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Abstract. Incomplete Information research is quite mature when it comes to so called existential
nulls, where an existential null is a value stored in the database, representing an unknown object.
For some reason universal nulls, that is, values representing all possible objects, have received
almost no attention. We remedy the situation in this paper, by showing that a suitable finite
representation mechanism, called Star Cylinders, handling universal nulls can be developed based
on the Cylindric Set Algebra of Henkin, Monk and Tarski. We provide a finitary version of
the cylindric set algebra, called Cylindric Star Algebra, and show that our star-cylinders are
closed under this algebra. Moreover, we show that any First Order Relational Calculus query
over databases containing universal nulls can be translated into an equivalent expression in our
cylindric star-algebra, and vice versa. All cylindric star-algebra expressions can be evaluated in
time polynomial in the size of the database.

The representation mechanism is then extended to Naive Star Cylinders, which are star-cylinders
allowing existential nulls in addition to universal nulls. For positive queries (with universal
quantification), the well known naive evaluation technique can still be applied on the existential
nulls, thereby allowing polynomial time evaluation of certain answers on databases containing
both universal and existential nulls. If precise answers are required, certain answer evaluation with
universal and existential nulls remains in coNP. Note that the problem is coNP-hard, already for
positive existential queries and databases with only existential nulls. If inequalities —(z; ~ x;) are
allowed, reasoning over existential databases is known to be II5-complete, and it remains in IT5
when universal nulls and full first order queries are allowed.
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1. Introduction

In this paper we revisit the foundations of the relational model and unearth universal nulls, showing
that they can be treated on par with the usual existential nulls [1, 2, 3]. Recall that an existential null in
a tuple in a relation R represents an existentially quantified variable in an atomic sentence R(...). This
corresponds to the intuition “value exists, but is unknown.” A universal null, on the other hand, does not
represent anything unknown, but stands for all values of the domain. In other words, a universal null
represents a universally quantified variable. Universal nulls have an obvious application in databases,
as the following example shows. The symbol ”+” denotes a universal null.

Example 1.1. Consider binary relations F'(ollows) and H (obbies), where F'(z,y) means that user z
follows user y on a social media site, and H (i, z) means that z is a hobby of user . Let the database
be the following.

F H

Alice  Chris Alice  Movies

* Alice Alice  Music
Bob * Bob Basketball
Chris Bob

David  Bob

This is to be interpreted as expressing the facts that Alice follows Chris and Chris and David follow
Bob. Alice is a journalist who would like to give access to everyone to articles she shares on the social
media site. Therefore, everyone can follow Alice. Bob is the site administrator, and is granted the
access to all files anyone shares on the site. Consequently, Bob follows everyone. “Everyone” in this
context means all current and possible future users. The query below, in domain relational calculus,
asks for the interests of people who are followed by everyone:

T4 . 3$23$3V$1(F(l’1,l’2) A H(SL’g,SL’4) A (..’L‘Q N $3)) (1)

The answer to our example query is {(Movies), (Music)}. Note that “*”-nulls also can be part of an
answer. For instance, the query x1,x2 . F'(x1,z2) would return all the tuples in F'. «

Another area of applications of “*”-nulls relates to intuitionistic, or constructive database logic. In
the constructive four-valued approach of [4] and the three-valued approach of [3, 5] the proposition
A v -A is not a tautology. In order for A v - A to be true, we need either a constructive proof of A
or a constructive proof of —A. Therefore both [4] and [5] assume that the database I has a theory of
the negative information, i.e. that [ = (I*, 1), where I* contains the positive information and I~ the
negative information. The papers [4] and [5] then show how to transform an FO-query () to a pair of
queries (¢*(Z), ¢~ (&)) such that o™ (Z) returns the tuples a for which ¢(a) is true in 1™, and ¢~ (Z)
returns the tuples a for which (@) is true in I~ (i.e. ¢(a) is false in I). It turns out that databases
containing “*”-nulls are suitable for storing /™.
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Example 1.2. Suppose that the instance in Example 1.1 represents ™, and that all negative information
we have deduced about the H (obbies) relation, is that we know Alice doesn’t play Volleyball, that Bob
only has Basketball as hobby, and that Chris has no hobby at all. This negative information about the
relation H is represented by the table H~ below. Note that H™ is part of 1~

H-
Alice  Volleyball

Bob * (except Basketball)
Chris *

Suppose the query ¢ asks for people who have a hobby, that is ¢ = x1 . 3xo H(x1,22). Then p* = ¢,
and ¢~ = x1.Vay H(x1,22). Evaluating ¢* on I returns {(Alice), (Bob)}, and evaluating ¢~ on
I~ returns {(Chris)}. Note that there is no closed-world assumption as the negative facts are explicit.
Thus it is unknown whether David has a hobby or not.

Universal nulls were first studied in the early days of database theory by Biskup in [6]. This was
a follow-up on his earlier paper on existential nulls [7]. The problem with Biskup’s approach, as
noted by himself, was that the semantics for his algebra worked only for individual operators, not for
compound expressions (i.e. queries). This was remedied in the foundational paper [1] by Imielinski
and Lipski, as far as existential nulls were concerned. Universal nulls next came up in [8], where
Imielinski and Lipski showed that Codd’s Relational Algebra could be embedded in CA, the Cylindric
Set Algebra of Henkin, Monk, and Tarski [9, 10]. As a side remark, Imielinski and Lipski suggested
that the semantics of their ”+” symbol could be seen as modeling the universal null of Biskup. In this
paper we follow their suggestion', and fully develop a finitary representation mechanism for databases
with universal nulls, as well as an accompanying finitary algebra. We show that any FO (First Order /
Domain Relational Calculus) query can be translated into an equivalent expression in a finitary version
of CA, and that such algebraic expressions can be evaluated naively” by the rules “x = *” and “* = a”
for any constant “a.” Our finitary version is called Cylindric Star Algebra (SCA) and operates on
finite relations containing constants and universal nulls “*+.” These relations are called Star Cylinders
and they are finite representations of a subclass of the infinite cylinders of Henkin, Monk, and Tarski.
Interestingly, the class of star-cylinders is closed under first order querying, meaning that the infinite
result of an FO query on an infinite instance represented by a finite sequence of finite star-cylinders can
be represented by a finite star-cylinder.? This is achieved by showing that the class of star-cylinders are
closed under our cylindric star-algebra, and that SCA as a query language is equivalent in expressive

power with FO.

The Cylindric Set Algebra [9, 10] —as an algebraization of first order logic— is an algebra on sets
of valuations of variables in an FO-formula. A valuation v of variables {x1, 3, ...} can be represented
as a tuple v, where (i) = v(x;). The set of all valuations can then be represented by a relation C'
of such tuples. In particular, if the FO-formula only involves a finite number n of variables, then the

"We note that Sundarmurthy et. al. [11] very recently have proposed a construct related to our universal nulls, and studied
ways on placing constraints on them.
2Consequently there is no need to require calculus queries to be “domain independent.”
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representing relation C' has arity n. Note however that C' has an infinite number of tuples, since the
domain ID of the variables (such as the users of a social media site), should be assumed unbounded. One
of the basic connections [9, 10] between FO and Cylindric Set Algebra is that, given any interpretation
I and FO-formula ¢, the set of valuations v under which ¢ is true in I can be represented as such a
relation C. Moreover, each logical connective and quantifier corresponds to an operator in the Cylindric
Set Algebra. Naturally disjunction corresponds to union, conjunction to intersection, and negation to
complement. More interestingly, existential quantification on variable x; corresponds to cylindrification
¢; on column 7, where
ci(C) = {v :v(i/a) € C, for some a € D},

and v(i/a) denotes the valuation (tuple) v/, where /(i) = a and v'(j) = v () for i # j. The algebraic
counterpart of universal quantification can be derived from cylindrification and complement, or be
defined directly as inner cylindrification

9,(C) = {v :v(ifa) € C, forall a e D}.

In addition, in order to represent equality, the Cylindric Set Algebra also contains constant relations
d;; representing the equality z; ~ x;. That is, d;; is the set of all valuations v, such that (i) = v(j).

The objects C' and d;; of [9, 10] are of course infinitary. In this paper we therefore develop a finitary
representation mechanism, namely relations containing universal nulls “x” and certain equality literals.
We denote these finitary constructs C and dw, respectively. These objects are called Star Tables when
they represent the records stored in the database. When used as run-time constructs in algebraic query
evaluation, they will be called Star Cylinders. Example 1.1 showed star-tables in a database. The
run-time variable binding pattern of the query (1), as well as its algebraic evaluation is shown in the
star-cylinders in Example 1.3 below.

Example 1.3. Continuing Example 1.1, in that database the atoms F'(x1,x2) and H (z3,x4) of query
(1) are represented by star-tables Cr and Cy, and the equality atom is represented by the star-
diagonal d23 Note that these are positional relations, the attributes” x1,x2, x3, x4 are added for
illustrative purposes only.

Cr Cu

1 T9 T3 X4 1 To T3 T4

Alice Chris * * * * Alice  Movies

* Alice * * * * Alice  Music
Bob * * * * * Bob Basketball

Chris Bob * *

d23

Z1 Z2 T3 T4

* * * * 2=3
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The algebraic translation of query (1) is the expression

¢2(¢3(91((Cr m Cpr) M daz))). (2)

The intersection of C'r and Cl is carried out as star-intersection m, where for instance {(a, *, *)} m
{(*,b,%)} = {(a,b, *)}. The result will contain 12 tuples, and when these are star-intersected with
das, the star-diagonal da3 will act as a selection by columns 2 and 3 being equal. The result is the
star-cylinder C’ = (Cp m Cr) M das below.

