Discovering Approximate Keys in XML Data

Gosta Grahne
Concordia University

grahne@cs.concordia.ca

ABSTRACT

Keys are very important in many aspects of data manage-
ment, such as guiding query formulation, query optimiza-
tion, indexing, etc. We consider the situation where an
XML document does not come with key definitions, and we
are interested in using data mining techniques to obtain a
representation of the keys holding in a document. In order
to have a compact representation of the set of keys hold-
ing in a document, we define a partial order on the set of
all key expressions. This order is based on an analysis of
the properties of absolute and relative keys for XML. Given
the existence of the partial order, only a reduced set of key
expressions need to be discovered.

Due to the semistructured nature of XML documents, it
turns out to be useful to consider keys that hold in “almost”
the whole document, that is, they are violated only in a small
part of the document. To this end, the support and confi-
dence of a key expression are also defined, and the concept
of approzimate key expression is introduced. We give an ef-
ficient algorithm to mine a reduced set of approximate keys
from an XML document.

1. INTRODUCTION

Keys are important in many aspects of data management,
such as query optimization, indexing, update anomaly pre-
vention, and information preservation in data integration
[2, 4, 15]. XML databases store data with partial struc-
ture. The data is integrated from various types of data
sources. Since XML is becoming the universal format for
(semi-)structured documents and data on the web, it is now
widely accepted as a model of real world data. There are
several proposals for integrity constraints for XML data [6,
5,13, 7, 8, 9, 10].

In this paper we adopt the key definition of Buneman et
al. [6]. Compared with other proposals for keys for XML,
their definition can be reasoned about efficiently, and the
scope of keys is considered. In the paper, Buneman et al
also give a sound and complete axiomatization for logical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’ 02, November 4-9, 2002, McLean, Virginia, USA.

Copyright 2002 ACM 1-58113-492-4/02/0011 ...$5.00.

Jianfei Zhu
Concordia University

j-zhu@cs.concordia.ca

implication of keys.

As an example of the keys in [6], consider the XML docu-
ment in Figure 1. The document records information about
articles in a journal. As in real life, we can expect that the
volume and number identify an issue (volume and number
are called absolute key of issue). We also can expect that
the position of an author in an article identifies the author
in a specified issue. This is an example of a relative key.

<issue>
<volume>11</volume>
<number>1</number>
<articles>
<article>
<title>Data Mining</title>
<authors>
<author posi=*“00” >Jim< /author>
<author posi=“01” >Tom< /author>
<author posi=“02” >Peter</author>
< /authors>
< /article>
<article> ... </article>

< [articles>
< /issue>

Figure 1: An example of XML document

Though the definition and the implication rules of the keys
are given in [6], some questions still need to be considered.
(1) : Given an XML dataset, since the data is integrated
from various types of data sources, sometimes there are no
clear keys in the data. (2) : According to the axiomatization
in [6], sometimes the number of keys could be enormous.
Then the question is, how to store the keys effectively? Most
importantly (3) : Given an XML dataset, how to efficiently
find the keys holding in it?

In this paper, we make the following contributions:

1. Based on an analysis of the inference rules in [6], we
define a partial order on key expressions. We will see
that only a minimal cover of the set of key expres-
sions need to be mined and stored. Compared with
the large set of key expressions that can be inferred by
inference rules and will hold in the data, our way is
more effective.

2. To measure the interestingness of a key expression, we
define the support and confidence of a key expression.
Thus, for some key expression, though it is not satisfied

in a small part of the XML document, it is satisfied in
most of the data, and we consider it as a valid key in
the data. As an example, in a document like the one in
Figure 1, in every issue, there are many articles. More
than 95% of the titles of articles can identify an issue.
It’s reasonable to think that the title of an article is a
key.

3. An efficient algorithm for mining a reduced set of ap-
proximate keys in an XML document is given. With-
out the availability of a DTD, the “prefix tree” of the
XML data is parsed out, and at the same time, some
candidate key expressions will be produced. From
these key expressions, an apriori-like algorithm will
generate all other key expressions in the small set.

1.1 Related work

Many algorithms have been presented for the discovery
of functional dependencies [17]. Approximate functional
dependencies are considered in [16, 12]. In [16], Kivinen
and Mannila define measures for the error of a dependency
and derive bounds for discovering dependencies with errors.
Huhtala et al. [12] present an algorithm called TANE, which
is based on partitioning the set of rows with respect to their
attribute values. None of the aforementioned papers deal
explicitly with finding any sort of compact representation,
or minimal cover of the keys holding in the data. Evidently,
the question of a minimal cover is intimately related to the
question of a sound and complete axiomatization of approx-
imate keys. The work by Calders and Paredaens [18] is
taking an important step in this direction.

Our definition of the approximate keys is based on the
support and confidence of a key expression, which are similar
to the definition of support and confidence of an association
rule in [3]. Our algorithm for mining approximate keys is
inspired by the apriori-like algorithm presented in [14] which
discovers the prefix structure of semistructured data.

