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ABSTRACT
We describe Map-Reduce implementations of two of
the most prominent DFA minimization methods, namely
Moore’s and Hopcroft’s algorithms. Our analysis shows that
the one based on Hopcroft’s algorithm is more efficient, both
in terms of running time and communication cost. This is
validated by our extensive experiments on various types of
DFA’s, with up to 217 states. It also turns out that both
algorithms are sensitive to skewed input, the Hopcroft’s al-
gorithm being intrinsically so.

CCS Concepts
•Theory of computation → MapReduce algorithms;
Formal languages and automata theory;

Keywords
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1. INTRODUCTION
Google introduced Map-Reduce (MR) [3] as a parallel pro-

gramming model that can work over large clusters of com-
modity computers. Map-Reduce provides a high-level frame-
work for designing and implementing such parallelism. MR
is by now well established in academia and industry. While
many single round (non-recursive) problems have been stud-
ied and implemented, recursive problems that require several
rounds of Map and Reduce are still being explored. A grow-
ing number of papers (see e.g. [1, 10, 13]), deal with such
multi-round MR algorithms.

The problem of DFA minimization provides an interest-
ing vehicle for studying multi-round MR problems for sev-
eral reasons. Firstly, because of its importance and wide use
in applications. Secondly, because of the multi-round struc-
ture of this problem. In contrast with single-round problems
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such as the NFA intersections studied in [4], multi-round
problems require coordination between rounds. Thirdly, al-
though DFA minimization is fairly straightforward to ex-
press in Datalog, the results of the present paper show that
designing DFA minimization algorithms in MR is far from
trivial. Thus, we hope that DFA minimization can shed
some light on the more general problem of implementing
arbitrary Datalog programs in the MR framework.

We note that DFA minimization has been studied for var-
ious parallel architectures (see e.g. [6, 11, 14, 15]). However,
all of these architectures contain some kind of shared mem-
ory, while the Map-Reduce model corresponds to a shared-
nothing architecture. To the best of our knowledge, ours
is the first paper studying DFA minimization in MR. How-
ever, somewhat similar problem of graph reductions based
on bi-simulation has recently been the object of MR imple-
mentations, see e.g. [8] and [12].

In the serial context, the two major algorithms for DFA
minimization are the one of Moore [9] and the one of
Hopcroft [5]. Of these, Hopcroft’s algorithm is considered
superior due to its running time, which is less than that of
Moore’s algorithm. In this paper we derive MR versions
of Moore’s and Hopcroft’s algorithms. The resulting algo-
rithms are called Moore-MR and Hopcroft-MR, respectively.

We analyze Moore-MR and Hopcroft-MR in terms of to-
tal communication cost, i.e. the size of all data communi-
cated by mappers and reducers over the commodity cluster.
These turn out to be O(k2n2 logn) and O(kn2 logn) bits,
respectively. Here n is the number of states of the automa-
ton to be minimized, and k is the size of its alphabet. We
have implemented both algorithms in Apache Hadoop, and
performed extensive experiments on synthetically generated
DFA’s, with various graph topologies. These topologies al-
low us to compare the communication cost and running time
of the algorithms with respect to worst and average inputs,
as well as to see the effect of skewed input. Our experi-
ments validate the analysis and show that Moore-MR and
Hopcroft-MR are comparable in performance, but for larger
alphabets Hopcroft-MR is more efficient. The experiments
also show that the performance of both algorithms deterio-
rate when the input is skewed.

The rest of this paper is organized as follows. Section 2
provides the necessary technical definitions, and Section 3
describes Moore’s and Hopcroft’s algorithms. In Section 4
we adapt the two algorithms for the MR framework along
with the technical analysis of the communication cost for
the two adapted algorithms. Section 5 describes the experi-
mental results. Conclusions are drawn in the last section.
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2. PRELIMINARIES
In this section we introduce the basic technical preliminar-

ies and definitions. A Finite Automaton (FA) is a 5-tuple
A = (Q,Σ, δ, qs, F ), where Q is a finite set of states, Σ is a
finite set of alphabet symbols, δ ⊆ Q × Σ × Q is the tran-
sition relation, qs ∈ Q is the start state, and F ⊆ Q is a
set of final states. By Σ∗ we denote the set of all finite
strings over Σ. Let w = a1a2 . . . a` where ai ∈ Σ, be a
string in Σ∗. An accepting computation path of w in A is
a sequence (qs, a1, q1), (q1, a2, q2), . . . , (q`−1, a`, qf ) of tuples
of δ, where qf ∈ F . The language accepted by A, denoted
L(A), is the set of all strings in Σ∗ for which there exists an
accepting computation path in A.

