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Abstract

Mining frequent itemsets is instrumental for mining
association rules, correlations, multi-dimensional
patterns, etc. Most existing work focuses on min-
ing all frequent itemsets. However, since any subset
of a frequent set also is frequent, it is sufficient to
mine only the set of maximal frequent itemsets. In
this paper, we study the performance of two existing
approaches, Genmax and Mafia, for mining max-
imal frequent itemsets. We also develop an exten-
sion, called Fpmax, of the well known FP-growth
method. Since one cannot expect that one single
approach will be suitable for all types of data, we
analyze the behaviour of the three approaches Gen-

max, Mafia, and Fpmax, under various types of
data. We validate our conclusions through careful
experimentation with synthetic data, in which the
parameters influencing the data characteristics are
easily tunable.

We then turn the conclusions into prediction of
the performance of each of the three methods for
specific data characteristics. We test these predic-
tions of real datasets, and find that they are valid
in most cases.

1 Introduction

The space of items in a transactional database gives
rise to a subset lattice. The itemset lattice is a con-
ceptualization of the search space when mining fre-
quent itemsets. There are then basically two types
of algorithms to mine frequent itemsets, breadth-first
algorithms and depth-first algorithms. The breadth-
first algorithms, such as Apriori [4, 5] and its vari-
ants [11], apply a bottom-up level-wise search in the
itemset lattice. Candidate itemsets with k+1 items
are only generated from frequent itemsets with k
items. For each level, all candidate itemsets are
tested for frequency by scanning the database. On
the other hand, depth-first algorithms such as FP-
growth [9] search the lattice bottom-up in “depth-
first” way (one should perhaps say “height-first”

way). From a singleton itemset {i}, successively
larger candidate sets are generated by adding one
element at a time.

The drawback of mining all frequent itemsets is
that if there is a large frequent itemset with size
`, then almost all 2` candidate subsets of the items
might be generated. However, since frequent item-
sets are upward closed, it is sufficient to discover
only all maximal frequent itemsets (MFI’s). A fre-
quent itemset is called maximal if it has no superset
that is frequent. Thus mining frequent itemsets can
be reduced to mining a “border” in the itemset lat-
tice, as introduced in [10]. All itemsets above the
border are infrequent, the others that are below the
border are all frequent.

Bayardo [6] introduces MaxMiner which ex-
tends Apriori to mine only “long” patterns (maxi-
mal frequent itemsets). To reduce the search space,
MaxMiner performs not only subset infrequency
pruning such that a candidate itemset that has an
infrequent subset will not be considered, but also a
“lookahead” to do superset frequency pruning. For
any frequent itemset X, find all single items j, such
that j /∈ X, and X ∪ {j} is frequent. Suppose these
j-items forms set Y . IfX∪Y is frequent, we can con-
clude that any its subset also is frequent. Though
superset frequency pruning reduces the search time
dramatically, MaxMiner still needs many passes to
get all long patterns.

DepthProject by Agarwal, Aggrawal, and
Prasad [3] also mines only long patterns. It per-
forms a mixed depth-first/breadth-first traversal of
the itemset lattice. In the algorithm, both subset in-
frequency pruning and superset frequency pruning
are used. The database is represented as a bitmap.
Each row in the bitmap is a bitvector correspond-
ing to a transaction, each column corresponds to an
item. The number of rows is equal to the number
of transactions, and the number of columns is equal
to the number of items. A row has a 1 in the ith
position if corresponding transaction contains the
item i, and a 0 otherwise. Figure 1 (a) shows an
example for bitmap representation of a transaction

1



database. The count of an itemset is the number
of rows that have 1’s in all corresponding positions.
For instance, the count of BCD is 3 since row 2, 4
and 5 have 1’s in position B, C and D. By carefully
designed counting methods, the algorithm signifi-
cantly reduces the cost for finding support counts.
Experimental results in [3] show that DepthPro-

ject outperforms MaxMiner by at least an order
of magnitude.
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Figure 1: Bitmap representation and depth-first search