1.2 Paper organization

The rest of the paper is organized as follows. Section 2
reviews the definitions of key expressions in [6]. In Section
3, we introduce a partial order on the key expressions and
discuss the reduced set of key expressions. Detailed algo-
rithms and the experimental results are given in Section 4.
In Section 5, we give the conclusions of this paper.

2. KEYS

In this paper, we adopt the definition of keys by Buneman
et al [6], which we recall in the following.

An XML data document can be expressed as a node-
labeled tree, where the labels are divided into three sets:
E the set of element tags, A the a set of attribute names,
and the singleton {S}, where S represents text (PCDATA).

Definition 1. An XML tree is formally a six-tuple T =
(r, V,lab, ele, att,val), where r is a unique and distinguished
root node; V is the set of nodes of T'; the function lab maps
each node v in V to label in E (v is an element node) or
in A (v is an attribute node) or to S (v is a text node);
The components ele and att are partial mapping on V. For
v € V, ele(v) is a sequence of elements in V' and att(v) is
a set of attribute-nodes in V; Finally, val maps each maps
each attribute and text node to a string.

Figure 2 shows an XML tree corresponding to an XML
document, such as the one in Figure 1.

Definition 2. In a XML tree, two nodes n1 and n» are
value equal, written as n1 =, ng, if and only if (a) : lab(ni) =
lab(nz), and (b) : if n1 and m» are attribute or text nodes
then val(ni) = wal(n2), or (¢) : If n1, and ne are ele-
ment nodes, then for each a; in att(n;), we can find a2 in
att(n2) such that a1 =, a2, and vice versa; and if ele(n1) =
[vi,...,vx], then ele(n2) = [vi,...,v;], and for all j €
[1, k], v; =0 v}.

To define keys, Buneman et al [6] use path languages for
identifying nodes in an XML tree. In this paper we will only
use the more general one of their path languages, called PL.
The syntax of expressions p in PL is:

pu=elllpp|x*

where € represents the empty path, £ is a label in EU A U
{S}, the symbol “.” is concatenation, and * represents any
(possibly empty) finite sequence of node labels.

A wvalid path in PL is the path expression such that for any
label £ € p, if £ € A or £ = {S}, then £ is the last symbol in
p- By counting the number of labels in p, we get the length
of the path p (the empty path has length 0). The expression
n|P] denotes the set of nodes in T that can be reached by
following the path expression P from node n. The expression
[P] is the abbreviation of 7[P], where r is the root node of
the XML tree. For two path expression P and @ in PL, P
is said to be contained in @, written as P C @, if for any
node n in any XML tree T, nfP] C n|@]. For example, in
Figure 2, issue.articles.article.author C issue. * .author.

Definition 8. A key constraint ¢ in an XML document is
an expression (Q, (Q', S)) where Q is called the contezt path,
Q' is called the target path, and S = {Pi, ..., Py}, such that
for each P;, Q.Q'.P; is a valid path expression in PL. The
paths Pi,..., Py are called the key paths of ¢. If Q = ¢, ¢ is
called an absolute key, otherwise ¢ is called a relative key.

For example, in Figure 2, (¢, (issue, {volume, number}))
is a key expression, it is also an absolute key. (issue, (arti-
cles.article, {author})) is another key expression, since here
@ is not ¢, it is a relative key.

Definition 4. Let ¢ = (Q,(Q',{P1,..., P:})) be a key ex-
pression. An XML tree T satisfies ¢, written T' |= ¢, iff for
any n € [Q], given any two nodes {ni,n2} C n|Q’], either
n1 = ny or there exists at least one path p € P;, and nodes
z #v y, such that x € nifp] and y € nap]. If we express
satisfaction as a clause, we have

Vn € [Q], Vnin2 € n|Q'] :

V n1[P7;]| n ’rl2[P¢]| =0 Vni=na
1<i<k

Figure 3 illustrates a key (@, (@', {P1, ..., Px})). The key
means that in a subtree rooted at each node n in [Q)], if
two nodes in nfQ’] are distinct, then the two sets of nodes
reached on some P; must be disjoint.

As an example, in the XML tree T in Figure 2, T sat-
isfies the absolute key (e, (issue, {volume, number})). The
key means that each object rooted at an issue-branches is

issue

volume ® ® number

}® é)
o

\ article 3]
5 ©

root

issue

volume @

® number

"DataMining'® (g) ® ® f é)

e W) = @) S X "DataModels’ () "
Im” @posiT OMaposete @posi @pos report (&) B o " "

01 "0 03 “01* . @pos | " @posi

it author author “author S Pﬂ
© ® ® 02
L ® @4
KDD™Austin® - @pog "DataDesign’d) @pogook ©"03" “Tom) "Peter e
or "Anthony” v @ihog o0 SEUIY" - @posi @pos @posi Gpos @ros
o 02" "03" or 02

02"

Figure 2: An XML tree constructed from XML data

Figure 3: Illustration of a key (Q,(Q',{Pi, ..., P:}))

uniquely identified by the value of (volume,number). The
XML-tree T also satisfies the relative key (issue, (articles.
article, {author})). This relative key means that inside an
issue-object, an article is identified by an author.

