on column 1 results in C” in the middle above. Finally, applying
outer star-cylindrifications on columns 2 and 3 of star-cylinder C”’
yields the final result C""" = c;(c3(51((Cr m Cr) m dg3))) right-
most above. The system can now return the answer, i.e. the values

of column 4 in cylinder C""". Note that columns where all rows are

«

+” do not actually have to be materialized at any stage.

Example 5.2. Consider the relation H(obbies) from Examples
2.1 and 4.2. This relation is then stored as the two star-tables Cp+
and Copi- below.

Cyr+ Cor-

X1 X2 X1 X2

Alice Movies Alice Volleyball

Alice Music Bob * 2 + Movies
Bob Movies Chris *

The query was asking for people who have a hobby, that is
@(x1) = 3x2 H(x1,x2). The positive part will be translated as
c2(Cppr+), and the negative part as 22(Cpy;-). The answers are
below

Cz(c -) JZ(CHI’)
J—xl P X X2
Alice—* Chris *

Bob *

The above translation is summarized in the next theorem.

THEOREM 5.3. [8] For every query expressed as an FO formula ¢,
there is a Cylindric Star Algebra Expression E, such that

DB
Eo(DB) = ¢,

for every database DB containing *-nulls. The converse is also true.
Moreover, star-databases are closed under star-algebra.

6 DEPENDENCIES AND THE CHASE

Implication. So far, we have extended the basic Boolean operations
to the four-valued case. When restricted to {1,0} the four-valued
extension coincides with the two-valued case. When it comes to
the conditional ¢ — ¥/, it will however no longer be equivalent with
—¢ Vv . In order to arrive at the proper four-valued meaning of —
we need to take a closer look at Belnap’s logic [2].

As seen in Section 3, the truth-values 1, 0, T, and L can losslessy
be represented as pairs of classical truth values 1 and 9, namely
(1,9), (0,1), (1,1), and (0,0), respectively. Indeed, Belnap [2]
explains a sentence ¢ assigned (1,0) as “the computer has been
told that ¢ is true," (0, 1) as “the computer has been told that ¢ is
false,’ (1,1) as “the computer has been told that ¢ is true, and that
@ is false," and (0, 9) as “the computer has not been told anything
about the truth of ¢." Belnap then proposes the following two lattice
diagrams:

IDEAS 2018, June 18-20, 2018, Villa San Giovanni, Italy

(1,0) (1M

(0,0) 1,1 (1) (e.1)

(0,1) (0,0)

The diagram to the left reflects the partial order <; of the four truth-
values {1,0,T, L}, based on @ <; 1 with T and 1 in-between and
incomparable between themselves. The diagram to the right reflects
the amount of information that "the computer has been told." Belnap
regards the structure as a Scott-type approximation lattice, and calls
it the information order, here denoted <;. The diagram shows that
1<;0<; Tand L <; 1<; T, with 1 and @ incomparable between
themselves wrt <;.

The two partial orders can be lifted to four-valued instances I
and J, by stipulating that I <, J if R (a) <; R/ () for all atomic
sentences R(a), and similarly for I <; J. When interpreting the
information content in a four-valued instance I = I"®I~ we see that
the instances I™ and I” are traditional model-theoretic instances
“closed” wrt <;, whereas I is "open" wrt <; in that the information
is open to increase as the computer is told more. The propositional
sentence ¢ — ¢ can now be interpreted as "the computer knows
about ¢ at least what it knows about ¢." More formally, I = ¢ — ¢
if o <; y!. Note that implicational sentences are only given truth-
values 1 and 0.

The next question is what the computer should do if T # ¢ — .
Belnap answers the question by saying that the computer should
“make minimal mutilations to its information state so as to make
¥ true! Since information can only increase as the computer is
told more, the mutilation should be done in the <; order. More
formally, if I # ¢ — ¢, then the computer should find the <;-
smallest instance J, such that ¢! = ¢/, I <; J,and ¢’ <; /. When
enforcing a tuple-generating dependency ¢ — ¢ in classical two-
valued instances, this is exactly what is done, except that <; is used
instead of <;. Of course, in a two-valued world, "more" means more
truth. The effect of enforcing ¢ — i on a four-valued instance I
resulting in instance J is described by the table below. It is easy to
see that a repeated application of this enforcement rule will result
in a least fixed point in the <;-order. For a set ¥ of dependencies and
four-valued instance I, this least fixed point is denoted chases (I).