In [7], Burdick, Calimlim, and Gehrke extend
the idea in DepthProject and give an algorithm
called Mafia to mine maximal frequent itemsets.
Similar to DepthProject, their method also uses
a bitmap representation, where the count of an
itemset is based on the column in the bitmap (the
bitmap is called “vertical bitmap”). As an example,
in Figure 1 (a), the bitvectors for items B, C, and
D are 111110, 011111, and 110110, respectively. To
get the bitvectors for any itemset, we only need to
apply the bitvector and-operation ⊗ on the bitvec-
tors of the items in the itemset. For above example,
the bitvector for itemset BC is 111110 ⊗ 011111,
which equals 011110, while the bitmap for item-
set BCD can be calculated from the bitmaps of BC
and D, i.e., 011110⊗ 110110, which is 010110. The
count of an itemset is the number of 1’s in its bitvec-
tor. Mafia is a depth-first algorithm. Figure 1 (b)
shows the the sequence of itemsets tested for fre-
quency given a minimum support of 50% on dataset
in Figure 1 (a). The testing order is indicated by the
number on the top-right side of the itemsets. Be-
sides subset infrequency pruning and superset fre-
quency pruning, some other pruning techniques are
also used in Mafia. As an example, the support of
an itemset X ∪ Y equals the support of X, if and
only if x⊗Y = X This is the case if the bitvector for
Y has a 1 in every position that the bitvector for X
has 1. The last condition is easy to test. This allows
us to conclude without counting that X ∪ Y also is
frequent. The technique is called Parent Equiva-

lence Pruning in [7].
Genmax, proposed by Gouda and Zaki [12], takes

a novel approach to maximality testing. Most meth-
ods, including MaxMiner, use a variant of the algo-
rithm in [8] and find the maximal elements among
n sets in time O(

√
n log n). Gouda and Zaki use

a novel technique called progressive focusing. This
technique, instead of comparing an newly found
frequent itemsets (FI’s) with all maximal frequent
itemsets found so far, maintains a set of local max-
imal frequent itemsets, LMFI’s. The newly found
FI is firstly compared with itemsets in LMFI. Most
non-maximal FI’s can be detected by this step, thus
reducing the number of subset tests. Genmax also
uses a vertical representation of the database. How-
ever, for each itemset, Genmax stores a transaction
identifier set, or TIS, rather than a bitvector. The
cardinality of an itemset’s TIS equals its support.
The TIS of itemset X∪Y can be calculated from the
intersection of the TIS’s of X and Y . Experimental
results show that Genmax outperforms other exist-
ing algorithms on some types of datasets. For more
information, see [12].

1.1 Contributions

In this paper, we first introduce Fpmax, an exten-
sion of the FP-growth method, for mining MFI’s
only. During the mining process, an FP-tree (a
trie structure) is used to store the frequency in-
formation of the whole dataset. To test if a fre-
quent itemset is maximal, another trie structure,
called a Maximal Frequent Itemset tree (MFI-tree),
is utilised to keep track of all maximal frequent
itemsets. This structure makes Fpmax effectively
reduce the search time and the number of subset
testing operations.

Since it is not to be expected that one single ap-
proach will be suitable for all types of data, we an-
alyze the behaviour of algorithms Mafia, Genmax

and Fpmax, under various types of data. We val-
idate our analysis through careful experimentation
with synthetic data, in which the parameters influ-
encing the data characteristics are easily tunable.
We then turn the conclusions into predictions of
the performance of each of the three methods for
specific data characteristics. By testing these pre-
dictions of real dataset, we find that they are valid
in most cases.

Experimental results also show that Fpmax is
competitive. For certain types of data, it outper-
forms Mafia and Genmax. Fpmax also has a very
good scalability.
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Figure 2: An Example FP-tree (minsup=2)

1.2 Overview

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief introduction of the FP-tree and
the FP-growth method of [9], and then introduces
the trie structure for storing MFI’s. The Fpmax al-
gorithm is also given in this section. In section 3 we
analyze the influence of data characteristics on the
performance of Mafia, Genmax and Fpmax. Ex-
perimental results on synthetic dataset are given to
validate our analysis. After we draw our conclusions
for predicting the performance of the three methods,
experimental results on real datasets are given and
we found the conclusions are valid in most cases.
Conclusions and future work are given in Section 4.