C’

T T2 I3 T4

* Alice Alice Movies
* Alice Alice Music

Bob Alice  Alice  Movies
Bob Alice  Alice  Music
Bob Bob Bob Basketball
Chris  Bob Bob Basketball

The inner star-cylindrification on column 1 then yields C" = 91 ((Cr m Cp) m Ca3).

CW
1 1) 3 T4
* Alice Alice Movies

* Alice Alice Music

Finally, applying outer star-cylindrifications on columns 2 and 3 of star-cylinder C"’ yields the final
result " = C2(C3(01((CF M CH) M 023)))

C‘v///

1 %) x3 T4

* * * Movies
* * * Music

The system can now return the answer, i.e. the values of column 4 in cylinder C". Note that columns

where all rows are “+” do not actually have to be materialized at any stage. Negation requires some
additional details that will be introduced in Section 3.2.

Paper outline. The aim of this paper is to develop a clean and sound modelling of universal nulls,
and furthermore show that the model can be seamlessly extended to incorporate the existential nulls
of Imielinski and Lipski [1]. We show that FO and our SCA are equivalent in expressive power when
it comes to querying databases containing universal nulls, and that SCA queries can be evaluated
(semi) naively. This will be done in three steps: In Section 2 we show the equivalence between FO
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and Cylindric Set Algebra over infinitary databases. This was of course only the starting point of
[9, 10], and we recast the result here in terms of database theory.3 In Section 3 we introduce our finitary
Cylindric Star Algebra. Section 3.1 develops the machinery for the positive case, where there is no
negation in the query or database. This is then extended to include negation in Section 3.2. By these
two sections we show that certain infinitary cylinders can be finitely represented as star-cylinders, and
that our finitary Cylindric Star Algebra on finite star-cylinders mirrors the Cylindric Set Algebra on the
infinite cylinders they represent. In Section 4 we tie these two results together, delivering the promised
SCA evaluation of FO queries on databases containing universal nulls. In Section 5 we seamlessly
extend our framework to also handle existential nulls, and show that naive evaluation can still be used
for positive queries (allowing universal quantification, but not negation) on databases containing both
universal and existential nulls. Section 6 then shows that all SCA expressions can be evaluated in time
polynomial in the size of the database when only universal nulls are present. We also show that when
both universal and existential nulls are present, the certain answer to any negation-free (allowing inner
cylindrification, i.e. universal quantification) SCA-query can be evaluated naively in polynomial time.
When negation is present it has long been known that the problem is coNP-complete for databases
containing existential nulls. We show that the problem remains coNP-complete when universal nulls are
allowed in addition to the existential ones. For databases containing existential nulls it has been known
that database containment and view containment are coNP-complete and IT5-complete, respectively.
We also show that the addition of universal nulls does not increase these complexities.

2. Relational calculus and cylindric set algebra

Throughout this paper we assume a fixed schema % = { Ry, ..., Ry,,~}, whereeach Ry, p e {1,...,m},
is a relational symbol with an associated positive integer ar (R, ), called the arity of R,,. The symbol ~
represents equality.

Logic. Our calculus is the standard domain relational calculus. Let {z1, x2, ...} be a countably infinite
set of variables. We define the set of FO-formulas ¢ (over %) in the usual way: Rp(%s,, . .., Tj,, Rp))
and z; ~ x; are atomic formulas, and these are closed under A, Vv, -, 37;, and Vz;, in a well-formed
manner possibly using parentheses for disambiguation.

Let ¢ be an FO-formula. We denote by vars(p) the set of variables in ¢, by free(y) the set of
free variables in ¢, and by sub(y) the set of subformulas of ¢ (for formal definitions, see [13]). If
 has n variables we say that ¢ is an FO,,-formula. We assume without loss of generality that each
variable occurs only once in the formula, except in equality literals, and that a formula with n variables
uses variables 1, ..., Zy.

Instances. Let D = {a1,aq, ...} be a countably infinite domain. An instance I (over #) is a mapping
that assigns a possibly infinite subset Ré of D () (o each relation symbol R,, and ~' = {(a,a) :
a € D}. Note that our instances are infinite model-theoretic ones. The set of tuples actually recorded in
the database will be called the stored database (to be defined in Section 4).

3Van Den Bussche [12] has recently referred to [9, 10] in similar terms.
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In order to define the (standard) notion of truth of an FO,,-formula ¢ in an instance I we first
define a valuation to be a mapping v : {x1,...,2,} — D. If v is a valuation, z; a variable and a € DD,
then v/(;/,) denotes the valuation which is the same as v/, except v/(;/q) () = a. Then we use the usual
recursive definition of I k=, ¢, meaning instance I satisfying ¢ under valuation v,i.e. I £, (x; ~ x;)
if (v(z;),v(x;)) e~!, IE, Ry(xiy, ... ,xiar(Rp)) if (v(zi,),.. '7V(xiar(3p))) € RI[,, and I £, Jz; ¢
if I =y, ¢ for some a €D, and so on. Our stored databases will be finite representations of infinite
instances, so the semantics of answers to FO-queries will be defined in terms of the infinite instances:

Definition 2.1. Let I be an instance, and ¢ an FO,,-formula with free(y) = {zi,,..., 2}, k < n.
Then the answer to ¢ on I is defined as

(10[ = {(V(xh)""ay(xik)) ey SO}'

Algebra. As noted in [8] the relational algebra is really a disguised version of the Cylindric Set Algebra
of Henkin, Monk, and Tarski [9, 10]. We shall therefore work directly with the Cylindric Set Algebra
instead of Codd’s Relational Algebra. Apart from the conceptual clarity, the Cylindric Set Algebra will
also allow us to smoothly introduce the promised universal nulls.

Let n be a fixed positive integer. The basic building block of the Cylindric Set Algebra is an
n-dimensional cylinder C' € D™. Note that a cylinder is essentially an infinite n-ary relation. They will
however be called cylinders, in order to distinguish them from instances. The rows in a cylinder will
represent run-time variable valuations, whereas tuples in instances represent facts about the real world.
We also have special cylinders called diagonals, of the form

dij = {t e D™ = (i) = t(4)},
representing the equality x; ~ ;. We can now define the Cylindric Set Algebra.

Definition 2.2. Let C' and C"’ be infinite n-dimensional cylinders. The Cylindric Set Algebra consists
of the following operators.

1. Union: C U C'. Set theoretic union.
2. Complement: C =D" \ C.
3. Outer cylindrification: c;(C) = {t e D" : t(i/a) € C, for some a € D}.

The operation c; is called outer cylindrification on the 7:th dimension, and will correspond to existential
quantification of variable x;. For the geometric intuition behind the name cylindrification, see [9, 8].
Intersection is considered a derived operator, and we also introduce the following derived operators:

4. Inner cylindrification: 9;(C) = ¢;(C), corresponding to universal quantification. Note that

9,(C) ={teD" : t(ifa) € C, forall a e D}.
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5. Substitution: sg(C) =ci(dijn C)ifi+j,andsi(C)=C.

6. Swapping: If i,j # k, and C is a k-full cylinder*, then zé-(C’) = sf(sz(si(C)) In other words,
z;( ) interchanges the values Qf dimelllsions i and j. We also define 2211;22 () = z;ll (zzz (C)),
. ARTIY 2™ ) 124yl
and recursively ;" (C) = 2 (22778 (C)).

We also need the notion of cylindric set algebra expressions.

Definition 2.3. Let C = (C1,...,Cp,dij); e (1,...,n} be asequence of infinite n-dimensional cylinders
and diagonals. The set of CA,,-expressions (over C) is obtained by closing the atomic expressions
C, and d;; under union, intersection, complement, and inner and outer cylindrifications. Then E(C),
the value of expression E on sequence C is defined in the usual way, e.g. C,(C) = C), d;;(C) = dj,
ci(E)(C) =c;(E(C)) ete.

Equivalence of FO and CA. In the next two theorems we will restate, in the context of the relational
model, the correspondence between domain relational calculus and cylindric set algebra as query
languages on instances [9, 10]. When translating an FO,,-formula to a CA,,-expression we first need to
extend all k-ary relations in [ to n-ary by filling the n — k last columns in all possible ways. Formally,
this is expressed as follows:

Definition 2.4. The horizontal n-expansion of an infinite k-ary relation R is
h"(R) = R x D"
The equality relation ~'= {(a, a) : a € D} is expanded into diagonals dijfori,je{l...,n}, where

dij= |J D"'x{a}xD"x{a} xD",

(a,a)en!
and for an instance I = (RI,... Rl ~'), we have
h"(I) = (h"(R{),...,h"(R},),dij)i ;-

Once an instance is expanded it becomes a sequence C = (C1,...,Cp,d;j)i; of n-dimensional
cylinders and diagonals, on which Cylindric Set Algebra Expressions can be applied. «

The main technical difficulty in the translation from FO,, to CA,, is the correlation of the variables
in the FO,,-sentence ¢ with the columns in the expanded relations in the instance. This can be
achieved using the swapping operator zé-. Every atom R, in ¢ will correspond to a CA,,-expression

*Cylinder C is k-full if ¢, (C') = C. A cylinder with this property is called dimension complemented in [9, 10]. In a k-full
cylinder C' the dimension & can be used to temporarily store the content of another dimension. This allows the definition of
the swapping operators in terms of the substitution operators, which in turn are defined through intersection, diagonal, and
outer cylindrification. Following [9, 10] we therefore do not need to define swapping or substitution as primitives, which
would require corresponding renaming operators in the language for FO.
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Cp= h”(RII)). However, for every occurrence of an atom R, (i, ,...,z;, ) in ¢ we need to interchange
the columns 1, ..., k with columns i1, ...,i;. This is achieved by the expression zl.ll"‘_:’_]zk (Cp). The
entire FO,,-formula ¢ with free(y) = {z;,,...,x;, } will then correspond to the CA,,-expression

E, = zil’::';j *(F,), where F, is defined recursively as follows:

o If p = Ry(ziy,. .., 2, ) Where k = ar(R,), then F, = zi{;l:i’;k(Cp).