3. MINIMAL COVERFORASET OF KEYS

Logical implication on keys is defined in the usual manner,
i.e. let ¢ and ¥ be key expressions. Then ¢ logically implies
1, written ¢ |= 1), if every XML tree that satisfies ¢ also
satisfies ¢. A set K of key expressions logically implies a
key expression v, written K |= 1, if every XML tree that
satisfies all key expressions in K also satisfies .

Let K be a set of key expressions. We denote by K+
the set of all key expressions implied by K, that is the set
{¢ : K | ¢}. K7 is also called the closure of K. Two
sets K and L of key expressions are equivalent if KT = L*.
Obviously it makes sense to choose some sort of minimum
cover to represent a set K of key expressions. In other words,
we are looking for a set L, such that L' = KT, and L that
is “minimal”, in the sense that it doesn’t contain any key
expression inferable from others.

To gain insight into the form of minimality we are looking
for, we’ll examine the sound and complete axiomatization
given by Buneman et al [6]. The axiomatization consists of
the inference rules in Table 1.

For a given finite set of key expressions K we can compute
the closure K starting from K, applying appropriate rules
in Table 1 until no new keys can be derived.

It is proved in [6] that given a finite set K of keys and a key
expression ¢, we can determine whether K |= ¢ in quadratic

Q. (@,9)),P € PL

@, (0, SU{P}) superkey
M subnodes
(@, (@', {Q".P}))
(@Q,(Q,SuU{P,P})),PCP; containment-
(Q,(Q,SU{PR})) reduce

(Qu (Q’a S))!Ql Cc Q

context-path-

(@Q1,(Q,5)) containment
(@,(Q,9),@:CQ target-path-

(@, (Q2,9)) containment
% context-target

(@,(Q',SU{e, P})),P' € PL
(@, (@', SU{e, P.P'}))
(Qla (Q27 {Q"Pli sy Q,Pk'}))
(Q1.Q2, (@' {P,..., P}))
(Qli (Q2'Q’7 {P17 BN Pk}))

Q € PL,S is a set of PL expressions
Q. (,9))

prefix-epsilon

interaction

epsilon

Table 1: Inference rules for key implication

time. We shall now call a key expression ¢ € K redundant
if K\ {¢} | ¢, in other words, if (K \ {¢})* = K*.

One approach to minimizing a set K of key expressions is
to examine each element and test whether it is redundant
or not. Redundant key expressions are removed. Notice
that in this approach, the set K is given beforehand. In
our scenario, only the XML tree T is given, we don’t know
what the keys are. The task is to mine T and determine a
minimal set K, such that T = ¢ if and only if ¢ € K. To
see how to obtain a minimal set of key expressions, we first
analyze the inference rules in Table 1.

e The superkey rule entails that if (Q, (Q’, S)) € K then
any expression (Q, (Q',S’)) where S’ is a superset of
S is redundant in K.

o The subnodes rule indicates that if (Q, (Q'.Q”,{P})) €
K, then K should not contain (Q,(Q’,{Q”.P})). In
other words, in a key expression in K the target path
should be as long as possible. A similar rule, the
context-target rule, indicates that any key expression
in K should have a context path that is as short as
possible.

e The containment-reduce rule seems not to be useful for
minimizing a set of key expressions because of the su-
perkey rule. However, it implies another rule: if P; C
P;, then (Q, (Q',SU {P:})) is implied by (Q, (¢, S U
{P;})). According to this rule, the key paths of §
in (Q,(Q’',S)) should be as general as possible. Sim-
ilarly, from the context-path-containment and target-
path-containment rules, we conclude that in an expres-
sion (@, (@', S)), the path expressions Q and @’ should
be as general as possible.

o The prefiz-epsilon rule says that when € is one of the
key paths, the other key paths should be as short as
possible.

e The interaction rule allows us to shift a prefix Q’, that
is common to all key paths, to the target path Q2,
provided @' is an absolute key under Q1Q2, with key-
paths Pi,..., Pg.

e The epsilon rule shows that if Q.P is a valid path, then
(Q, (e, P)) is a key. It’s not very interesting to mine
these types of keys, and therefore, in the minimal cover
only key expressions (Q, (Q', S)), where Q' # € will be
kept.