An FA A is said to be deterministic if for all p ∈ Q and
a∈Σ there is a unique q ∈ Q, such that (p, a, q) ∈ δ. Oth-
erwise, the FA is non-deterministic. Deterministic FA’s are
called DFA’s, and non-deterministic ones are called NFA’s.
By the well known subset construction, any NFA A can be
turned into a DFA AD, such that L(AD) = L(A). For a
DFA A = (Q,Σ, δ, qs, F ), we also write δ in the functional
format, i.e. δ(p, a) = q iff (p, a, q) ∈ δ. For a state p ∈ Q, and

string w = a1a2 . . . a` ∈ Σ∗, we denote by δ̂(p, w) the unique
state δ(δ(· · · δ(δ(p, a1), a2) · · · , a`−1), a`). Then, for a DFA

its language L(A) can be defined as {w : δ̂(qs, w) ∈ F}.
A DFA A is said to be minimal, if all DFA’s B, such that

L(A) = L(B), have at least as many states as A. For each
regular language L, there is a unique (up to isomorphism of
their graph representations) minimal DFA that accepts L.

The DFA minimization problem has been studied since the
1950’s. A taxonomy of DFA minimization algorithms was
created by B. W. Watson in 1993 [16]. The taxonomy re-
veals that most of the algorithms are based on the notion of
equivalent states (to be defined). The sole exception is Brzo-
zowski’s algorithm [17], which is based on reversal and deter-
minization of automata. Let A = (Q,Σ, δ, qs, F ) be a DFA.
Then the reversal of A is the NFA AR = (Q,Σ, δR, F, {qs}),
where δR = {(p, a, q) : (q, a, p) ∈ δ}. Brzozowski showed
in 1962 that if A is a DFA, then (((AR)D)R)D is a mini-
mal DFA for L(A). This rather surprising result does not
however yield a practical minimization algorithm since there
is a potential double exponential blow-up in the number of
states, due to the two determinization steps.

The rest of the algorithms are based on equivalence of
states. Let A = (Q,Σ, δ, qs, F ) be a DFA, and p, q ∈ Q.
Then p is equivalent with q, denoted p ≡ q, if for all strings
w ∈ Σ∗, it holds that δ̂(p, w) ∈ F iff δ̂(q, w) ∈ F . The rela-
tion ≡ is an equivalence relation, and by Q/≡ we denote the
induced partition of the state-space Q. The quotient DFA
A/≡ = (Q/≡,Σ, γ, qs/≡, F/≡) where γ(p/≡, a) = δ(p, a)/≡,
is then a minimal DFA, such that L(A/≡) = L(A). An im-
portant observation is that ≡ can be computed iteratively
as a sequence ≡0, ≡1, ≡2, . . . ,≡m = ≡, where p ≡0 q if
p ∈ F ⇔ q ∈ F , and p ≡i+1 q if p ≡i q and δ(p, a) ≡i δ(q, a),
for all a ∈ Σ. For each DFA A the sequence converges in
at most ` steps, where ` is the length of the longest simple
path from the start state to a final state. This means that
Q/≡ can be computed iteratively, each step refining Q/≡i to
Q/≡i+1 , and eventually converging to Q/≡.

We reserve the letter n for the number of states in a DFA
and the letter k for the size of its alphabet. We assume that
Σ = {a1, . . . , ak}, and use a and b as metalinguistic variables
denoting arbitrary alphabet symbols.

3. THE CLASSICAL ALGORITHMS

3.1 Moore’s Algorithm
The first iterative algorithm was proposed by E. F. Moore

in 1956 [9]. The algorithm computes the partition Q/≡ by
iteratively refining the initial partition π = {F,Q\F}. After
termination, π = Q/≡. In the algorithm, the partition π is
encoded as a mapping that assigns to each state p ∈ Q a
block-identifier πp, which is a bit-string. The number of
blocks in π, i.e. the cardinality of the range of π, is denoted
|π|. The value of π at the i:th iteration of lines 8–11 is
denoted πi. The symbol “·” on line 10 of the algorithm
denotes concatenation (of strings).