2 Discovering MFI’s by Fpmax

2.1 FP-tree and FP-growth method

Apriori and its variants repeatedly scan the
database and check the frequency of candidate item-
sets by pattern-matching. This is costly especially
if there are prolific frequent patterns, long patterns,
or quite low minimum support thresholds.

In the aforementioned FP-growth method [9], a
novel data structure, the FP-tree (Frequent Pat-
tern tree), is used. The FP-tree is a compact data
structure for storing all necessary information about
frequent itemsets in a database. Every branch of
the FP-tree represents a frequent itemset, and the
nodes along the branch are ordered decreasingly by
the frequency of the corresponding item, with leaves
representing the least frequent items. Compression
is achieved by building the tree in such a way that
overlapping itemsets are represented by sharing pre-
fixes of the corresponding branches.

The FP-tree has a header table associated with it.
Single items and their count are stored in the header
table in decreasing order of frequency. A row in the

header table also contains the head of a list that
links all the corresponding nodes of the FP-tree.

Compared with Apriori and its variants which
need several database scans, the FP-growth method
only needs two database scans when mining all fre-
quent itemsets. In the first scan, all frequent items
are found. The second scan constructs the first FP-
tree which contains all frequency information of the
original dataset. Mining the database then becomes
mining the FP-tree. Figure 2 (a) shows a database
example. After the first scan, all frequent items are
inserted in the hearder table of an initial FP-tree.
Figure 2 (b) shows the first FP-tree constructed
from the second scan.

The FP-growth method relies on the following
principle: if X and Y are two itemsets, the sup-
port of itemset X ∪ Y in the database is exactly
that of Y in the restriction of the database to those
transactions containing X. This restriction of the
database is called the conditional pattern base of
X. Given an item in the header table, the growth
method constructs a new FP-tree corresponding to
the frequency information in the sub-dataset of only
those transactions that contain the given item. Fig-
ure 2(c) shows the conditional pattern base and the
FP-tree for item {d}. This step is applied recur-
sively, and it stops when the resulting smaller FP-
tree contains only one single path. The complete
set of frequent itemsets is generated from all single-
path FP-trees. More details about the construction
of FP-tree and FP-growth method can be found in
[9].

2.2 Fpmax: Mining MFI’s

We extend the FP-growth method and get algo-
rithm Fpmax described in Figure 3. Like FP-
growth, algorithm Fpmax is also recursive. In the
initial call, an FP-tree is constructed from the first
scan of the database. A linked list Head contains the



items that form the conditional base of the current
call. Before recursively calling Fpmax, we already
know that the set containing all items in Head and
the items in the FP-tree is not a subset of any ex-
isting MFI. If there is only one single path in the
FP-tree, this single path together with Head is an
MFI of the database. In line 2, we use the MFI-
tree data stucture to keep track of all MFI’s. If the
FP-tree is not a single-path tree, then for each item
in the header-table, the item is appended to Head,
and line 7 calls function subset checking to check if
the new Head together with all frequent items in
the Head-conditional pattern base is a subset of any
existing MFI. If not, Fpmax will be called recur-
sively. The data structure MFI-tree and function
subset checking will be explained shortly.

Procedure Fpmax(T)
Input: T: an FP-tree
Global:

MFIT: an MFI-tree.
Head: a linked list of items.

Output: The MFIT that contains all
MFI’s
Method:
1.if T only contains a single path P
2. insert Head ∪ P into MFIT
3.else for each i in Header-table of T
4. Append i to Head;
5. Construct the Head-pattern base
6. Tail = {frequent items in base}
7. subset checking(Head ∪ Tail);
8. if Head ∪ Tail is not in MFIT
9. construct the FP-tree THead;
10. call Fpmax(THead);
11. remove i from Head.

Figure 3: Algorithm Fpmax

Since Fpmax is a depth-first algorithm, it’s
straightforward to prove the following lemma.