Based on the above analysis, we define a partial order on
key expressions as follows:

Definition 5. Given two key expressions ¢ = (Q1,(Q1,
S1)) and ¥ = (Q2, (Q%, S2)) where S1 = {P1, ..., P}, So =
{P{,...,P),}, we say that ¢ precedes 1, denoted ¢ < 1, if
at least one of the following conditions is satisfied:

1. k<m, Q1 =Q2 Q7 =Q5and S1 C Ss.

2. k=m, Q2 C @1, Q5 C @}, for any P; € S1, there
exists a Pj € Sz such that P; C P; and for any P; € S,
there exists P; € S1 such that P} C P;.

3. k =m, Q1 is a prefix of @2, there exists a P, such that
Q1Q’1 = QQQIQP and {P.P1, e ,P.Pk} = {Pll, ey
P}

4. k=m, Q1 = Qz, Q) = Q5, there exists S and P,

where S = {¢, P{,..., P,_,}, Si=SU{P}, and Sg—SU
{P.P'}.

Lemma 1. The relation < is a partial order on the set of
all key expressions.

For example, relating to Figure 2, (issue, (articles.article,
{title, author})) < (issue.articles, (article, {title, author}))
and (issue, (*.article, {*, author.posi})) < (issue, (articles.
article, {title, author.posi}))

Obviously, if ¢ < 1), then 1 will not be kept in minimum
cover. Based on the partial order <, an algorithm can be
given for mining a minimal cover for the set of keys hold-
ing in a given XML tree T. However, remember that XML

data is semi-structured, and that in typical applications the
data is integrated from all types of data sources. Since every
key in the data must be 100% satisfied, a key could contain
many key paths. At the extreme case, the whole XML data
tree is the only key. Such a key is not interesting. We there-
fore deem a key expression interesting if it is satisfied in a
subset very close to T, and violated only in a very small
part of T. As an example, in a document like the one in
Figure 1, in every issue, there are many articles, and in 95%
of the cases the titles of articles can identify an issue. It
is therefore reasonable to say that the title of an article is
a key for an issue. Another problem is that in some XML
data, many expressions appear only a few times or even only
once or twice. These expressions, though they are satisfied
to a 100%, are not very interesting. For instance, in Fig-
ure 2, the path issue.articles.article.pages occurs in the tree
only once, and though (e, (issue.articles.article.pages, {€}))
is an absolute key according to the definition, it is not very
interesting. To measure the interestingness and accuracy of
a key expression with respect to a tree T', we define the sup-
port and confidence of the expression. In the definition, an
expression (Q, (Q',S5)) is called a k-key expression if there
are k key paths in S.

Definition 6. Consider a k-key expression ¢ = (Q,(Q’,
{P1, Ps,...,P;}) and an XML tree T. Let n € [Q], and
n[Q'] = {n1,n2,...,nn}. Then we denote by branches(n;,
P;) the number of P;-branches in the subtree rooted at n;.
We denote by values(n;, P;) the number of distinct values
of the subtree rooted at n.nj.P;. The support of ¢ in the
subtree rooted at m is

support(n

m k
Z H branches(n;, P;),
j=1i=1

and the confidence of ¢ in the subtree rooted at n is

Z Hvalues nj, P;)

conf(n,$) = S_prort(n)

If support(n,$) = 0, we set conf(n,) = 1.
The support of ¢ in the whole tree T is

Z support(m,)

men[Q]
The confidence of ¢ in T is

conf(T, p) = min{conf(m, ¢) : m € n[Q]}

The above definitions of support and confidence considers
the values of each branch n.n;.P; as a bag, and the sup-
port of the branches n.n;.{Pi, Ps,..., Py} is the number of
elements in the Cartesian product of all bags. There could
be other different definitions for support and confidence, for
example, the support of n.n;.{P1, Ps,..., Py} could be the
minimum number of elements of all bags. However, since
XML essentially is an object-oriented model, where two dis-
tinct objects can have the same value, the support of n.n;.
{P1, Ps,..., P} should be number of all possible combina-
tions of values of n.n;.P;. Therefore bag product seems to
be the most natural operation for defining support and con-
fidence.

Figure 4 is an example for illustrating the support and
confidence of key expression (a, (b, {c,d})). There are three

support(T,) =

branches for a.b. In the first branch, since there are 2
branches for a.b.c and 2 branches for a.b.d, the support
for (a, (b,{c,d})) in the first branch is 4. The support for
(a, (b,{c,d})) in the second and the third branch are all
1. Thus the support for (a, (b,{c,d})) in the whole tree is
6. In the first subtree of the root, the distinct values of
(a, (b, {c,d})) are {(0,2),(1,2)}, so the confidence is 2/5 =
40%. In the second subtree, the confidence is 100%. Ac-
cording to the definition, the confidence for (a, (b, {c,d})) in
the tree is 40%.