» If ¢ = x; ~ ;, then F, = d;j.

e Ifp=1vx, then F, = FyUF\,if o = Ax, then F, = F}, N Fy, and if ¢ = 1), then F|, :F_¢.
* If ¢ = 3239, then F, = ¢;(Fy).

o If p = V), then Fy, = 0;(Fy).

For an example, let us reformulate the F'O4-query ¢ from (1) as
x4 . Axodx3zViy (R1 (z1,22) A Ro(x3,24) A (22 » IEg)) 3)

When translating ¢ the relation R{ is first expanded to C = R{ x D x D, and Ré is expanded
to Cy = Ré x D x D. In order to correlate the variables in ¢ with the columns in the expanded
databases, we do the shifts z}’g((}’l) and Zé’i(Cg). The equality (z2 ~ x3) was expanded to the
diagonal dog = {t € D" : t(2)7 = t(3)} so here the variables are already correlated. After this the
conjunctions are replaced with intersections and the quantifiers with cylindrifications. Finally, the
column corresponding to the free variable x4 in ¢ (Whose bindings will constitute the answer) is shifted
to column 1. The final CA,,-expression will then be evaluated against I as E,(h*(I)) =

2} (cae(01 (2175 (R x D*) M 253 (R5 x D*) () das)) ). 4)

We now have E,(h*(I)) = h*(¢"). The following fundamental result follows from [9, 10]. A proof is
included in the Appendix for the benefit of the readers who don’t want to consult [9, 10].

Theorem 2.5. For all FO,,-formulas ¢, there is a CA,,-expression E,,, such that
E (h™(I)) = h"(o"),
for all instances I. «

On the other hand, CA,,-expressions E are translated into FO,,-formulas ¢ g recursively as follows:
e If £ = C,, then

YE = Rp(xla""xa’r(Rp)) A /\ (%kﬁﬂfk)
ke{ar(Rp)+1,....,n}



296 G. Grahne and A. Moallemi | Universal (and Existential) Nulls

If £ =d,;;, then

i
op = (Tivzj) A N\ (z) » zp).
k€{17"'7n}\{i7j}

If £ = FUG, then vg = op VvV ¢g, if E = FNG, then o = vor A pg, and if E = F, then
PE = "PF.

If £ =ci(F), then pp = (3xipr) A (i » ;).

If £ = OZ'(F), then YE = (V.I‘Z'(pp) A (901 R .I‘Z)

The following result can also be extracted from [9, 10]. A proof is given in the Appendix.

Theorem 2.6. For every CA,,-expression F the FO,,-formula ¢ above is such that

vr = B(h""(I)),

for all instances I. «

3. Cylindric set algebra and cylindric star algebra

Since cylinders can be infinite, we want a finite mechanism to represent (at least some) infinite cylinders,
and the mechanism to be closed under queries. Our representation mechanism comes in two variations,
depending on whether negation is allowed or not. We first consider the positive (no negation) case.

3.1. Positive framework

Star Cylinders. We define an n-dimensional (positive) star-cylinder C' to be a finite set of n-ary star-
tuples, the latter being elements of (Du{x})" x £(©,,), where O,, denotes the set of all equalities of the
form (i = j), withi,j € {1,...,n}, as well as the logical constant false. Also, £(.) denotes the powerset
operation. Star-tuples will be denoted #, 1, . . ., where a star-tuple such as £ = (a, *, ¢, *, *, {(4 = 5)})
is meant to represent the set of all “ordinary” tuples (a, z, ¢, y,y) where z,y € D. It will be convenient
to assume that all our star-cylinders are in the following normal form.

Definition 3.1. An n-dimensional star-cylinder C is said to be in normal form if i(n + 1) # false,
and {(n+1) & (i = j) if and only if (i = j) € £{(n + 1) and £(i) = #(j), for all star-tuples € C' and
i,je{l,...,n}.

The symbol = above stands for standard logical implication. It is easily seen that maintaining
star-cylinders in normal form can be done efficiently in polynomial time. We shall therefore assume
without loss of generality that all star-cylinders and star-tuples are in normal form. We next define
the notion of dominance, where a dominating star-tuple represents a superset of the ordinary tuples
represented by the dominated star-tuple. First we define a relation < ¢ (Du {#})2bya <a, * < *,
and a < %, for all a € D.
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Definition 3.2. Let ¢ and 7 be n-dimensional star-tuples. We say that @ dominates t, denoted £ < 1, if
t(i) < (i) forallie {1,...,n},and w(n +1) ct(n+1).

Definition 3.3. We extend the order < to include ordinary” n-ary tuples ¢t € D™ by identifying
(a1,...,a,) with star-tuple (ay,...,an,0), where  contains (i = j) iff a; = a;. Let C be an n-
dimensional star-cylinder. We can now define the meaning of C' to be the set [[C' ] of all ordinary
tuples it represents, where

[CT = {teD": t<1forsomeucC}.

We lift the order to n-dimensional star-cylinders Cand D, by stipulating that C < D, if forall star-tuples
t € C there is a star-tuple @ € D, such that £ < 1.

Lemma 3.4. Let C and D be n-dimensional (positive) star-cylinders. Then [[C]] ¢ [ D]] iff C < D.

Proof:

We first show that [[{t}]] [D]] if and only if there is a star-tuple # € D, such that { < @.°> For a
proof, we note that if ¢ < 4 for some @ € D, then [[{{ }]] ¢ [D]]. For the other direction, assume
that [[{¢ }]] < [[D]]. Let A € I be the finite set of constants appearing in ¢ or D. Construct the tuple
te (Au{*})", where t(i) = (i) if £(i) € A, and t(i) = a; if (i) = *. Here a; is a unique value in
the set D \ A. If #(n + 1) contains an equality (i = 5j) we choose a; = a;. Then t € [{¢ }]] € [D]], so
there must be a tuple @ € D, such that ¢ < 4. It remains to show that ¢ < «. If t(7) = a for some a € A,
then £(4) = a, and since ¢ < 4 it follows that (i) < u(i). If t(i) = a; ¢ A then £(i) = *, and therefore
t(i/b) € [{t}]] < [[D]], for any b in the infinite set D \ A. Consequently it must be that (i) = *, and
thus #(7) < 7(4). This is true for all i € {1,...,n}. Finally, if (i = j) € @(n + 1), we have two cases:
If t(i) € Athen (i) = {(j), and if t(i) ¢ A then (i = j) € {(n +1). In summary, we have shown that
t <.

We now return to the proof of the claim of the lemma. The if-direction follows dlrectly from
definitions. For the only-if direction, assume that [[CT < [D]]. To see that C' < D let i € C. Then
[{i}]] < [[CT € [[D]]. We have just shown above that this implies that there is a 7. € D such that ¢ < ,
meaning that C<D. o

Positive Cylindric Star Algebra

Next we redefine the positive cylindric set algebra operators so that [C & D] = [[C] o [D]
or [s(D)]] = o([[D]]), for each positive cylindric set algebra operator o, its redefinition ¢, and
star—cyhnders C and D. We first define the meet t At of star-tuples £ and 1 :

Definition 3.5. Let ¢ and 7 be n-ary star-tuples. The n-ary star-tuple £ A4 is defined as follows: If
t(5),u(j) € D for some j and £(5) # (j), then t At (i) = » fori € {1,...,n}, and tAs(n +1) =

Note here the normal form requirement £(n + 1) # false, since £(n + 1) & false means that [[{£}]] = @, while there is no
star-tuple 4 , such that ¢ < @ and (n + 1) # false.
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{false}.° Otherwise, fori e {1,...,n}
t(i) if {(i)eD
tau (i) =1 a(i) if u(i)eD
* if £(i) =u(i) = *

and . .
tru(n+1) = tn+l)uda(n+1).

For an example, let £ = (a, *, *, %, %, {(3 =4)}) and @ = (*,b, *, %, %, {(4 = 5)}). Then we have

t At = (a,b,*,%, % {(3 =4),(4=5),(3=5)}). Note that’ { A1 < £, and £ A % < 1, and if for a
star-tuple ¥, we have © < ¢ and © < 4, then © < £ A%,

Definition 3.6. The n-dimensional positive cylindric star-algebra consists of the following operators.

n

1. Star-diagonal: d;j = {(*,...,*,{(i=j)})}
2. Star-union: Cw D ={i : ieCorteD}
3. Star-intersection: Cm D ={i At : i e Cand i€ D}

4. Outer cylindrification: Leti € {1,...,n}, let C be an n-dimensional star-cylinder, and ¢ € C.
Then

a()0) - {’f” o

forje{l,...,n}, and
(D) (n+1)={(j=k)et(n+1): j k+i}.
We then let ¢;(C) = {¢;(£) : i € C}.
5. Inner cylindrification: Let C be an n-dimensional cylinder and i € {1,...,n}. Then

9(C)={ieC : i(i) =+, and (i=j) ¢ i(n+1) forany j}.

We illustrate the positive cylindric star-algebra with the following small example.

®Here * can be replaced by any arbitrary constant a in I, but for consistency we prefer to use *.
’ Assuming the normal form requirement A% (n + 1) # false.
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Example 3.7. Let C; = {(a,*,*,%,%,{(3 = 4)})}, Cy = {(*,0,%,%,%,{(4 = 5)})}, and Csz =
{(a,b,*,*,%,{(4 =5)})}. Consider the expression 03((C14(ClﬂCQ))U03) Then we have the
following.