Lemma 1 In Fpmax, any frequent itemset cannot
be a subset of any frequent set generated later, i.e.,
it is either maximal frequent set or a subset of some
existing MFI’s.

By this lemma and the correctness of FP-growth
method, we can conclude that Fpmax returns all
and only the maximal frequent itemsets in the given
dataset.

By replacing line 2 in Figure 3 with “insert Head
∪ P and its support into MFIT” and minor change
of data structure MFI-tree, Fpmax can return all
MFI’s and their supports.

2.3 MFI-Tree

How should we test if a frequent itemset is maxi-
mal or not? In [8], an algorithm is introduced for
extracting all maximal elements in a set of sets.
If there are n sets, then getting all maximal sets
takes at least O(

√
n log n) time. In Fpmax, a fre-

quent itemset can be a subset only of an already
discovered MFI. In other words, if a frequent item-
set is not a subset of any existing MFI, it is a new
MFI. Therefore, a special structure can be used to
do the subset-testing more efficiently. We introduce
the Maximal Frequent Itemset tree (MFI-tree) as the
special data structure to store all MFI’s.

The MFI-tree resembles an FP-tree. It has a root
labelled with “root”. Children of the root are item
prefix subtrees. Each node in the subtree has two
fields: item-name and node-link. All nodes with
same item-name are linked together. The node-link
points to the next node with same item-name. A
header table is constructed for items in the MFI-
tree, the item order in the table is same as the item
order in the first FP-tree constructed from the first
scan of the database. Each entry in the header table
consists of two fields, item-name and head of a node-
link. The node-link points to the first node with the
same item-name in the MFI-tree.

In Fpmax, a newly discovered frequent itemset is
inserted into the MFI-tree, unless it is a subset of
an itemset already in the tree. Due to the lack of
space, we omit the algorithm for constructing MFI-
tree here. We take the FP-tree in Figure 2 as an
example to see how algorithm Fpmax and the con-
struction of the MFI-tree works.

For the database in Figure 2(a), after the con-
struction of the first FP-tree by FP-growth method,
the method is called recursively for each frequent
item i. In this example, the FP-trees correspond-
ing to all {i}-conditional pattern base each contain
only a single branch, and therefore the recursion
stops. In the following table we summarize the {i}-
conditional pattern base for each frequent item i and
its corresponding conditional FP-tree.

item condi. pattern base conditional FP-tree
d {(ecag : 1), (ca : 1)} {(c : 2, a : 2)}
f {(ecab : 2)} {(e : 2, c : 2, a : 2, b : 2)}
b {(eca : 2)} {(e : 2, c : 2, a : 2)}
g {(eca : 4), (ca : 1)} {(c : 5, a : 5, e : 4)}
a {(ec : 6), (c : 2)} {(c : 8, e : 6)}
c {(e : 6)} {(e : 6)}
e ∅ ∅
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Figure 4: Construction of Maximal Frequent Itemset Tree

Figure 4 illustrates the construction of the MFI-
tree for the example of Figure 2. Start from the
first FP-tree T in Figure 2(b), by calling Fpmax(T ).
Since the T contains more than one path, a bottom-
up search has to be done. For item d, its conditional
FP-tree only has one single path, so we get the first
frequent itemset {c, a, d}. Obviously this set is max-
imal, so it is inserted into the MFI-tree directly (Fig-
ure 4 (a)). Note that in Figure 4 the header table
of the MFI-tree is the same as that of the FP-tree
in Figure 2, constructed from the database. For
item f , the only f -conditional frequent itemset is
{e, c, a, b, f}, and since there is no link-chain for f ,
this set is also maximal. We then insert {e, c, a, b, f}
into the MFI-tree (Figure 4 (b)). For item b, the only
{b}-conditional itemset is {e, c, a, b}, and by call-
ing subset checking, we determine that {e, c, a, b} is
a subset of an existing MFI, so it will not be in-
serted into the MFI-tree. Next, the {g}-conditional
frequent itemset {e, c, a} will be inserted into the
MFI-tree (Figure 4 (c)). No itemsets in the condi-
tional bases for {a}, {c}, or {e} are maximal, no
new MFI’s will be inserted into the MFI-tree. Ev-
ery branch of the MFI-tree forms an MFI. Thus the
MFI’s are {c, a, d}, {e, c, a, b, f}, {e, c, a, g}.