Figure 4: An example XML tree for illustrating sup-
port and confidence

A key is interesting if and only if its support is greater
than a given threshold s and the key is accurate if its con-
fidence is greater than a given threshold ¢. The threshold
s is called min-support, and c is called min-confidence. If
a key expression exceeds the thresholds, it is called an ap-
prozimate key. Now the walid path expression needs to be
redefined. A walid path in PL is the path expression such
that for any label £ € p, if £ € A or £ = {S}, then £ is the
last symbol in p, and the support of PL is greater than s.

Basically, support and confidence are two constraints for
the key expressions to be approximate keys of XML data.
The inference rules in Table 1 still hold, except for superkey,
context-path containment and target-path containment. As
an example of why these rules fail, we could have the fol-
lowing key expressions, listed with their supports and con-
fidence:

1. (e, (a.b.d, {e})) support: 5, confidence: 20%
2. (e (a.c.d,{e})) support: 20, confidence: 100%
3. (e (a. * .d,{€})) support: 25, confidence: 80%

Assume the min-support is 5 and min-confidence is 80%.
According to the definition, key expression 1 is not an ap-
proximate key, while key expression 2 and 3 both are approx-
imate keys. Notice that a.b.d in expression 1 is contained in
a. * .d, and according to the target-path-containment rule,
if expression 3 is a key, expression 1 should also be a key.
Thus, we call expression 3 a fake approximate key because
now expression 3 can not derive expression 1, and therefore
expression 3 should not be retained.

Formally, a k-key expression (Q1,Q},S) is called a fake
key if its support is greater than min-support and its con-
fidence is greater than min-confidence, and there exists an-
other expression (Q2, @3, S) such that @2 C Q1 and Q) =

@5, or Q5 C Q) and Q1 = 2, and this expression has ei-
ther support less than min-support or confidence less than
min-confidence.

4. ALGORITHM

In [3], Agrawal et al. give the classical algorithm, Apriori,
to mine all frequent item sets. The pruning rule used in
Apriori is that if a (k-1)-item set is infrequent, then all its
supersets are also infrequent. To mine a set of approximate
key expressions, we still use the superkey rule as a pruning
rule, even if it is not necessarily sound for approximate keys.
Our superkey pruning rule says that if a k-key is found, this
key will not be extended to a candidate (k+1)-key expres-
sion. Such a (k+1)-key expression could or could not hold,
but we do not consider them interesting. Furthermore, an-
other pruning rule is that if the support of a k-key expression
is not greater than min-support, it will not be extended to
a candidate (k+1)-key expression.

To simplify our algorithm, we use “?” to represent “*”.
The symbol “?” stands for any one node label, while “*”
represents any (possibly empty) finite sequence of node la-
bels. Thus, for any valid path expression in XML tree, if
that path expression contains “*”, we can replace “*” with
0 or more occurrences of “?”. As an example, in Figure 2,

4.1 Phase I: preparing seeds

4.1.1 Constructing a Prefix Tree

Assume that the DTD of the XML data does not exist,
or is not available. By looking at the XML data document
as a description of its XML tree in pre-order, we parse the
XML tree, and generate its prefiz tree. In the prefix tree,
any two paths from the root to a leaf, but not including the
data values, are different. Figure 5 shows the algorithm for
constructing the prefix tree. In the algorithm, a token is a
tag or the string between two tags.

A mapping table M is used to store data values of path
expressions. For each distinct data value, we assign it a
short identifier, thus saving space if the value occurs in many
paths.

In the prefix tree every leaf represents a path expression
with labels from root to the leaf. If a label appears more
than once under its parent in the data, it will be marked
with “x”. The marks will be used for generating relative key
expressions. Finally, in the leaf, the support and the distinct
values of the path are recorded, for later use in generating
candidate 1-key expressions.

In the algorithm, the wild-card “?” is considered. For any
path expression that contains “?”, if “?” only represents
one label in the tree then this “?” does not have to be
considered. Thus in the end of the algorithm, some branches
of the prefix tree are cut off. As an example, in Figure 6,
there could be a path root.issue. ?.article.title, since here the
? only represents “articles”, it is cut off from the tree.

Figure 6 is a prefix tree for the corresponding XML data
in Figure 2. Note that the support and distinct values for
each leaf are not shown in the figure due to lack of space.

4.1.2 Generating absolute 1-keys

Among all the paths in the prefix tree, candidate 1-key
expressions will be generated. Remember that in a key ex-
pression (@, (Q',S)), @ should be as short as possible, Q’

INPUT: An XML data document
OUuTPUT: The prefix tree T for the document
METHOD:
Create an empty tree, initialize the mapping table M
currentPath == {e}
for each token t read from the document
if t is a start tag
if t is a new tag of currentPath
for each path P in T that is more general
than currentPath
follow P from root to the last node n
insert ¢ as the child of n
if 7 is not the child of n
insert 7 as the child of n
In the data, if ¢ appears more than once under currentPath
mark ¢t with “x”
currentPath == currentPath.t
else if t is an end tag
remove the last tag from currentPath
else if t is a data value and t doesn't appear in M
assign t an identifier VID
for each path P that is more general that currentPath
add the support of the currentPath to the support of P
if t is a new value
insert VID to the leaf,
add 1 to the number of distinct values
In the prefix tree, check the key expressions with “?”. For each
?, if this ? only can be replaced by one particular label to make
it valid, cut the branches corresponding to the expression with
“?" in the tree.