Algorithm 1 Moore’s DFA minimization algorithm

Input: DFA A = (Q, {a1, . . . , ak}, δ, qs, F )
Output: π = Q/≡
1: i← 0
2: for all p ∈ Q do . The initial partition

3: if p ∈ F then πip ← 1

4: else πip ← 0

5: end if
6: end for
7: repeat
8: i← i+ 1
9: for all p ∈ Q do

10: πip ← πi−1
p · πi−1

δ(p,a1)
· πi−1

δ(p,a2)
· . . . · πi−1

δ(p,ak)

11: end for
12: until |πi| = |πi−1|

The minimal automaton is now obtained by replacing Q
by π, qs by πqs , F by {πf : f ∈ F}, and replacing each
transition (p, a, q) ∈ δ by transition (πp, a, πq), and then
removing duplicate transitions.

3.2 Hopcroft’s Algorithm
This algorithm was proposed by J. E. Hopcroft in 1971

[5]. We start with some definitions. Let A = (Q,Σ, δ, qs, F )
be a DFA, S, P ⊆ Q, S ∩ P = ∅, and a ∈ Σ. Then 〈S, a〉 is
called a splitter, and

P ÷ 〈S, a〉 = {P1, P2}, where

P1 = {p ∈ P : δ(p, a) ∈ S}
P2 = {p ∈ P : δ(p, a) /∈ S}.

If either of P1 or P2 is empty, we set P ÷ 〈S, a〉 = P . Oth-
erwise 〈S, a〉 is said to split P . Furthermore, for S ⊆ Q and
a ∈ Σ, we define

a〈S〉 = {s ∈ S : δ(p, a) = s for some p ∈ Q}.

That is, a〈S〉 consists of those states in S that have an in-
coming transition labeled a. As in Moore’s algorithm, we
encode the current partition with a function π that maps
states to integers. We also define

Bj = {p ∈ Q : πp = j}.



Algorithm 2 Hopcroft’s DFA minimization algorithm

Input: DFA A = (Q,Σ, δ, qs, F )
Output: π = Q/≡
1: Execute lines 1 – 6 of Algorithm 1 . Compute π0

2: Q ← ∅ . Queue set
3: for all a ∈ Σ do
4: if |a〈B0〉| < |a〈B1〉| then Add 〈B0, a〉 to Q
5: else Add 〈B1, a〉 to Q.
6: end if
7: end for
8: i← 0
9: while Q 6= ∅ do

10: i← i+ 1 ; size← |πi−1|
11: Pick and delete a splitter 〈S, a〉 from Q.
12: for each Bj ∈ πi−1 which is split by 〈S, a〉 do
13: size← size+ 1
14: for all p ∈ Bj , where δ(p, a) ∈ S do
15: πip ← size . New block-number
16: end for
17: for all b ∈ Σ do . Update Q
18: if 〈Bj , b〉 ∈ Q then
19: Add 〈Bπi

p
, b〉 to Q

20: else
21: if |b〈Bj〉| < |b〈Bπi

p
〉| then

22: add 〈Bj , b〉 to Q
23: else add 〈Bπi

p
, b〉 to Q.

24: end if
25: end if
26: end for
27: end for
28: end while
29: π ← πi

At line 10, the size of the current partition (the number of
equivalence classes) is stored in variable size. At lines 12–16
we examine all blocks Bj ∈ πi−1 that are split by 〈S, a〉, and
all states p ∈ Bj , where δ(p, a) ∈ S, are given the new block
identifier size for πi at line 15. At the end, the minimal
automaton A/≡ can be obtained as in Moore’s algorithm.

4. THE ALGORITHMS IN MAP-REDUCE
We assume familiarity with the Map-Reduce model (see

e.g. [7]). Here we will only recall that the initial data is
stored on the DFS, and each mapper is responsible for a
chunk of the input. In a round of Map and Reduce, the map-
pers emit key-value pairs 〈K,V 〉. Each reducer K receives
and aggregates key-value lists of the form 〈K, [V1, . . . , V`]〉.
where the 〈K,Vi〉 pairs were emitted by the mappers.

4.1 Moore’s Algorithm in Map-Reduce
Our Map-Reduce version of Moore’s algorithm, called

Moore-MR, consists of a pre-processing stage, and one or
more rounds of map and reduce functions.

Pre-processing: Let A = (Q, {a1, . . . , ak}, δ, qs, F ). We
first build a set ∆ from δ. The set ∆ will consist of an-
notated transitions of the form (p, a, q, πp, D), where πp is a
bit-string representing the initial block where the state p be-
longs, D = + indicates that the tuple represents a transition
(an outgoing edge), and D = − indicates that the tuple is
a ”dummy” transition carrying in its fourth position the in-
formation of the initial block of the aforementioned state q.