Al
1 1 1
1 Q T
T 1 T
T 1 T
T Q T
Q 1 Q
Q 1 T

Next we show that the classical chase-procedure can be adapted
to work on four-valued instances using the decomposition approach.
The idea is to convert an implicational sentence ¢ — ¢ into two sen-
tences ¢ — ¢+ and ¢~ — ¢ according to Definition 3.4, and then

Gosta Grahne and Ali Moallemi

chase the two-valued decomposed instance I* with the converted
sentences.

Tuple-generating dependecies. We define (for now) a tuple gen-
erating dependency (tgd) as an implicational sentence of the form

Vx ((Hg o(%79)) ~ R()’c)), 3

where ¢(x,7) is an FO-sentence. Let ¥ be a set of tgds and I a
two-valued instance. Then chase%([) is computed by repeatedly
checking, for each tgd (3) in 3, if there is a sequence 4, b of constants
such that o' (a,b) ¢+ R (@), in which case R! (a) is set to 1. We can
now conveniently compute chaseg (I) by combining chaseg -+ (1)

and chaseg — (I*). where chase% ;+ (I*) is computed by repeatedly

checking, for each a and each tgd, whether (pIJr (a,b) ¢+ R (a).
+

If this is the case R () is set to 1. Similarly, chaseér (I*) is

computed by checking if ¢! (a,b) £; R' () and changing R! (a)
to 1 when this is the case. We then have

THEOREM 6.1. [9] Let X be a set of tgds and I a four-valued in-
stance. Then

4 2 gt 2
chases (I) = chaseg;+ (I) ® chasey,- (I7).

The proof of the theorem is based on the fact that ¢(a, b)’ <; R(a)’
iff p(a,5) <, R(a) "and ¢(a,b)" <; R(a)" .

Example 6.2. We show how to compute the transitive closure of
a graph along with the complement of the transitive closure. Let
the graph have vertex set D = {ay, az, as, a4 }, and edge set E. Below
is a complete description of the graph, which we call the E-graph.
In the first E-graph below the dashed arrows represent true edges,
and in the second one the dotted arrows represent false edges.

The transitive closure of the graph is defined by the following set
of tgds (leading universal quantifiers are omitted).

- T(xy)
- T(xy)

E(x.y)
3z (E(x.2) AT(2.y))

Following Fitting [5, 6] we merge all tgds with the same consequent
by taking the disjunction of their antecedents. The two tgds above
will thus result in the dependency

(E(x,y) v (32 E(x,2) A T(z,y))) - T(x,y)

A useful four-valued database logic

For the graph T we start with TI(i,j) = 1, for all vertices i, j. In
the first round we fire

+ + + +
EI (al, az)\/ \/ (EI (al, a,—)/\TI (a,‘, ag)) — TI (al, (12)

ie{1,2,3,4}

E' (az, a3) v {\/ }(E[+(az,a,~)/\TI+(a,~,a3)) ~ T (a, a3)
ie{1,2,3,4

EI+(a3,a4)v {\/ }(EI+(a3,ai)/\TI+(ai,a4)) — TI+(a3,a4)
ie{1,2,3,4

Er(a4,a1)/\ A (Er(a4,ai)vTr(a,~,a1)) - Tr(a4,a1)
ie{1,2,3,4}

Er(a4,a2)/\ A (Er(a4,a,-)\/Tr(a,-,a2)) - Tr(a4,a2)
ie{1,2,3,4}

E" (a4, as) A {/\ }(EI_(a4sai)\/TI_(ai,03)) - T (a4, a3)
ie{1,2,3,4

EI_(a4,a4)/\ N (EI_(a4,ai)vTI_(al~,a4)) - TI_(a4,a4)

ie{1,2,3,4}

The positive and negative T-edges over D = {ay, az, a3, a4 } result-
ing from the first round are shown in the two graphs below.

Ry

or

S
o
0

In the second round we fire

+ + + +
E! (a,a3)v (EI (a1, ai)/\TI (ai, a3)) - 7! (a1, as)

ie{1,2,3,4}

EI+(a2,a4)\/ {\/ }(EI+(a2,ai)ATI+(ai,a4)) - TI+(a2,a4)
ie{1,2,3,4

E' (as, a1) A {1/2\34}(E[_(a3,ai)\/TI_(ai,a1)) - T (a5, 1)
ie{1,2,3,

E' (as, a3) A {/\ }(EI_(a3,ai)VTI_(ai,az)) - T! (a3, az)
ie{1,2,3,4

E' (a3, as) A {/\ }(Er(ag,ai)vTr(ai,@)) = T (as, a3)
ie{1,2,3,4

E' (ag, a1) A {1/2\34}(Er(az,ai)\/Tr(ai,a1)) - 1" (anar)
ie{1,2,3,

E' (a3, a3) A A (EI_(az,ai)\/TI_(ai,az)) - T' (az a3)

ie{1,2,3,4}

The second round results in the positive and negative graphs below.