Figure 5: Parsing XML data

should be as long as possible, and the number of elements
in § should be as small as possible, so for each path, we
generate a candidate 1-key expressions with both @ and S
equal to {e¢}. Table 2 shows the support and confidence of
absolute 1-key expressions corresponding to the branches of
the prefix tree for the XML data in Figure 2. In the table,
1 in key expressions represents issue.

Suppose that the min-support is 3, and the min-confidence
is 80%. In Table 2, many 1-key expressions are supported,
while their confidences are less than min-confidence. The
key expressions in rows 8 and 9 are infrequent though their
confidences are 100%. This leaves us with the approximate
key expressions in rows 4, 10, 12 and 13.

4.1.3 Generating candidate relative 1-key expressions

The relative keys can only exist in the branches marked
with ”%”. For relative keys, we use a pruning rule based
on the “subnodes” inference rule. The pruning rule says
that if an expression (Q1, (Q1, {P1})) is an absolute key, rel-
ative keys (Q2, (Q%, {P:})) such that Q1.Q1.Pi=Q2.Q5.P>
will not be generated. For instance, if (e, (issue.articles.art-
icle.title, {e})) is an absolute key, though label article is
marked with "%”, relative key (issue.articles.article, (title,
{€})) will not be generated.

Next we will look for candidate relative 1-keys. If (¢, (I3 . ..
ln,{€})) is an absolute 1-key we don’t generate any rela-
tive 1-key candidates from it. Otherwise, if the expres-
sion is supported, but do not have enough confidence to
be an absolute key, and if there is one or more labels /;,,

.., l;, marked with "%, starting from l;,, we generate

root

®

@pos @pos

@posi

Figure 6: prefix tree of the XML data

| | Key expressions | sup | conf |

1 | (e (i.volume, {€})) 3 66.7%
2 | (e (i.number, {€})) 3 66.7%
3 | (¢ (2.7,{e})) 6 66.7%
4 | (e (i artzcles article.title, {e})) 6 83.3%
5 | (e, (t.articles.article. author, {e})) 13 | 69.2%
6 | (¢ (i.articles.article.author.posi, {e})) | 13 | 23%

7 | (¢ (i.articles.article.?, {€})) 20 | 5%

8 | (e, (i.articles.article.pages, {€})) 1 100%
9 | (e, (i.reports.report.title, {€})) 2 100%
10 | (e, (i.reports.report.author, {e})) 6 83.3%
11 | (e, (i.reports.report.author.posi,{e})) | 6 50%

12 | (e, (i.reports.report.?, {e})) 8 87.5%
13 | (e, (2.2.7.title), {€})) 8 100%
14 | (e, (4.7.7.author), {€})) 19 | 57.9%
15 | (e, (3.7.7.author.posi), {€})) 19 | 15.8%

Table 2: Absolute 1-key expressions from the prefix
tree

candidate relative 1-keys (l1...li;, (li;+1...ln, {€})), where
Jj = 1,...,k. In these key expressions, if in label l;,,,...,
l, there is no ”?”, we can conclude directly that (I;...1;,,
(lijyr ---ln, {€})) has confidence 100% and is an approx-
imate relative 1-key. Otherwise, we designate the expres-
sion as a candidate relative 1-key. For instance, the expres-
sion in the fifth row generates the candidate relative 1-keys
(issue, (articles.article.author, {€})), and (issue.articles.
article, (author, {e})). Furthermore, from the expression in
row 1, we generate the candidate relative 1-key expression
(issue, (volume, {€})). Since the path volume does not con-
tain the symbol “?” we conclude that it is an approximate
relative 1-key.

4.1.4 Post-processing

For this and each subsequent pass, a post-processing does
the following:

1. For each new k-key ¢, remove all k-keys 1) where
¢ <.

2. Remove fake keys.

For instance, in our example, the expression in row 12 pre-
cedes the expression in row 4, so the latter will be removed
from the reduced set.

4.2 Phase Il: Mining absolute and relative k-
keys
From pass one we can get some absolute 1-key expressions
that are satisfied in the XML data with min-support and
min-confidence, some supported absolute 1-key expressions
and some candidate relative 1-key expressions.

4.2.1 Passtwo: generating candidates

In pass two, first of all, we generate candidate absolute 2-
key expressions from pairs of supported absolute key expres-
sions. There are two rules for generating candidate absolute
2-key expressions.