2.4 Implementation of subset testing

In Fpmax, function subset checking is called to
check if Head ∪ Tail is a subset of some MFI in
the MFI-tree. If Head ∪ Tail is a subset of some
MFI, then any frequent itemset generated from the
FP-tree corresponding to Head could not be maxi-
mal, and thus we can stop mining MFI’s for Head.
By calling subset checking, we do superset frequency
pruning.

Note that before and after calling subset checking,
if Head ∪ Tail is not subset of any MFI, we still

don’t know if Head ∪ Tail is frequent or not. By
constructing the FP-tree for Head from the condi-
tional pattern base of Head, if the FP-tree only has
a single path, we can conclude that Head ∪ Tail is
frequent. Since Head∪Tail was not a subset of any
previously discovered MFI, it’s a new MFI and will
be inserted to the MFI-tree.

To do subset testing, one possibility is to always
compare a set with the MFI’s in the MFI-tree. How-
ever, we can do better. We found that most frequent
sets are subsets of the latest MFI inserted into the
MFI-tree. Therefore, each time we insert a new MFI
into the MFI-tree, we keep a copy of this most re-
sent MFI, any new frequent set will be compared
with the copy first. Only if the new set is not sub-
set of the copy, the new set will be compared with
the MFI’s in the MFI-tree.

By using the header-table in the MFI-tree, a set
S is not necessarily compared with all MFI’s in the
MFI-tree. First, S is sorted according to the order
of items in header table. Suppose the sorted S is
〈i1, i2, . . . , in〉. From the header table, we find the
node list for in. For each node in the the list, we
test if S is a subset of the ancestors of that node.
Note that both sets are ordered according to the
header table, so this subset test can be done in linear
time. The function subset checking returns false if
{i1, i2, . . . , in−1} is not a subset of any set in the
MFI-tree.

3 Data Characteristics and
Performance

Previously, in [3], Agarwal et al. have shown that
Depthproject achieves more than one order of
magnitude speedup over MaxMiner [6]. In [7], the
performance numbers of Mafia show that Mafia

outperforms Depthproject by a factor of three to



five. In the latest paper about mining MFI’s, Gouda
and Zaki [12] claim that Mafia is the current best
method for mining a superset of all MFI’s, and that
Genmax is the current best method for enumerat-
ing the exact set of MFI’s.

In the present study, we wish to reach an under-
standing of how the data characteristics influence
the performance of Mafia, Genmax, and our new
algorithm Fpmax. We first analyze the mining time
used by the three algorithms.

We can divide the mining task in two parts. The
first part consists of mining a superset of FI’s, and
the second part is for pruning out non-maximal FI’s.
For Fpmax, the time resources in the first part
are invested in the construction of an FP-tree for
concisely representing the database, and then ex-
tracting FI’s from the FP-tree using the FP-growth
method.

In the second part of the mining task, in order to
extract the maximal FI’s, the Fpmax algorithm has
to perform a large number of subset tests. Suppose
there are n items in header table. Then we know
there are at most Cbn/2cn maximal frequent item-
sets. If we construct an MFI-tree for all these MFI’s,
the tree has height bn/2c. In the first level, there
are C1

dn/2e+1 nodes, in the second level, there are
C2
dn/2e+2 nodes, in the ith level, there are Cidn/2e+i

nodes, and in the last level, the bn/2cth level, there
are Cbn/2cn nodes. Thus, the total number of nodes
in the tree is

bn/2c∑
i=1

Cidn/2e+i (1)

This is also an upper bound on the number of subset
tests needed in constructing the MFI-tree. Similar
observations apply to the size of the FP-tree.