Clmc2 = {(a7b7*7*7*7{(3:4)7(4:5)7(3:5)})}
61,4(01002) = {(*767*7*7*7{(3:5)})}
((‘31’4(01002))U03 = {(*767*7*7*7{(3:5)})7 (aab7*a*7*7{(4:5)})}

53((C1’4(Cl ol 02)) U] Cg)

{(a7 by %, *, %, {(4 = 5)})}
Next we show that the cylindric star-algebra has the promised property.

Theorem 3.8. Let C' and D be n-dimensional star-cylinders and dza an n-dimensional star-diagonal.
Then the following statements hold.

L[] =

2. [[¢ UD]] [CTu (2]

3. [¢nD] = [CT N [D].

4. [&(O] = a(lCD),

5. [5:(O)] = a:([[C),
Proof:

1. te[[diifft < (*,...,%, (i=7))iffte {teD" : t(i) =t(4)}iff t € dij.
2. te[[CuD]iffdoeC:t<uorIoeD:t=<viffte[[CJlorte[D]iffte[C]U [D].

3. Lett € [[C'm DJ]. Then there is a star-tuple i € C'm D such that ¢ < £, which again means that
there are star-tuples @ € C and © € D, such that { = @ A ©. As a consequence ¢ < ¢ and ¢ < 0,
which implies ¢ € [[C']] and t € [D]], that is, ¢ € [C]] N [[D]]. The proof for the other direction
is similar.

4. Let t € [[¢;(C)]]. Then there is a star-tuple ¢ € ¢;(C') such that ¢ < ¢. This in turn means that
there is a star-tuple @ € C' such that either @ = i(i/a) for some a € D, or @(i) =  and u = i,

except possibly (n + 1) = 6 where 6 is a set of equalities involving column 4, and #(n + 1) does
not have any conditions on .

Case 1. 1 = t(i/a) for some a € D. Then t(z/a) e C which means that there is a tuple u € [C]
such that u < £(i/a). Since [C]] ¢ c;([[C]]), it follows that u € c;([[C]]). Suppose u # t. Then
u(y) #t(j) forsome j e {1...,n}.

If j = i, then ¢ = u(j/t(j)) € ;([CT) = ci([CT))-

8¢,,7(C) is a abbreviation of ¢;(¢;(C)).
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If j #iand £(j) = * it means that u(j) = *, and thus ¢ = u(j/t(j)) € [[CT], which in turn
implies that t € c;([[C7]]). Otherwise, if () # *, then #(j) € D, which means that 1(j) € D, and
u(g) =t(j) after all.

Case 2. u(i) = » and (possibly) @(n + 1) contains a set of equalities say 6, involving column 4,
and £(n + 1) does not have any conditions on i.

Suppose first that ¢ = 6. Then ¢ < 1, and consequently ¢ € [C]] € ¢ ([[CT)).

Suppose then that ¢ # 6. If ¢ violates an equality (i = j) € @ it must be that £(5) = u(j) = *,
and ¢ and 7 have the same condition.s on column j. Let uw be a tuple such that v < u. Then
t(i/u(7)) € [[C]], and hence ¢ € ¢;([[C]]).

For the other direction, let ¢ € ¢;([[C]]). Then there is a tuple u € [[C]], such that ¢(i/u(%)) = u.
Hence there is a star-tuple @ € C, such that u < @ and #(i/u(i)) < . If t £ @ it is because #(7)
violates some condition in @.(n +1). Since all conditions involving column i are deleted in ¢;(C),
it follows that cl(C ) must contain a star-tuple © obtained by outer cylindrification of #. Then

clearly t < ¢ and ¢ = 0(n + 1). Consequently ¢ € [[&(C)]].

5. Lette [[OZ(C’ )]]. Then there is a star-tuple ¢ € 9;(C'), such that ¢ < {. Clearly, € 9;(C') means
that € C' where by definition £(i) = *, and (i = Jj) ¢ t(n+1) forany j. As a consequence
t(i/a) <t for all @ € D. This implies that ¢(i/a) € [[C]] for all @ € D, and thus ¢ € 9;([[C]]).

For the other direction, let ¢ € 9;([[C]]) ¢ [[C]]. This means that ¢(i/a) € [[C]] for all a € D.
That is, there exists a star-tuple te C’, such that ¢ < ¢. Also, t(ifa) < { for all a € D, since there
otherwise has to be an infinite number of star-tuples in in the finite star-cylinder C. Thus it must
be that £(i) = *, and (i = j) ¢ i(n + 1) for any j. Consequently, i € 9;(C") and ¢ € [[3;(C)]].

o

In order to show the equivalence of positive cylindric star-algebra and positive cylindric set algebra
we need the concept of algebra expressions.

Definition 3.9. Let C = (C‘l, s Coms d”)z ; be a sequence of n-dimensional star-cylinders and star-
diagonals. We define the set of positive cylindric star algebra expressions SCA; and values of
expressions as in Definition 2.3, noting that C,(C) = C), and d;;(C) = d;;.

In the following, CA;’ denotes the set of all n-dimensional positive cylindric algebra expressions.
We now have from Theorem 3.8

Corollary 3.10. For every SCA; -expression F and the corresponding CA; expression E, it holds that

[E(C)] = E([C])

for every sequence of n-dimensional star-cylinders and star-diagonals C.
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3.2. Adding negation

From here on we also allow conditions of the form (i # j), (i # a), for a € D in star-cylinders, which
then will be called extended star-cylinders. Conditions of the form (i = j), (i # j) or (i # a) will be
called literals®, usually denoted £. In other words, in an extended n-dimensional star-cylinder each
(extended) star-tuple £ has a (finite) set of literals in position n + 1.

Example 3.11. In Example 1.2 we were interested in the negative information as well as positive
information. The instance from Example 1.2 can be formally represented as the extended star-cylinder
below.

-
Alice  Volleyball ~ {}
Bob * {(2 + Basketball) }
Chris  * {}

We next extend Definitions 3.1, 3.2, 3.3, 3.5, and 3.6 to apply to extended star-cylinders. Lemma
3.4 will be replaced by Lemma 3.15 below.

Definition 3.12. (Replaces Definition 3.1). An extended n-dimensional star-cylinder C is said to be in
normal form, if t(n + 1) # false, and #(n + 1) & £ if and only if £ € £(n + 1), and

1. (i=3)et(n+1)ifand only if t(i) = t(j),
2. (i#j)et(n+1)ifandonlyif t(i) # t(j),or (i # j) € t(n+1) and (i) = t(j) = *,
3. (i#a)et(n+1)implies t(i) # a,

for all star-tuples ¢ € C' and 4, j € {1,...,n}.

In the proof of Theorem 6.2 in Section 6 we show that maintaining extended star-cylinders in normal
for can be done in polynomial time. We therefore assume in the sequel that all extended star-cylinders
and -tuples are in normal form. Keeping the extended notion of normal form in mind, it is easy to
see that Definition 3.2 of dominance ¢ < % suits extended star-tuples # and @ as well. Definition 3.3
remains unchanged, provided we identify an “ordinary” tuple (a1, ..., a,) with the extended star-tuple
(a1,...,an,0), where (i = j) € §iff a; = a; and (i # j) € 0 iff a; # a;. Definition 3.5 also applies
as such to extended star-tuples. For the outer cylindrification in Definition 3.6 we now stipulate that
¢;(1)(n + 1) contains all and only those literals from #(n + 1) that do not involve dimension 4. It is
an easy exercise to verify that the proofs of parts 1 — 4 of Theorem 3.8 remain valid in the presence
of literals. Finally, inner cylindrification will be redefined below, along with the definition of the
complement operator. Before that we introduce the notion of a sieve-cylinder.

%false is also a literal
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Definition 3.13. Let C be a sequence of n-dimensional extended star-cylinders and A be the set of
constants appearing therein. Fort € (Au {*})", define Sy = {i : t(i) = *} and SS¢ = {(4,7) : t(i) =
t(j) = *}. For each tuple t € (A u {*})" and each subset SS; of SS;, form the star-tuple # with
t(i) =t(i) forie {1,...,n},and {(n+1) =

UfGi#a):acdy U {G=5)) U {G=#i)}

€St (i,5) eSS} (i,7) eSSN\SS;

A is the extended star-cylinder of all such star-tuples £, and it is called the sieve of C.

The sieve A has some useful properties stated in the next two lemmas. These properties allow us to
test containmnent [[C']] ¢ [[D]] and to define negation and inner cylindrification on a tuple-by-tuple
basis using the partial order <.

Lemma 3.14. Let C be an n-dimensional star-cylinder and A= {il, e, im} its sieve. Then

1. [A]) =D"and {[[{i1}]],..., [{fm} ]} is a partition of [[A]].

2. IfirueCnAandf At # iy, then At = 1.

Proof:

To see that [[A]] = D, let ¢ be an arbitrary tuple in D”. By construction, there are star-tuples
i € A such that £(¢) = (i) if (i) € A, and (i) = * if t(i) € D~ A. Since there is the subset
SS; ={(i,7) : (i) =t(j), and t(i) € D ~ A} we see that for one of these #-tuples it holds that ¢ < .
The fact that [[{#;}]] n [[{£;}]] = @ whenever i # j follows from the fact that if there were a tuple ¢ in
the intersection, it would have to agree with t; and ij on all columns with values in A. But the S'S} set
used for ¢; would be different than the one used for 75]-, which means that we cannot have both ¢ < #;
and t < ;.