More specifically, for each (p, a, q) ∈ δ we insert into ∆
(p, a, q, 1,+) and (p, a, q, 1,−) when p, q ∈ F
(p, a, q, 1,+) and (p, a, q, 0,−) when p ∈ F, q 6∈ F
(p, a, q, 0,+) and (p, a, q, 1,−) when p 6∈ F, q ∈ F
(p, a, q, 0,+) and (p, a, q, 0,−) when p, q 6∈ F.

Recall that Moore’s algorithm is an iterative refinement
of the initial partition {F,Q \ F}. In the MR version each
reducer will be responsible for one or more states p ∈ Q.
Since there is no global data structure, we need to anno-
tate each state p with the identifier πp of the block it cur-
rently belongs to. This annotation is kept in all transi-
tions (p, ai, qi), i = 1, . . . , k. Hence tuples (p, ai, qi, πp,+)
are in ∆. In order to generate new block identifiers, the re-
ducer also needs to know the current block of all the above
states qi, which is why tuples (p, ai, qi, πqi ,−) are in ∆. Fur-
thermore, the new block of state p will be needed in the
next round when updating the block annotation of states
r1, . . . , rm, where (r1, ai1 , p), . . . (rm, aim , p) are all transi-
tions leading to p. Thus tuples (ri, aij , p, πp,−) are in ∆.

Map function: Let ν be the number of reducers avail-
able, and h : Q → {0, 1, . . . , ν − 1} a hashing function.
At round i each mapper gets a chunk of ∆ as input, and
for each tuple (p, a, q, πi−1

p ,+) it emits the key-value pair

〈h(p), (p, a, q, πi−1
p ,+)〉, and for each tuple (p, a, q, πi−1

q ,−)

it emits 〈h(p), (p, a, q, πi−1
q ,−)〉 and 〈h(q), (p, a, q, πi−1

q ,−)〉.

Reduce function: Each reducer ρ ∈ {0, 1, . . . , ν − 1} re-
ceives, for all p ∈ Q where h(p) = ρ, all outgoing transitions

• (p, a1, q1, π
i−1
p ,+), . . . , (p, ak, qk, π

i−1
p ,+),

as well as dummy transitions

• (p, a1, q1, π
i−1
q1 ,−), . . . , (p, ak, qk, π

i−1
qk ,−), and

• (r1, ai1 , p, π
i−1
p ,−), . . . , (rm, aim , p, π

i−1
p ,−).

The reducer can now compute

πip ← πi−1
p · πi−1

q1 · π
i−1
q2 · . . . · π

i−1
qk ,

corresponding to line 10 in Algorithm 1 and write the new
value πip in the tuples (p, a, qj , π

i−1
p ,+), for j ∈ {1, . . . , k},

and (rj , a, p, π
i−1
p ,−), for j ∈ {1, . . . ,m}, which it then out-

puts.
The reducer also outputs a “change” tuple (p, true) if

the new value of πip means that the number of blocks in

πi has increased. In order to see how reducer h(p) can
determine this internally, consider for example the DFA
A = ({p, q, r}, {a}, δ, p, {r}), where δ(p, a) = q, δ(q, a) = r,
and δ(r, a) = r.

Round i πip πiq πir
0 0 0 1

1 0·0 0·1 1·1
2 00·01 01·11 11·11
3 0001·0111 0011·1111 1111·1111

After round 1 a new block was created for state q, and
after round 2 a new block was created for state p. This
can be seen from the fact that after round 1, πp consists of
two equal parts 0 and 0, whereas πq consists of two distinct
parts 0 and 1. Similarly, after round 2, πq still consists of
two distinct parts, whereas πp has changed from two similar



parts to two distinct parts. We conclude that a new block
has been created for p but not for q. After round 3, all
block-identifiers consist of two distinct parts, as they did
after round 2. No new blocks have been created, and the
algorithm can terminate.

The above can be generalized as follows: If |Σ| = k, then
a block-identifier πp is a bit-string that consists of k+ 1 bit-
string components from the previous round. If the number
of components have increased, it means that a new block-
identifier has been created. The salient point is that the
increase can be detected inside reducer h(p), which then
can emit a “change” tuple (p, true).

Termination detection: At he end of each MR-round, if
any change tuples (p, true) have been emitted, it means that
another round of MR is needed.

Proposition 1. At round i of Moore-MR, πip = πiq if and
only if p ≡i q.

Proof. We have π0
p = π0

q iff p ≡0 q by construction.