In the first part of the mining task both Gen-

max and Mafia, construct a column-wise represen-
tation of the bitmap representation of the database.
To extract the FI’s from the columns, Mafia has
to compute a number of bitvector and-operations,
and Genmax does TIS intersections. If there are
n items in the dataset, in the worst case, if the
length of all MFI’s is n/2, by a similar analysis as
above, the total number of bitvector operations or
TIS intersections could be equal to (1). However, a
dense dataset (most columns have 1’s) and a sparse
dataset (most columns have 0’s) having the same
number of maximal FI’s, will require the same num-
ber of bitvector operations or TIS intersections.

Now let’s see how the parameters of the synthetic
data generator at [1] influence the performance of
the three algorithms. The adjustable parameters
include

• the average size of the transactions, also called
average transaction length, ATL, and

• the average size of the maximal potentially
large itemsets, also called average pattern
length, APL.

We can think of the ATL as influencing the den-
sity of the dataset. The APL, on the other hand,
determines the average length of MFI’s that the
dataset will contain. Thus, a long ATL generates
a dense dataset, and a long APL gives long average
MFI’s. This gives us four categories of data.

1. Short ATL, short APL. In this dataset we
can expect that each transaction will be fairly
short, and that the MFI’s will also be short.
For Fpmax, this could result in a costly bushy
FP-tree.

Now, if the minimum support is high, there
might be only relatively few maximal FI’s. This
means that Fpmax spent a considerable time
effort to construct an FP-tree, from which only
a small set of MFI’s will be extracted. In this
case, we can expect Genmax and Mafia to be
more efficient, since the ATL will not influence
the time computing bitvector operations and
set intersections.

However, in the case where the minimum sup-
port is low, there might be numerous maximal
FI’s. Then the time Fpmax invested in the FP-
tree will pay off, since the size of the output (the
MFI’s represented as an MFI-tree) will also be
large. Now we expect Fpmax to outperform
the other two algorithms.

2. Short ATL, long APL. Here we expect that
the transactions in the dataset are short, while
the average length of the MFI’s is close to ATL.
For Fpmax, this will result in a small FP-tree.
Contrary to the first case, we can now efficiently
extract the MFI-tree from the small FP-tree.
We can also extract a relatively large MFI-tree
from the small FP-tree. Genmax and Mafia

on the other hand, will still need to do all the
bitvector operations and set intersections they
did in a dataset with short APL. Thus, we can
expect that Fpmax is the algorithm of choice
for data with short ATL and long APL.

3. Long ATL, short APL. Now the transactions
in the dataset are long. For Fpmax, it will re-
sult in a very bushy and tall FP-tree. This will
require more space and time than in the case
of short ATL. Now, if the minimum support is



high and we get small size MFI-tree, Fpmax

will not be efficient, Genmax or Mafia will
perform better. On the other hand, if the mini-
mum support is low and we have a large output,
Fpmax may outperform Genmax and Mafia.

4. Long ATL, long APL. For Fpmax, both the
FP-tree and the MFI-tree could be very large,
which means we need more time to construct
the FP-tree, and we need more comparisons to
construct the MFI-tree. For this type of data, if
the cost of bitvector and-operations in Mafia is
less than that of TIS intersections in Genmax,
Mafia could be the best, otherwise, Genmax

is the best.

3.1 Experiments on Synthetic data

To test the accuracy of the analysis above, we run
three algorithms on synthetic datasets. The source
codes for Mafia and Genmax were provided by
their authors, and in particular the source code for
Mafia is the latest version that mine exact MFI’s
without post-processing. We use the application
from [1] to generate synthetic datasets. For all
datasets in this section, the number of transactions
was fixed at 100,000, and the number of items was
fixed at 1000. All experiments were performed on a
1Ghz Pentium III with 512 MB of memory running
RedHat Linux 7.3. All timings in the figures are
CPU time.
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The results of the first set of experiments are
shown in Figure 5. We ran the algorithms on a
short ATL of 20, and short APL also of 20. We see
that Fpmax and Genmax outperform Mafia five
to ten times. Genmax is faster than Fpmax when
the minimum support is high, and when minimum
support is low, Fpmax is faster. For minimum sup-
port 0.1%, Fpmax is five times faster than Gen-

max, while for minimum support 1%, Genmax is
only about one and a half times faster than Fpmax.
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The synthetic data for the second set of experi-
ments, displayed in Figure 6, has a short (20) ATL
and a long (100) APL. In this case, the performance
of Mafia and Genmax is almost the same. Fpmax

is clearly the most efficient on this dataset. Fpmax

outperforms the other two by factor of at least two,
both for high and low minimum support.
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Figure 7: ATL=100, APL=20