For part 2, let £ A 1 € CmAandiAt+ iy Weclaim that @ < £, which would imply £ A1 = .
Since £ A 1 # fy there is a tuple ¢ € [{{ A4} ]]. Foreachi e {1,...,n}, consider (). If (i) = a € A,
then #(i) = a, which means that (i) = a or £(i) = *. Consequently (i) < #(i). If u(i) = * then
t(i) e D\ A, since (i # a) e w(n+1) foralla e D\ A. Since t(i) < (), and £(i) € Au{*}, it follows
that £(7) = . Thenlet (i = j) € {(n +1). Since £ A @t (n + 1) is satisfiable, and .(n + 1) contains either
(i =j) or (i # j), it follows that (i = j) € @u(n + 1). We have now shown that 7 < £. i

Lemma 3.15. Let C and D be n-dimensional extended star-cylinders and A their (common) sieve.
Then
[C]] ¢ [D]] iff CAA < DnA.

Proof:
For the if-direction, let ¢ € [[C]] = [[C' m A]] Then there is a star-tuple £ € C' m A, such that ¢ < i. Since
CnA < Dn Athere is a star tuple v € D Asuch that f <. Thus t € [Dn A]] [[D]]

For the only-if direction, let {1 Aty € CmA, and ¢ < i1 and ¢ < ;. Thent € [C]] ¢ [D]] = [DnA]],
so there are star-tuples iy € D and U9 € A such that ¢ < {5 and t < 1. From Lemma 3.14 it follows that
U = o, and thus £ A Gq = @1 = Ug = t9 A Us. Consequently t1 Aty < tg Ao, O
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We can now define the desired operations.

Definition 3.16. Let A be the sieve of C and C be an extended star-cylinder in C. Then
1. 2C={teA: {i}nC={iy}}. and
2.9;(C)={ieCmd: (({t})mAd) < (CnA)}.

Example 3.17. Let C = {(a, +,{})}. Then A is shown in the extended star-cylinder below, and = C
consists of the first, second, and fourth tuples of A.

A
* * {(lia),(Q#:a),(l:Q)}
* +  {(1#a),(2#a),(1£2)}

a o+ {2%a)
+ a {(1za)}
a a {}

Now, let C = {(a, *,{(2 % a)}), (a,a,{})}. Then A is as above, and 35(C') = C as the reader easily
can verify.

We can now verify that the new operators work as expected.

Theorem 3.18. Let C be an extended star-cylinder. Then

Proof:

For part 1, it is easy to see that [+ C] n [C]] = @ which implies [[<C]] € [[C]]. For a proof of the
other direction of part 1, for each tuple ¢ € [[C]], we construct the star-tuple ¢, where i(i) = (i) if
t(i) € A, and £(i) = % if t(i) ¢ A. We then choose a subset S.S; of S.S; where (i,7) € SS* if and
only if ¢(7) = t(j). We insert in #(n + 1) the condition (i = 5) for each (i,j) € SS;, and (i %)
for each (i,7) € SS; \ SS;, Then clearly ¢ ¢ [{£}]] and ¢ ¢ A. It remains to show that i ¢ %C.
Towards a contradiction, suppose that there is a star-tuple € C such that £ A @ # 4. In other words,
t(n+1) ud(n + 1) is satisfiable. Thus, whenever (i) € D, we must have (i) = (i) = t(i) € A.
Furthermore, for each (i, j) € SS; there is a literal involving 7 and j in t(n +1). Therefore u(n + 1)
can consist of only a subset of these literals. It follows that ¢ < { < @ € C, meaning that ¢ € [[C]]
contradicting our initial assumption.

For a proof of part 2 of the theorem, let ¢ € [[OZ(C)]] Then t e [{i ¢ A : (él({t'}) nA) <
(C'm A)}]]. Therefore there is a star tuple i € Asuchthat, t < {and (&({t})mnA) < (CnA).
Lemma 3.15 then gives us [[&;({f })]] € [C]], and Theorem 3.8, part 4 (which still holds for extended
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star-cylinders) tell us that [&({})] = < ([[{i}]]) which implies [[&;({})] < [C]. By the
definition of inner cylindrification in CA, the last containment implies that [{f}]] < 9;([C])).
Consequently ¢ € 9;([[CT]).

For the other direction, let ¢ € 9;([[C]), which implies ¢;({¢t}) € [[C]. Then there is a star-
tuple i € C'm A, such that ¢;({t}) ¢ cl([[{t}]]) c [[C]). Consequently, [[&(£)]] € [[C]], which by
Lemma 3.15 proves that (c,({t Hn A) < (C'n A). Moreover, the first part of Lemma 3.15 implies
thatt e [{{e A : (&({{})nA) < (CnA)}]. o

We can thus conclude

Corollary 3.19. For every SCA,,-expression E and the corresponding CA,,-expression F, it holds that

[E(C)] = E([C])

for every sequence of n-dimensional extended star-cylinders and star-diagonals C.

4. Stored databases with universal nulls (u-databases)

We now show how to use the cylindric star-algebra to evaluate FO-queries on stored databases containing
universal nulls. Let k be a positive integer. Then a k-ary star-relation R is a finite set of star-tuples
of arity k. In other words, a k-ary star-relation is a star-cylinder of dimension k. A sequence R
of star-relations (over schema R) is called a stored database. Examples 1.1 and 3.11 show stored
databases. Everything that is defined for star-cylinders applies to k-ary star-relations. The exception is
that no operators from the cylindric star-algebra are applied to star-relations. To do that, we first need
to expand the stored database R.

Definition 4.1. Let i be a k-ary star-tuple, and n > k. Then h"(¢), the n-expansion of i, is the n-ary
star-tuple u, where .
t(1) ifie{l,...,k}

u(i) =4 * ifie{k+1,...,n}
t(k+1) ifi=n+1,
For a stored relation R and stored database R, we have
h"(R) = {h"(i) : te R}
h"(R) (h"(R1),...,h"(Rp),dij)i ;-

In other words, h”(R) is the sequence of star-cylinders obtained by moving the conditions in column
k + 1 to column n + 1, and filling columns & + 1,...,n with ”*”’s in each k-ary relation. Examples 1.1
and 1.3 illustrate the expansion of star-relations.

On the other hand, a k- -ary star-relation R can also be viewed as a finite representative of the infinite
relation [[R]] = {t e D* : ¢ < { for some ¢ € R}, and the stored database R. a finite representative of the
infinite instance [ (R) as in the following definition.
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Definition 4.2. Let R = (Rl, ceey Rm) be a stored database. Then the instance defined by R is
I(R) = ([Ba]), -, [Rin ], {(a,a) - a € D}).

The instance and expansion of R are related as follows.
Lemma 4.3. [h"(R)] = h"(I(R)).

Proof: .
Follows directly from the definitions of h™, h" and [[ ]]. o

We are now ready for our main result.

Theorem 4.4. For every FO,,-formula ¢ there is an (extended) SCA,, expression E@, such that for
every stored database R

h (! W) = [E,(""(R))].

Proof:
h (! ) = B (h"(I(R)) = E,(["(R)]]) = [E,(h"(R))]]. The first equality follows from
Theorem 2.5, the second from Lemma 4.3, and the third from Corollaries 3.10 and 3.19. O

5. Adding existential nulls

Let N= {11, 19,...} be a countable infinite set of existential nulls. An instance I where the relations
are over D U N, is in the literature variably called a naive table [1, 3] or a generalized instance [2]. In
either case, such an instance is taken to represent an incomplete instance, i.e. a (possibly) infinite set of
instances. In this paper we follow the model-theoretic approach of [2]. The elements in D represent
known objects, whereas elements in N represent generic objects. Each generic object could turn out to
be equal to one of the known objects, to another generic object, or represent an object different from all
other objects. We extend our notation to include univ([I), the universe of instance I. So far we have
assumed that univ(I) =D, but in this section we allow instances whose universe is any set between D
and D u N. We are lead to the following definitions.

Definition 5.1. Let h be a mapping on DUN that is identity on D, and let I and .J be instances (over %),
such that h(univ(l)) = univ(J). We say that h is a possible world homomorphism from I to J, if
h(R}) < R} for all p, and h(~") = ~’. This is denoted I —, .J.

Definition 5.2. Let I be an instance with D € univ(I) € D u N. Then the set of instances represented
by I is
Rep(I) = {J : 3h s.t. I - J}.

We can now formulate the (standard) notion of a certain answer to a query.'® By FO* below we mean
the set of all FO-formulas not using negation.

Here we of course assume that valuations have range univ(J), and that other details are adjusted accordingly.
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Definition 5.3. Let I be an incomplete instance and ¢ an FO*-formula. The certain answer to ¢ on [
is

Cert(p, 1) = N ¢’
JeRep(I)

Back to cylinders. We now extend positive n-dimensional cylinders to be subsets of (ID u N)"”, and
use the notation univ(C) and univ(C') with the obvious meanings. This also applies to the notation
C -5, D, and Rep(C). Cylinders C with D ¢ univ(C) < D u N will be called naive cylinders.
The operators of the positive cylindric set algebra CA* remain the same, except D is substituted
with univ(C) or univ(C), i.e. we use naive evaluation. For instance, the outer cylindrification now
becomes

c;(C) ={t e univ(C)" : t(i/x) € C, for some x € univ(C)}.

The crucial property of the positive cylindric set algebra is the following.

Theorem 5.4. Let E be an expression in CA}, and C and D sequences of n-dimensional naive

cylinders and diagonals. If C —;, D for some possible world homomorphism A, then E(C) -, E(D).

Proof:
Suppose C —j, D. We show by induction on the structure of E that E(C) -, E(D).