IDEAS 2018, June 18-20, 2018, Villa San Giovanni, Italy

Finally, in the third round we fire
EI_ (al, a4) \ \/
i€{1,2,3,4}

EI_(al,al)/\ /\

ie{1,2,3,4}

+ + +
(EI (a1, ai)/\TI (ai, a4)) - 7! (a1, a4)

(EI_ (a1, ai) v il (ai, al)) - 7T (a1, a1)

The first graph shows T, the transitive closure of E, and the second
the complement of the transitive closure. Note that there is no
need for any syntactical notion of stratification or non-monotonic
reasoning.

- = = .
——— .h
- - P
e = - .- -~
- -~ ~
- - ~
- - - - - - - -

o o 3 o,

14 14 1 4 14

Example 6.3. We recall the classical Win-Move program, where
Win(x) means player can win at vertex x, and Move(x,y) means
there is a move from vertex x to vertex y. The only rule of this game
is

3y (Move(x,y) A -Win(y)) - Win(x).
That is, a player can win in state x whenever he can move to state y

7
and y is not a winning state. Below we show the relations Move!

and Move! over D = {ay,az, a3}. Initially we have Win(a;) = L
forie {1,2,3}.

In the first round we fire

A (Movel_(ag,ai)vWinI+(a,~)) - Win' (a3).
ie{1,2,3,4}

IDEAS 2018, June 18-20, 2018, Villa San Giovanni, Italy

As a result, Win! (as3) is set to 1 below.

- = - -
- ~

~

% Yy

In the second round we fire

V (]VIoveI+(a2,ai)/\WinI_(ai)) - Win1+(az)

ie{1,2,3}

\V (Afovel+(a1, ai)/\WinI_(ai)) N Winl+(a1)
ie{1,2,3}

N (Mover(al, ai)VWinﬁ(ai)) - win! (a1)
ie{1,2,3}

There are few interesting notes to be made about Example 6.3.
Firstly, regardless of the fact that Move(1, 2) is inconsistent in the
input graph, the chase could be executed and at the end we have a
model which satisfies all conditions. Secondly, inconsistent initial
information can lead to inconsistent results as well. Lastly, even
though we have inconsistent result for vertex a; our results are
consistent for vertices a; and a3 for which we are sure they are
winning and loosing states, respectively.

7 CHASING WITH INFINITE DOMAIN

In the previous section we assumed that the domain (of vertices)
was finite. When we use star tables we however assumed that the
domain is countably infinite. Returning to the Win-Move exam-
ple, suppose the domain of vertices is D = {aj,az,a3....,an,.. }
and the initial graph have edges Move(a1, az), Move(az, a3), and
Move(ay,as). We can store this, as well as the fact that there are
no other move edges by the following two star-tables.

I+
Move
ap az
az as
ai as

MoUeI

* % (lzarv2za)A(l#agv2+a3)A(l+a3V2+as)

Gosta Grahne and Ali Moallemi

+ -
Below we show the relations Move! and Move! graphically. The
vertex labeled * represents all vertices in D \ {aj, ap, a3 }. Initially
we have Win! (a;) = L for all a; € D.

- = = =

OO 0

In the first round we fire

A (Mover(ag, ai)\/Winﬁ(a,-)) - Win! (as).
ie{1,23,...}

which is equivalent to

A\ (Mover(ag, a)\/Winﬁ(a)) - Win! (as).

ae{ay,az,az, *}
As a result, Win! (as) is set to 1. Then we fire

AN (Mover(*, a)vWinI+(a))—>WinI_(>(-).

ae{ay, az, az, +}

As a result, Win! (%) is set to 1 below, as well.

- = = =

@O0 0

In the second round we fire

\V (Moveﬁ(az,a)/\Winr(a)) - Winl+(az)
ac{ay,az, a3, *}
. \V }(A/Iovel+(a1,a)/\Winr(a)) - Winﬁ(al)
ae{ay, az, as, *
AN (Mover(al,a)\/WinIJr(a)) - Wwinl (&)

ae{ay,az, a3, *}

resulting in

- = = =

G R ONNO

As it can be seen, states a; and ay are winning states. States
ay, as, and * are non-winning states. Clearly, state a; appear as
winning and non-winning state, which makes it an inconsistent
state. However, having inconsistent vertices and moves does not

A useful four-valued database logic

stop the four-valued chase from concluding consistent informa-
tion about other states. Moreover, having state * as a non-winning
state declares that the set of states a4, as, gg, . . . are all non-winning

states. In summary, the relations Wi nl " and Win! contain the ver-
tices a € D for which Win!(a) = 1 and Win! (a) = 0, respectively.
One should notice that inconsistency in the initial database can be
propagated by the chase. However, consistent information is still
treated correctly.