Figure 7 shows a totally different figure for al-
gorithms on dataset with a long ATL (100) and a
short APL (20). We can see that Fpmax is slower
than the other algorithms most of the time. On this
type of data, Mafia or Genmax is the best for high
support, while Fpmax tends to be faster than the
other two for low support.

We also run the algorithms on the dataset with
long (100) ATL and long (100) APL. On this type of
data, from Figure 8 we can see that Mafia seems to
be the best, although Genmax performs well too.
Fpmax seems to be slow at all time, even when the
support is low.

For the next two experiments we fixed a low min-
imum support of 1%.

Figure 9 shows the result for the datasets gen-
erated by fixing ATL to 20 and varying APL from
20 to 100. In these experiments, Fpmax has better
performance than the other two algorithms. Mafia
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Figure 8: ATL=100, APL=100

and Genmax have same tendency, although Gen-

max is faster than Mafia.
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Figure 9: ATL=20, MinSup=1%

Then, we generated the datasets for the second
set of experiments by fixing APL to 20 and varying
APL from 20 to 100. Figure 10 shows the result. We
can see that Fpmax is slightly faster than Genmax,
while Mafia is distinctly slower than the other two
algorithms.
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Figure 10: APL=20, MinSup=1%

The results of our experiments are summarized
in Figure 11, which gives the best algorithm for the
various types of data.

�����������	
���
�	���	���

�
�
�
��
�
�
��
�
��
�
�	
��
�
	
�
��

���������

��	�

�����

��������

�	
���

��������

�	
���

�
���

�
���

�	
���

�
���

	

����


�

��

���
��

�

��

	

�
��
�

�


��

��
�
��

�


��

���

���

Figure 11: Best algorithms for different types of data.

3.2 Experiments on Real Datasets

Next, we ran the programs on real datasets down-
loaded from [2]. We used datasets chess, connect-4,
mushroom, and pumsb*. The chess and connect-4
datasets are compiled from game state information.
The mushroom dataset consists of records describ-
ing the characteristics of various mushroom species,
and the pumsb* dataset is produced from census
data of Public Use Microdata Sample (PUMS). All
these real datasets are used in [6]. Many other pa-
pers [3, 7, 12] also use these datasets to test and
compare their algorithms. These real datasets are
all very dense, so a large number of MFI’s can be
mined even for very high values of support.

Figures 12 to 15 show the performance of the
three algorithms on these real datasets. Figure 12
shows the experimental results on mushroom. Here
Fpmax outperforms the other algorithms, for all
levels of minimum support. In dataset mushroom,
the average transaction length is 23, and the average
MFI’s length ranges from 8 to 19 for minimum sup-
port 10% to 0.1%. We can categorize this dataset as
having short ATL, and long APL. Figure 11 shows
that Fpmax has the best performance.

0.01

0.1

1

10

100

02.557.51012.5

Minimum Support (%)

C
P

U
 T

im
e 

(s
)

0.01

0.1

1

10

100

MAFIA

GenMax

FPMAX

Figure 12: dataset mushroom

The results for the chess dataset is shown in Fig-
ure 13. The ATL of the dataset is 37 while the av-



erage length of MFI’s is up to 12, which means both
ATL and APL are long, so Fpmax is not expected
to perform well on this dataset. Also, here Mafia

needs more work in the bitverctor and-operations,
so Genmax is the best algorithm for mushroom
dataset.
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Figure 13: dataset chess