* For £/ = C; and E = d;; the claim follows directly from the definition of a possible world
homomorphism.

e Lett e h(FUG(C)) = h(F(C) u G(C)) = h(F(C)) u h(G(C)). Then there is a tuple
sin F'(C) orin G(C) such that ¢ = h(s). If s is in, say, F'(C), then, since F'(C) -, F(D)
and F(D) c FUG (D), it follows that t = h(s) € FUG (D).

e Lett e h(FNG (C)) = h(F(C) n G(C)). Then there is a tuple s in F(C) and a tuple s’
in G(C) such that t = h(s) = h(s"). Thus h(s) € h(F(C)) ¢ F(D), and h(s") € h(G(C)) ¢
G (D). Consequently t = h(s) = h(s") e F(D) n G(D) = FNG (D).

e Lett € h(c;(F(C))). Then there is an s € ¢;(F(C)), such that t = h(s). Furthermore,
s(i/z) € F(C) for some z € univ(C). Then h(s(i/x)) = h(s)(i/h(x)) € h(F(C)), for
h(x) € h(univ(C)) = univ(D), This means that t = h(s) € ¢;(F(D)).

o Lett e h(9;(F(C))). Then there is an s € 9;(F'(C)), such that ¢ = h(s). Furthermore, s(i/x) €
F(C) for all z € univ(C). Then h(s(i/x)) = h(s)(i/h(x)) = t(i/h(z)) € h(F(C)) for all
x € univ(C). In other words, t(i/y) € h(F(C)) ¢ F(D) forall y € h(univ(C)) = univ(D).
Thus t € 9;( F(D))

O

Also, for an n-dimensional naive cylinder C, we denote the subset C'n D™ by C|. We now have
our main “naive evaluation” theorem.

Theorem 5.5. Let C be a sequence of n-dimensional naive cylinders and diagonals, and let £ be an
expression in CA}. Then

E(C), = - p(C)E(D)-
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Proof:
Lett e E(C), ¢ E(C), and D € Rep(C). Since C —}, D for some possible world homomorphism A,
by Theorem 5.4, h(t) € E(D). Since t is all constants, h(¢) = ¢ for all h. In other words, ¢t € E(D),
for all D € Rep(C).

For the 2-direction, let ¢ € Np ¢ gep(c) £(D). Then ¢ € D", and for all possible world homomor-
phisms A it holds that t € E(h(C)). Since identity is a valid h, is follows that ¢t € F(C), and since t is
all constants we have ¢t € E(C),. i

Mixing existential and universal nulls

We want to achieve a representation mechanism able to handle both universal nulls and naive existential
nulls. To this end we need the following definition.

Definition 5.6. A naive n-dimensional (positive) star-cylinder is a finite subset Cof (DUNU {*})" x
(On). A naive diagonal is defined as d;; = {(z,7) : © € univ(C)}. A sequence of n-dimensional
star-cylinders and diagonals is denoted C.

After this we extend Definitions 3.1, 3.2, and 3.5 in Section 3 from star-cylinders to naive star-
cylinders, by replacing I with univ(C) or univ(C) everywhere. Theorem 3.1 will still hold, but
Corollary 3.10 only holds in the weakened form as Corollary 5.10 below. First we need two lemmas
and a definition.

Lemma 5.7. Suppose all possible world homomorphisms h are extended by letting h(*) = *. Let C
be an n-dimensional naive star-cylinder. Then

R(ICT) = [T,

for all possible world homomorphisms h.

Proof:
Let t € h([[C]]). Then there exists a tuple u € [[C']], such that ¢ = h(u). Also there exists a naive
star-tuple ii € [[C]], such that u < ii. Now it is sufficient to show that ¢ < h(ii), forall i € {1,2,...,n}.
If i(i) € D, then u(i) = (7). Also, homomorphisms are identity on constants and therefore
h(u(i)) = u(i), which implies £() = u(%).
If ii(i) = *, then u(i) € univ(C). As aresult h(u(7)) € univ(h(C)), which implies ¢(i) < * =
h(i(4)), since homomorphisms map stars to themselves.
If @i(7) € N, then u(7) = (¢), which implies £(7) = h(u(i)) = h(i(7)).

For the other direction, let ¢ € [[A(C')]]. Then there exists a tuple i € h(C') and a tuple ii € C, such
that t < and £ = h(ii). Consequently, ¢ < h(ii). We show that we can find a tuple € [[ii]] such that
h(u) =t.

If ii(2) € D, then u(i) = (). Since h is the identity on constants h(ii(i)) = (4), which implies
t(i) = u(7).

If ii(i) = *, then h(ii(i)) = *. As h is onto univ(h(C)), it follows that there is a value (i) €
univ(C), such that h(u(i)) = t(i).

If i(7) e N, then u(7) = 4(7), which implies t(i) = h(ii(i)) = h(u(7)). i
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Definition 5.8. Let Z and 7 be sets of instances. We say that 7 and 7 are co-initial, denoted Z ~ 7,
if for each instance J € 7 there is an instance I € Z, and a possible world homomorphism 4, such that
I - J, and vice-versa.

We extend Definition 5.2 from infinite instances and sequences of cylinders to sequences of naive
star-cylinders as follows.

Definition 5.9. Let Cbea sequence of n-dimensional naive star-cylinders and diagonals with umv(C) =
D u N. Then the (infinite) set of (infinite) n-dimensional cylinders represented by C is

Rep([C])) = {D : [C]]>4 D}.
In the context of naive star-cylinders Corollary 3.10 will be weakened as follows.

Corollary 5.10. For every SCA -expression E and the corresponding CA,-expression F, it holds that

Rep([E(C)])) ~ E(Rep([C])),

for every sequence of n-dimensional naive star-cylinders and star-diagonals C.

Proof:
We have Rep([[E(C)]])) ~ Rep(E([[C]])) from Corollary 3.10. It remains to show that Rep( E([[C]]) ~
E(Rep([[C]])). Let’s denote [[C]] by C. We’ll show that Rep(E(C)) ~ E(Rep(C)).

Let D € E(Rep([[C]])), meaning that D = E(C') for some C’ € Rep([[C]]). Then there is a
possible world homomorphism h such that C —; C’. Theorem 5.4 then yields E(C) -, E(C’), and
since E(C) € Rep(E(C)) one direction of Definition 5.8 is satisfied.

Thenlet D € Rep(E(C)). Then there is a possible world homeomorphism , such that E(C) - D.
Since E(C) € E(Rep(C)), it means that the vice-versa direction is also satisfied. i

Naive evaluation of existential nulls

For a naive star-cylinder C welet C | = = Cn (Du{*})". We note that obviously [[C,]] = ([C]]),.
and that if Rep(C) ~ Rep(D) then C; = D,. We now have the main result of this section.

Theorem 5.11. For every SCA*-expression E and the corresponding CA*-expression E, it holds that

[E©C)D = N ED).

DeRep([C1)
for every sequence C of naive star-cylinders and diagonals.

Proof:
[EC),] = [E©O)], = (E([C])), = N CeRep([€ E(C) The second equality follows from
Corollary 5.10, the third from Theorem 5.5. O
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Stored databases with universal and existential nulls (ue-databases)

We extend the Definitions 4.1 and 4.2 of Section 4 from stored databases to naive stored databases
(ue-databases) by substituting D with D u N everywhere. Lemma 4.3 then becomes

Lemma 5.12. Let C be a stored ue-database with universe D U N. Then [[h"(R)]] = h"(I(R)).

We first note that Theorem 4.4 in the ue-setting becomes

Theorem 5.13. For every FO;;-formula ¢ there is an SCA, expression E,,, such that

[E,(h"(R)] = h" (" ™)
for every stored ue-database R

We also have

Theorem 5.14. For every FO;-formula ¢ there is a CA}, expression E,, such that

Rep([E,(h"(R)]]) ~ {h"(¢”7) : J € Rep([R])}
for every stored ue-database R

‘We have now arrived our main theorem for ue-databases.

Theorem 5.15. For every FO; -formula ¢ there is an SCA;" expression E'Sp, such that

[EN"R)D = N h'(e")

JeRep([[R]])

for every stored ue-database R

Proof: o
We have {h"(¢”7) : J € Rep([[R ]])} ~ Rep([[E,(h"(R))]]) by Theorem 5.14. Hence

Nyereprizyy M (#7) = N Rep([E, (W R)]) = ([E(W"®R)D), = [E("(R)),]. o

6. Complexity

In this section we provide complexity results for Cylindric Star Algebra and Star Cylinders. We
start by defining the size of extended star-cylinders. Let Chbea sequence of n-dimensional extended
star-cylinders and diagonals. By |C\ we denote the larger of the number of star-tuples in C and the
number of literals in the star-tuple with the largest condition column n + 1. The same notation also
applies to sequences of naive star-cylinders C. First, we show that star-cylinders can be transformed
into normal form in polynomial time.
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Theorem 6.1. Let C be an n-dimensional extended star-cylinder. Then C canin polynomial time be
transformed into a normal form star-cylinder C’ such that [[C']] = [[C]].