1. A candidate can not be generated by two 1-key ex-
pressions such that one precedes the other by <. For
example, in Table 2, since the expression in row 1 pre-
cedes the expression in row 3, the pair (1,3) will not
generate any candidate.

2. To generate candidates, from two key expressions (Q,
(Lo deligr. oo dm, {€})) and (Q, (I -+ Deliqy. -+
Ay, {€})) we generate the candidate 2-key expressions
(Qa (ll e 'lj: {lj+1' gy l;’+1' T l;}))’ where j =
1,.. .

) i

For instance, from the two supported 1-key expressions (e,
(a.b.c.d,{€})) and (¢, (a.b.c.e,{€})), we generate the candi-
date 2-key expressions (¢, (a.b.c, {d,e})), (¢, (a.b, {c.d,c.e}))
and (e, (a, {b.c.d,b.c.e})).

Obviously, the support and confidence for a 2-key expres-
sion cannot be calculated directly from the support and con-
fidence of the 1-key expressions that generated it. We are
not going to use a complicated match algorithm to count
the support of a 2-key expression, as is done in [14, 11]. We
notice that the support of (Q, (Q’, {P1, P2})) is the sum of
the support of (Q',{P1, P2}) in the subtrees rooted at the
nodes in [@]. For this we scan the data and for each n € [@Q]
we calculate support(n,(Q',{Pi, P2})). At the same time,
we map the data value of every expression in the data to the
corresponding identifier in the mapping table.

The confidence for a relative key expression is the least
confidence in all subtrees rooted at some n € [Q]. When we
have reached n, we calculate the confidence of the expres-
sion in current subtree, and update the confidence of the
expression in whole tree if necessary.

4.2.2 Mining k-keys

From the relative 1-key expressions with enough support
and low confidence, some candidate relative 2-key expres-
sions can be generated. The rule is the same as the rule for
generating candidate absolute 2-key expressions.

To generate candidate absolute or relative k-keys from
two (k-1)-key expressions with k > 2, we use the following
Theorem.

Theorem 1. Let k > 2. A k-key expression (Q, (Q', {P1,
...y Pyr_2, Pr_1, Pr})) can be supported and have confidence
only if the (k-1)-key expressions (Q, (@', {Pi, ..., Pr_o,
P.})) and (Q,(Q',{P1,...,Pr—2,Px_1})) are candidate (k-
1)-key expressions, and all m-key expressions (Q, (Q’, S)),

where m < k and S C {Pi,...,Px_2,Py_1, P} are sup-
ported.

Proof sketch: First, any m-key expressions (@, (Q', S)),
where m < k and S C {Py,...,Px—2, Px—_1, Py}, if it is not
supported, it’s not valid. From an invalid key expression, we
will not generate any candidates. Second, noted that in pass
two, from two 2-key expressions, by rule 2, all possible can-
didates are generated. When k > 2, from (Q, (@', {P\, ...,
Pk—2) Pk})) and (Qa (QI, {P17 LR Pk—27 Pk—l}))) Only (Qa
(Q', {Pl, feey Pk_g, Pk—l, Pk})) need to be generated. All
other k-key expressions, for instance, (Q, (Q”, {PPi,...,
PPy_>, PP,_1,PP;})) where @ C Q’ and Q@ = Q” P, will
not be generated. They can be generated by other two sup-
ported (k-1)-key expressions with context path @ and target

path Q7.

Thus, in the algorithm, when k£ > 2 any two (k-1)-key
expressions can generate at most one k-key expression. By
the superkey rule, if a k-key expression can be generated
from two (k-1)-key expressions while one of the (k-1)-key
expressions is already satisfied in the XML data, this k-key
expression candidate will not be generated.

The calculation of the support and confidence of k-key
expressions is done in the same way as in pass two.

The algorithm terminates when there are no more candi-
date absolute and relative keys generated.

4.3 Discovery from real datasets

To test if our algorithm gets the key expressions as ex-
pected, we applied the algorithm to the XML data at
http://www.acm.org/sigmod/record/xml/ [1]. The data
contains 67 issues of SIGMOD Record and there are more
than 1500 articles in these issues. The data in the file is
similar to the data in Figure 1. We ran our program on
a DELL PC with a CPU clock rate of 800MHz, 256 MB
of main memory, on a Windows 2000 professional platform.
The program is written in the C++ language. By selecting
min-support as 67 and min-confidence as 90%, the running
time was about 8 seconds, 5 absolute keys and 3 relative
keys were found.