In the dataset connect-4, though the ATL of this
dataset is 43, which is fairly long, and the average
length of the MFI’s is 9 to 21 for minimum support
90% to 10%, which also is fairly long, Fpmax is
nevertheless the best algorithm for high minimum
support, and Genmax is the best for low minimum
support. This result doesn’t fit the rule in Figure 11.
We conjecture that connect-4 has a skewed distri-
bution, different from the binomial or exponential
distributions that are used to generate the synthetic
datasets [5]. By checking the size of FP-tree and the
number of subset tests needed in constructing the
MFI-tree, we found that they are both far smaller
than those for synthetic dataset with ATL equal to
40.
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Figure 14: dataset connect-4

The pumsb* dataset is also skewed, long (50) ATL
and long APL (average length of MFI’s is 7 to 14
for minimum support 35% to 10%). As we can see
from Figure 15, for high minimum support, Mafia

is the most efficient, followed by Fpmax, and then
Genmax.

0.1

1

10

100

35 30 25 20 15 10

Minimum Support (%)

C
P

U
 T

im
e 

(s
)

0.1

1

10

100

MAFIA

GenMax

FPMAX

Figure 15: dataset pumsb*

Based on the experiments with datasets connect-
4 and pumsb*, it seems that the predictions in Fig-
ure 11 do not hold in the case when both ATL and
APL are long.

3.3 Scalability of the algorithms

To test the scalability of three algorithms, we
also run the programs on both synthetic and real
datasets, while varying the number of transactions
in the datasets.

For the synthetic datasets, we set ATL to 10, and
APL to 4, and varied the number of transactions
from 100,000 to 1,000,000. We chose a minimum
support of 0.05%, because for this level Fpmax and
Genmax use almost the same amount of CPU time.
Figure 16 shows that the mining time increases al-
most linearly for all three algorithms, while Mafia

and Genmax show a steeper increase than Fpmax.
The steeper increase for Mafia and Genmax in

Figure 16 is not accidental. For synthetic datasets,
if we increase the number of transactions and keep
other parameters unchanged, we can expect more
similar transactions, while the number of MFI’s will
not increase much. For Fpmax, adding transactions
similar to the existing ones will not increase the sizes
of the FP-tree and MFI-tree much, while it does in-
crease the cost of set intersections because the sets
now become long. In the extreme case, if we increase
the dataset by adding transactions equal to those
that are already in the dataset, we can expect that
the CPU time for Fpmax will remain unchanged,
while it will increase for Genmax and Mafia. Fig-
ure 17 shows the result on dataset which is gener-
ated by duplicating the real dataset connect-4 two
to ten times. From the figure, we can see that the
line for Fpmax is flat while the CPU time for the
other two algorithms increase rapidly. From Fig-
ure 17 we can also see that bitvector and-operations
in Mafia needs more time than TIS intersections
in Genmax.



0

250

500

750

1000

1250

1500

1M900K800K700K600K500K400K300K200K100K

Transaction No

C
P

U
 T

im
e 

(s
)

0

250

500

750

1000

1250

1500

FPMAX

GenMax

MAFIA

Figure 16: Scaled Datasets
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Figure 17: Duplicated Datasets

4 Conclusions

This paper studies the performance of algorithms
for mining maximal frequent itemsets. We first
reviewed two existing algorithms, Genmax and
Mafia. We then give our new algorithm, Fpmax,
which is an extension of FP-growth method [9]. A
trie structure, the MFI-tree, is also introduced as a
part of Fpmax to keep track of all MFI’s.

In order to understand the performance on
datasets with different characteristics, we analyzed
the likely behaviour of Genmax, Mafia and Fp-

max. Numerous experiments on synthetic datasets
were done to validate our analysis.

From the experiments, we also see that Fpmax

outperforms Genmax and Mafia in many cases,
especially for datasets with short average transac-
tion length and long average pattern length. The
scalability of Fpmax is also studied, and found to
be good.

Though the experimental results on real datasets
also show that our conclusions are valid to some
degree, they don’t seem to hold for some skewed
real datasets. We are currently undertaking further
analysis and experiments in order to obtain an un-
derstanding of the impact of the skewness of the
data.
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