Proof:
The first requirement is that each extended star-tuple has a consistent and logically closed set of literals.
To achieve this, we associate with each # € C' a graph with vertices {1,...,n}, with a blue edge {i,;j}

if (i = j) e {(n+ 1), and a red edge {i,j} if (i # j) € {(n + 1). Next, we compute the transitive
closure of the graph wrt the blue edges. To account for the inequality conditions, we further extend the
graph by repeatedly checking if there is a red edge {7, j} and a blue edge {j, k}, in which case we add,
unless already there, a red edge {4, k}. Then each connected component of blue edges represents an
equivalence class of dimensions with equal values in £, unless there is a pair {,j} that has both a blue
and a red edge, in which case #(n + 1) k false, [{f}]] = @, and f can be removed. We need to consider
conditions of the form (i # a) in star-tuples ¢ as well. They will be handled similarly to the inequality
conditions. More precisely, for each (i # a) we add a black self-loop labelled a to vertex 7. If there
is a blue edge {7, j}, we recursively add an a-labelled self-loop to vertex j. In the end, if there is a
vertex i having an a-labelled self-loop while #(i) = b # a, we again have {(n + 1) & false, [{{}]] = @,
and therefore remove star-tuple . All the above graph-manipulation can clearly be performed in time
polynomial in n.
We still need to verify that t satisfies conditions (1) — (3) of Definition 3.12. If £ violates a condition,
it is easy to see that [[{¢}]] = &, so # can be removed from C'. The only exception is for condition (1),
when i(n +1) & (i = j), t(i) = *, and t(j) = a € D. In this case { is retained, but with (i) replaced
by a. If t(j) = * and ¢(7) = a then () is replaced with a.
The remaining star-tuples form the normalized star-cylinder C”, and [[C’]] = [[C]] by construction.
]

Next, we investigate the complexity of evaluating SCA-expressions over naive star-cylinders
and then we characterize various membership and containment problems. It turns out E(C) can be
computed efficiently for SCA,,-expressions E, even though universal quantification and negation are
allowed. First we need the following general result.

Theorem 6.2. Let E be a fixed SCA,,-expression, and Ca sequence of n-dimensional extended star-
cylinders and diagonals. Then there is a polynomial m, such that |E(C)| = O(x(|C|)). Moreover,
E(C) can be computed in time O(7(|C|)), and if negation is not used in £ this applies to naive
star-cylinders C as well.

Proof:
Since E is fixed it is sufficient to prove the first claim for each operator separately. Note that since E is
fixed, it follows that n is also fixed.

1. If B(C) = C,(C), then |E(C)| = |G| < |€] = O(x(IC)).
2. If B(C) = dij (C), then |E(C)| = O(IC]) x O(1) = O(x(|C])).
3. 1f B(C) = C,(C) U Cy(€), then |E(C)| < |€] = O(x(IC])).
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4. If E(C) = C,(C) m C,(C), then the number of tuples in E(C) is at most |C|2, and each tuple
in the output can have a condition of length at most 2 - |C|. As a result, |[E(C)| < 2- IC]? =
O(=(IC))).

5. 1F B(C) = &(C,(€)), then [E(C)] < |Gy < €] = O(x(IE])).

6. For the case F(C) = 9;(C,(C)) we note that 9;(C,(C)) ¢ (C,(C)mA) c A. We can construct
the star-tuples in A by iterating over the star-tuples in C’p and using the constants in A. This
means that [A| = (nx (JA])) + (2" +]A]) < O(1) x O(|C|) + O(1) x O(|C|) = O(x(|C])). Note
that n is the dimensionality of C and is a constant.

7.1f E(C) =3(C, (C)), then similar to the inner cylindrification we have - C,, ¢ A which implies
[E(C) = O(=(|C])). =

Membership. In the membership problems, we ask if an ordinary tuple ¢ belongs to the set specified
by a (naive) star-cylinder, of by a fixed expression F and a (naive) star-cylinder. In other words, all
results refer to data complexity.

Theorem 6.3. Let ¢ ¢ D" and C a sequence of n-dimensional naive star-cylinders and diagonals. The
membership problems and their respective data complexities are as follows.

? .
1. te NE(Rep([[C]])) is in polytime for positive F.
? .
2. te NE(Rep([[C]])) is coNP-complete for ' where negation is allowed in equality atoms only.

Proof:
1. By Theorem 5.11, we have N E(Rep([[C]])) = [[E(C)l]] so to test if ¢ € ﬂE(Rep([[ ),
we compute E(C),, and see if there is a star-tuple ¢ € £(C),, such that ¢ < {. By Theorem 6.2,
E(C) | can be computed in polytime.

2. To check if t ¢ NE (Rep([[C]))). it is sufficient to find a homomorphism h such that ¢ ¢
h([C]]). We guess the homomorphism %, and check in polytime if ¢ ¢ h([[C]]). Thus
t ¢ NE(Rep([[C]])) is in NP, and ¢t € N E(Rep([[C]])) is in coNP. The lower bound follows

from Theorem 5.2.2 in [14]. O

Containment. The containment problems ask for containment of star-cylinders (naive star-cylinders),
or views over star-cylinders (naive star-cylinders). We have the following.

Theorem 6.4. Let C and D (resp. C and b) be sequences of n-dimensional (naive) star-cylinders and
diagonals. Then

. ? .
1. E1([[C]]) ¢ E2([[D]]) is in polytime for CA,, expression F and .

2. Rep([[C])) C Rep([[D]]) is NP-complete.
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1N -~

3. E1(Rep([[C]])) € Ea(Rep([D]))) is IT5-complete for positive £ and Es.

Proof:

1. By Lemma 3.15, we have [[E1(C)]] € [E2(D)]) if and only if E1(C) m A < Ey(D) m A. The
latter dominance is true if and only if for each star-tuple ¢ € E, (C) n A there is a star-tuple
i € Fo(D) m A, such that ¢ < ©:. From Theorem 6.2 we know that £ (C) m A and E»(D) n A
can be computed in polytime.

2. We first extend the domain of possible world homomorphisms by stipulating that they are the
identity on *. Then it is easy to see that Rep([[C]]) € Rep([[D]]) if and only if there exists a
possible world homomorphism h such that D —;, C. This makes the problem NP-complete.

3. The lower bound follows from Theorem 4.2.2 in [14], For the upper bound we observe that
E1(Rep([[C]])) € Ea2(Rep([[D])) iff for every C € Rep([[C]]) there exists a D € Rep([[D]])
such that F1(C) = Ey(D) iff for every possible world homomorphism £ on C there exists a
possible world homomorphism g on D such that El(h([[C]])) E>(g([[D])). By Corollary
3.10, this equality holds iff [ (h(C))] = [E1(g(D))]]. By Lemma 3.15, the last equality
holds iff E(h([[C]))) m A < Ey(g([[D]])) m A, and vice-versa. By Theorem 6.2, the star-
cylinders in the two dominances < can be computed in polynomial time. O

7. Related and future work

Cylindric Set Algebra gave rise to a whole subfield of Algebra, called Cylindric Algebra. For a fairly
recent overview, the reader is referred to [15]. Within database theory, a simplified version of the
star-cylinders and a corresponding Codd-style positive relational algebra with evaluation rules “* = %”
and “x = a” was proposed by Imielinski and Lipski in [8]. Such cylinders correspond to the structures
in diagonal-free Cylindric Set Algebras [9, 10]. The exact FO-expressive power of these diagonal-free
star-cylinders is an open question. Nevertheless, using the techniques of this paper, it can be shown that
naive existential nulls can be seamlessly incorporated in diagonal-free star-cylinders.

In addition to the above and the work described in Section 1, Imielinski and Lipski also showed in
[8] that the fact that Codd’s Relational Algebra does not have a finite axiomatization, and the fact that
equivalence of expressions in it is undecidable, follow from known results in Cylindric Algebra. This is
of course true for a host of general results in Mathematical Logic.

Yannakakis and Papadimitriou [16] formulated an algebraic version of dependency theory using
Codd’s Relational Algebra. Around the same time Cosmadakis [17] proposed an interpretation of
dependency theory in terms of equations over certain types of expressions in Cylindric Set Algebra,
and described a complete finite axiomatization of his system. It was however later shown by Diintsch,
Hodges, and Mikulas [18, 19], again using known results from Cylindric Algebra, that Cosmadakis’s
axiomatization was incomplete, and that no finite complete axiomatization exists.

Interestingly, it turns out that one of the models for constraint databases in [20] by Kanellakis, Kuper,
and Revesz — the one where the constraints are equalities over an infinite domain — is equivalent
with our star-tables. Even though [20] develops a bottom-up (recursive) evaluation mechanism for
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FO-queries, the mechanism is goal-oriented and contrary to our star-cylinders, there is no algebra
operating on the constraint databases. We note however that the construction of the sieve A in Section 3
is inspired by the constraint solving techniques of [20]. It therefore seems that our star-cylinders and
algebra can be made to handle inequality constraints on dense linear orders as well as polynomial
constraints over real-numbers, as is done in [20]. We also note that our work is related to the orbit finite
sets, treated in a general computational framework in [21].

As noted in Section 1, the existential nulls have long been well understood. According to [22]
the fact that positive queries (no negation, but allowing universal quantification) are preserved under
onto-homomorphisms are folklore in the database community. Using this monotonicity property, Libkin
[3] has recently shown that positive queries can be evaluated naively on finite existential databases
I under a so called weak closed world assumption, where Rep(I) consists of all complete instances
J, such that h(I) ¢ J and J only involves constants that occur in I, and furthermore h is onto from
the finite universe of I to the finite universe of J. Our Theorem 5.5 generalizes Libkin’s result to
infinite databases. In this context it is worth noting that Lyndon’s Positivity Theorem [23] tells us
that a first order formula is preserved under onto-homomorphisms on all structures if and only if it is
equivalent to a positive formula. It has subsequently been shown that the only-if direction fails for finite
structures [24, 25]. Since our star-cylinders represent neither finite nor unrestricted infinite structures,
it would be interesting to know whether the only-if direction holds for infinite structures represented by
star-cylinders. If it does, it would mean that our Theorem 5.5 would be optimal, meaning that if ¢ is not
equivalent to a positive formula, then naive evaluation does not work for ¢ on databases represented by
naive star-cylinders.