The absolute key expressions are:

o1 : (€, (issue, {volume, number}))

@2 : (€, (issue.articles.article.title, {e}))

o3 : (€, (issue, {number, articles.article.init Page, articles.
article.endPage}))

o4 : (€, (issue, {volume, articles.article.?}))

s ¢ (e, (issue.articles.article, {?, authors.author}))

Key ¢1 tells us that in an issue, the volume and number
form a key for the issue. Key ¢2 shows that a title is a
key of an article, or a key of articles, or a key of an issue.
The confidence for this key is 98%, which means that it’s
not a precise key. However, we have enough confidence to
believe it is a key. Key ¢3 tells us that the issue number,
the initpage and endpage of an article could be a key of
issue. “?” appears in ¢4 and ¢s, in both expressions, “?”
can be replaced with title, or initPage or endPage. Key ¢4
says that the volume of an issue and the title, or initPage or
endPage of an article can identify an issue, and ¢ says that
the name of an author and the title, or initPage or endPage
of an article can identify an article, articles or an issue.

The relative key expressions are:

¢1 : (issue7 (?7 {6}))
P2 ¢ (issue, (articles.article.?,{e}))
Y3 : (issue.articles.article.authors.author, (position, {€}))

All these relative keys have clear meaning, for instance,
11 means that in an issue, either the volume or the number
is unique while it’s not unique in the whole data.

5. CONCLUSION

Based on the definition of absolute and relative keys, and
their inference rules, we propose that for describing the keys
that hold in an XML document only a minimal cover needs
to be considered. Since XML data is semi-structured and
usually integrated from heterogeneous sources, we cannot
expect keys be satisfied at 100%. To overcome this we first
define the support of a key expression. Considering that
many keys are satisfied in the main part of the XML data,
and not satisfied only in a small part of the data, we also
define the confidence of a key expression. Omnly when the
support of a key expression is greater than a given min-
imum support and the confidence is greater than a given
minimum confidence, we consider it a key expression that is
(approximately) satisfied in the XML data.

We give an algorithm for mining a reduced set of approx-
imate keys with sufficient support and confidence. In the
algorithm, the wild-card in key expressions is also consid-
ered. The effectiveness of the algorithm is then tested by
real datasets. The results show that mining keys in XML
documents is efficiently implementable and that the keys
discovered make intuitive sense.

6. REFERENCES

[1] ACM SIGMOD Record: XML Version,
http://www.acm.org/sigmod /record/xml/.

[2] S. Abiteboul, R. Hull and V. Vianu. Foundations
of databases, Addison-Wesley, 1995.

[3] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In Very Large Data
Bases, pages 487-499, Santiago, 1994.

[4] M. Arenas and L. Libkin. A normal form for XML
documents, Proceedings of the 21th Symposium on
Principles of Database Systems (PODS’02), pages
85-96, 2002.

[6] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Eztensive Markup Language (XML) 1.0. World
Wide Web Consortium (W3C), Feb. 1998.
http://www.w3.org/TR/REC-xml.

[6] P. Buneman, S. Davidson, W. Fan, C. Hara,

W. Tan. Reasoning about Keys for XML. In 8th
International Workshop on Databases and
Programming Languages (DBPL 01).

[7] P. Buneman, W. Fan,J. Siméon, S. Weinstein.
Constraints for semistructured data and XML.
SIGMOD Record, 30(1):47-55, 2001.

[8] S. Davidson, Y. Chen and Y. Zheng. Technical
report, Indexing Keys in Hierarchical Data, 2001.

[9] W. Fan, L. Libkin. On XML Integrity Constraints
in the Presence of DTDs. In Proceedings of ACM
Symposium on Principles of Database Systems
(PODS), pages 114-125, Santa Barbara, California,
May 2001.

[10]

[11]

[12]

W. Fan, J. Siméon. Integrity Constraints for XML.
In Proceedings of ACM Symposium on Principles
of Database Systems (PODS), pages 23-34, Dallas,
Texas, May 2000.

C. M. Hoffmann and M. J. O’Donnell. Pattern
matching in trees, Journal of the ACM,
29(1):68-95, 1982.

Y. Huhtala, J. Kivinen, P. Porkka and H.
Toivonen. Efficient Discovery of Functional and
Approximate Dependencies Using Partitions,
ICDE, pages 392-401, 1998.

A. Layman et al. XML-Data. W3C Note, Jan.
1998. http://www.w3.org/TR/1998/
NOTE-XML-data.

K. Wang, H. Liu. Discovering Typical Structures of
Documents: A Road Map Approach. In 21st
Annual International ACM SIGIR Conference on
Research and Development in Information
Retrieval, pages 146-154, 1998.

P. Buneman, S. Khanna, K. Tajima, W. Tan,
Archiving Scientific Data. Proceedings of ACM
SIGMOD International Conference on
Management of Data, pages 1-12, 2002.

J. Kivinen and H. Mannila Approximate
dependency inference from relations. Theoretical
Computer Science, 149:129-149, 1995.

H. Mannila and K.-J. Rdiha On the complexity of
inferring functional dependencies. Discrete Applied
Mathematics, 40:237-243, 1992.

Calders T., Paredaens J. Axiomatization of
frequent sets. In Proceedings of the International
Conference on Database Theory, pages 204-218,
London, 2001.