Adding existential nulls. In the paper [8] we showed that we can
add labeled existential nulls to star-tables, and that these nulls can
be evaluated naively (treating them as pairwise distinct constants,
different from all constants in the database), and that as long as
we only use FO"-queries, the algebraic evaluation on star-tables
with universal and existential nulls can be done efficiently. We
note that we only need to deal with FO*-queries, as FO-queries
under four-valued semantics is processed as a pair of FO*-queries.
We also note that so far we have assumed that the interpretation
of ~ is the two-valued identity. When existential nulls enter the
picture, we however get a four-valued interpretation of ». Initially
x ~ a, where x is a null value and a a constant, is given truth-
value unknown, and similarly for x » y for existential nulls x and
y. However, after enforcing equality generating dependencies we
might derive facts (x ~ a)’ € {1,0, T}, and similarly for (x ~ y)’.
This means that we can decouple inconsistency resolution from
query answering, in contrast with the intractable repair approach of
Arenas et al. [1]. In the four-valued approach the answers to queries
only flag certain tuples or attribute values as inconsistent. The
consistent part of the answers, obtainable without computational
penalty, then corresponds to the consistent answer obtained in the
repair approach.

8 CONCLUSION

We have argued that Belnap’s four-valued logic [2] is a perfect
fit with relational databases, in that it allows an extension of the
traditional technology to smoothly and efficiently handle both in-
complete and inconsistent information. The required extension can
be achieved using our newly introduced star-tables and star-algebra,
where FO-queries and dependencies can be processed efficiently
under the four-valued semantics.

REFERENCES

[1] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query

answers in inconsistent databases. In Proceedings of the Eighteenth ACM, pages

68-79, 1999.

Jr. Belnap, Nuel D. A useful four-valued logic. In J.Michael Dunn and George

Epstein, editors, Modern Uses of Multiple-Valued Logic, volume 2 of Episteme,

pages 5-37. Springer Netherlands, 1977.

[3] Joachim Biskup. Extending the relational algebra for relations with maybe tuples
and existential and universal null values. Fundam. Inform., 7(1):129-150, 1984.

[4] Chris Date. Database in depth: relational theory for practitioners. " O’Reilly Media,

Inc., 2005.

Melvin Fitting. Kleene’s logic, generalized. J. Log. Comput., 1(6):797-810, 1991.

Melvin Fitting. The family of stable models. J. Log. Program., 17:197-225, 1993.

Matthew Ginsberg. Multivalued logics: A uniform approach to inference in

artificial intelligence. Computational Intelligence, 4:265-316, 1988.

Goésta Grahne and Ali Moallemi. Universal (and existential) nulls. arXiv preprint

arXiv:1803.01445, 2018. https://arxiv.org/abs/1803.01445.

Gosta Grahne, Ali Moallemi, and Adrian Onet. Intuitionistic data exchange. In

9th Alberto Mendelzon International Workshop., 2015.

Paolo Guagliardo and Leonid Libkin. A formal semantics of SQL queries, its

validation, and applications. PVLDB, 11(1):27-39, 2017.

[2

T e Ixa
A A

=
=2

IDEAS 2018, June 18-20, 2018, Villa San Giovanni, Italy

Leon Henkin,] Donald Monk, and Alfred Tarski. Cylindric Algebras—Part L.
North-Holland Publishing Company, 1971.

Leon Henkin, J Donald Monk, and Alfred Tarski. Cylindric Algebras—Part IL.
North-Holland Publishing Company, 1985.

Tomasz Imielinski and Witold Lipski Jr. The relational model of data and cylindric
algebras. J. Comput. Syst. Sci., 28(1):80-102, 1984.

Stephen Cole Kleene. Introduction to metamathematics. D. Van Norstrand, 1952.
Leonid Libkin. Negative knowledge for certain query answers. In Web Reasoning
and Rule Systems - 10th International Conference, 2016, pages 111-127, 2016.
Leonid Libkin. SqI’s three-valued logic and certain answers. ACM Trans. Database
Syst., 41(1):1:1-1:28, 2016.

https://arxiv.org/abs/1803.01445

	Abstract
	1 Introduction
	2 Belnap's four-valued logic
	3 Database and Formula decomposition
	4 Universal Nulls
	5 Algebraic evaluation
	6 Dependencies and the Chase
	7 Chasing with infinite domain
	8 Conclusion
	References