Finally we note that Sundarmurthy et al. [11] have generalized the conditional tables of [1, 26] by
replacing the labelled nulls with a single null m that initially represents all possible domain values.
They then add constraints on the occurrences of these m-values, allowing them to represent a finite
or infinite subset of the domain, and to equate distinct occurrences of m. Sundarmurthy et al. then
show that their m-tables are closed under positive (but not allowing universal quantification) queries by
developing a difference-free Codd-style relational algebra that m-tables are closed under. Merging our
approach with theirs could open up interesting possibilities.
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Appendix

This Appendix contains the proofs of Theorems 2.5 and 2.6. Before we get to the proofs, we need some
technical prerequisites.

Proposition 7.1. [9]. Let C be an n-dimensional cylinder, and 7, j € {1,...,n}. Then
1. Zi(C) = Z(C).
2. Zi(z}(C)) = C.
3. cZ(z;(C’)) = zé(cj(C)).
4. If i + j then z}(C’ O = z;-(C) \ zé-(C’).
5. If ¢;(C) =C and ¢;(C) = C then zé(C) = C.

Proposition 7.2. Let i, j, k be pairwise distinct natural numbers, such that {i,j, k} n{1,2,3} = @, and

let C' be an n-dimensional cylinder that is 2-full Then
ik 3,21 1,2,3
21p(2y5, (C)) = 2135 (0).

Proof:

ik 3,2, i k,3,2,1 i,3,2,2,1 i,3,2,1 i,1,3,2 i,1,3,2 1,3,2

20025 (O)) = 20557 (C) = 20755 7:(C) = 27575, (C) = 217355(0) = 23155(C) = 2,575(C).
The second equality follows from Theorem 1.5.18 in [9], the third equality holds since c2(C') = C and
c,(C) = C, the fourth since {1,i} N {2, 3,7} = @. The last two equalities follow from Theorem 1.5.17

and 1.5.13 in [9], respectively. O

We are now ready for the main proofs.

Theorem 2.5. For all FO,,-formulas ¢, there is a CA,, expression E, such that
E,(h"(I)) = h"(¢"),
for all instances I.

Proof:
We prove the stronger claim: For all FO,,-formulas ¢, for all ¢ € sub(p), with free(¢) = {z;,, ..., xi,},
there is an CA,, expression FEy, such that

2 (By(h(1))) = (e,
for all instances I. The main claim the follows since ¢ € sub(p), and the outermost sequence of

swappings can be considered part of the final expression . In all cases below we assume wlog!! that
k < n so that the k + 1:st column can be used in the necessary swappings.

"f k = n we can introduce an additional variable x,.1 and the conjunct 3z, +1(Zn+1 ~ Zn+1) which would assure that the
n + L:st dimension is full. Alternatively, we could introduce swapping as a primitive in the algebra. This however would
require a corresponding renaming operator in the FO-formulas, see [9].
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* ¥ =Ry(zi,...,x;, ), where k = ar(R,). WeletE¢—z’ ’. (Cp). We have

yeees?

21, Jk(Ew(hn(]))) -
zifi..,#( Fl (Cy(h(D))) -
By Proposition 7.1 (2)
Cp(h™(1)) =
I -
hn(Rp) -
b (7).
* ¢ =x; ~ x;. We assume wlog that n > 2 so that swaps can be performed. We let £y, = d;;. We
then have

{teD™ : #(1) = £(2)}

zi’,z(m(hn(z))) = [(a.a) : aeD)x D"
2217,32(dij) = h"({(a,a) : aeD}) =
2%({teD (i) =t(7)}) = h (i~ 25)") =

h" (y7).

= =¢, with free(€) = {i,..., i, }. We assume wlog that k < n. Then Ey, = E, and the
inductive hypothesis is

2 (Be(h" (1)) = (€D
‘We have
2k (By(h(1))) -
234 (Ee(h (1)) -
2 (DN EBe(h(1))) _
By Proposition 7.1 (2)
i k(D"\(zl,;, G (B (1)) -
o NCA %I)))) -
By Proposition 7.1 (5)
A CAN 0D NN CHE N C ) -
By Proposition 7.1 (4)
(2 ) -
By Proposition 7.1 (2)
" he(el) =
h (=€) -
he (7).

il,.. lk
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* Y =Enx, with free(y) = {zy, ...,z . free(€) = {zr, ..., 2, }, free(x) = {zsy, ..., 2s, )
free(y) = free(&) u free(x), and'? free(§) n free(x) = @. Now Ey = E¢NE,. The
inductive hypothesis is

2 (Be(h (1)) = b ().

h"(x").

2y (B (0 (1))

We have

20 (By(hn(D)) _
2 (Ben B (D)) _
(Be(h™(1)) N By (h(1))) -

By Proposition 7.1 (2)

(s

24, 1(zif.’..,jq(Ex(h”(n)))) _
2 (ke ((eh) 0 2t (D)) _

..... L (W (@) v(an,) T ED) N
Zg;? 7’ (hn({y(gL«Sl) v(ws,) T I e, X}))

) =

By Proposition 7.1 (5)

2P (0 (), o) - Teg€0) N
2Tt (0 (), v(es) - T X))
) =
2 (2t (W ({wan). o ov(as) - TesEnx)))) -
By Proposition 7.1 (2)
h*({v(xi,),...,v(xi,) : TE,EAX) =
h™((€Ax)") _
h ().

"2The last assumption is needed in steps
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* ¢ =3, &, with free(§) = {z4y, ..., @i;, ..., 25, ). Let

{illv"'ﬂi;c—l} {il,...,ij,...,ik}\{ij}
{Tl,...,Tn,k} {1,...,n}\{il,...,ij,...,ik}
(ol ey = {rn ey u{ig)

We assume wlog that k < n. Let Ey, = c;, (E¢). The inductive hypothesis is

2 (Be(hm(1))) = b7 ("),

We have

20 (Bu b (D)

2 (e, (Be(h™(1))

B (e Gl @ B (D))
e CHC ,h(hn(sf))))

319

By Prop. 7.1 (3)

By Prop. 7.1 (3)

A )

20k (2 (G ()

01 5eeey 515 30y ky..d,j—1,...,
2111,...,3'1—71,1]',1.].12—1%(sz, J,zj,zj e ,zl(cj(hn(gl))))

Tl yeeeylje Tl yenesl k,....j+1,5 1,...,1 I
ley---vjzll ozj]ytvlvk_lk(zlky jﬂjﬂjﬂj ( ZJ 1yl ](hn(é— ))))

By Prop. 7.2

1 =1,25,5,s
7 ;—12]]11 k (CJ (h"()))

-----

By Prop. 7.1 (3)

i, (2,770 i;i;ia;k, '(hn(eh)))
i, (2,7 ’“J(h”({w(x“) (@) (@) T TR E)))

1 "'7] 1 1’]7]’ ’k
Ci; (20 i €

{(V(xll)w"7V($ij)>'"ay(xik)vy(xh)w"7V(xrn,k)) : I'=z/ g}))

ci, ({(Wwi), - vy )sv(@e), . v(@iy), . v(@e ) 2 TEL &)
Uaen{(v (@), .., v(zy ) v(@m), ... v(@iy), .. vy ),) - Iizy(ij/a)ﬁ}
{(w(@iy), - vy ) v ), v @y ), v )+ Ty 32,63
h({(w(ziy),....v(zy_)) = Try 3zi,€})

h" (7).
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Theorem 2.6. For every CA,, expression E there is an FO,, formula ¢, such that

op = E(h"(I)),
for all instances I. «

Proof:

‘We do a structural induction

* E=C,. Then pp = Ry(w1,...,2k) A Apegher,..n) (@7 # 2,), where k = ar(R,). Clearly

o :
{(w(z1),...,v(zk), v(Tk41), ... v(xn)) * TE, Rp(xn, ... 25)} =
R;i XDn_k —
Cp(hn(1)) =
E(h"(1)).

* E=d;. Then pp = (7 % 2j) A Areqr,..ninfiyj) (Tr ® ). We have

o =
{(w(z1),...,v(xi),...,v(x5),...,v(zpn)) : T =y (i mxj)} =
{teD": t(i) =t(j)} =
dij =
E(h™(1)).

e /= F; N Fy. Then g = ¢ A ¢F,, and the inductive hypothesis is

o = F(h(D)
o, = Fa(h(D)

Then,

o -
(or ARy’ =
{(w(z1),....v(zn)) : TRy oA YR} =
{(w(z1),...,v(xn)) : =, R} N
{(v(z1),...,v(zn)) : I &R} =
ok n &l =
Fi(h™(I)) N F2(h"(1)) =
BN Fy (h(1)) =
E(h™(I)).
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» E = F, where Then ¢ = ~pp, and the inductive hypothesis is @1, = F'(h"(I)). We have

oL
¢ -
Y

F(hn(1))
E(h"(1)).

* E=c;(F), Then op = (3z; or) A (x; ~ x;). The inductive hypothesis is ¢k = F(h™(I)).
We have

o =
{(w(x1),...,v(xy),...,v(xzp)) : T, Qzipp) A(z; = x;)}
{(v(x1),...,v(x4),...,v(xzpn)) : T, Fzipp)} N
{(w(xz1),...,v(xi),...,v(zy)) : T, (i~ x4)}
{(w(z1),...,v(zi),...,v(xy)) : [ =, (Jx;0p)} n D"
{(w(z1),...,v(zi),...,v(zy)) : I =, (3xiop)}

Uaep {(v((@1), .- v(3), . v(zn)) = TRy, oF}
c({(v((x1),...,v(xs),...,v(xn)) : TE, @r})

ci(er) =
ci(F(h"(I))) =
E(h™(1)).