Assume that πi−1
p = πi−1

q iff p ≡i−1 q, and suppose that

πip = πiq. In the i:th Map-Reduce round,

πip = πi−1
p · πi−1

δ(p,a1)
· . . . · πi−1

δ(p,ak)
, and

πiq = πi−1
q · πi−1

δ(q,a1)
· . . . · πi−1

δ(q,ak)
.

By the inductive hypothesis, all the above (k + 1) compo-
nents are equal iff p ≡i−1 q and δ(p, aj) ≡i−1 δ(q, aj) for all
j ∈ {1, . . . , k} iff p ≡i q.

For proving termination of the algorithm, we denote by
sub(πip) the set of substrings obtained by dividing πip into
(k + 1) contiguous substrings of equal length.

Proposition 2. |sub(πip)| = |sub(πi−1
p )| for all states p

if and only if ≡i−1 = ≡i−2.

Proof. Suppose |sub(πip)| 6= |sub(πi−1
p )| for some state p.

We have

πip = πi−1
p · πi−1

δ(p,a1)
· . . . · πi−1

δ(p,ak)
, and

πi−1
p = πi−2

p · πi−2
δ(p,a1)

· . . . · πi−2
δ(p,ak)

.

From this it is easy to see that if, say, πi−2
δ(p,aj)

6= πi−2
δ(p,am),

then necessarily πi−1
δ(p,aj)

6= πi−1
δ(p,am). Thus, |sub(πip)| 6=

|sub(πi−1
p )| entails that |sub(πip)| > |sub(πi−1

p )|. Conse-

quently there are j,m ∈ {1, . . . , k}, such that πi−2
δ(p,aj)

=

πi−2
δ(p,am) and πi−1

δ(p,aj)
6= πi−1

δ(p,am). (Note: πi−1
δ(p,aj)

and

πiδ(p,aj) could also be πi−1
p and πip.) Proposition 1 now en-

tails that δ(p, aj) ≡i−2 δ(p, am) and δ(p, aj) 6≡i−1 δ(p, am).
Consequently, ≡i−1 6= ≡i−2.

Suppose then that |sub(πip)| = |sub(πi−1
p )|, for all states p.

This means that for all states p and all j,m ∈ {1, . . . , k},
πi−1
δ(p,aj)

= πi−1
δ(p,am) if and only if πi−2

δ(p,aj)
= πi−2

δ(p,am). Then,

by Proposition 1,

δ(p, aj) ≡i−1 δ(p, am)⇔ δ(p, aj) ≡i−2 δ(p, am) (∗)

Thus q/≡i−1 = q/≡i−2 for every state q that is of the
form δ(p, aj) for some p and aj . Since we assume that the
DFA has no inaccessible states, this is true for all states ex-
cept possibly the initial state qs. For the initial state qs, if

qs/≡i−1 6= qs/≡i−2 , there would have to be an aj ∈ Σ such

that |sub(πi−1
δ(qs,aj)

)| > | sub(πi−2
δ(qs,aj)

)|, implying, as in the

first part of the proof, that δ(qs, aj)/≡i−1 6= δ(qs, aj)/≡i−2 ,
contradicting (∗). Thus necessarily ≡i−1 = ≡i−2.

Dealing with large block-labels: It is easy to see that
the bitstrings πp, encoding the block-identifiers, grow with a
factor of k+1 at each round, meaning that the length of each
πp is O((k+1)i logn) bits at round i. In order to avoid such
excessive growth we apply the technique of Perfect Hashing
Functions (PHF). A PHF is a total injective function which
takes a subset of size s of a set S and maps it to a set T
where |T | = s and s� |S|.

However, PHF requires some shared data structures which
is not applicable in Map-Reduce environment. In order to
implement PHF in MR, in each reducer ρ, a new block num-
ber is assigned from the range {ρ ·n, . . . , ρ ·n+n−1}. Since
there can be at most n reducers, the resulting block numbers
will be in the range {0, . . . , n2−1}, and our hashing scheme is
thus guaranteed to be injective. We call the scheme Parallel
PHF (PPHF). Technically, applying the PPHF is a sepa-
rate MR job, following the main map and reduce functions
in each round.

4.2 Hopcroft’s Algorithm in Map-Reduce
This section describes Hopcroft-MR, a Map-Reduce ver-

sion of Hopcroft’s algorithm. It consists of a pre-processing
stage, and rounds of a sequence of two map-reduce jobs and
a wrap-up job.

Pre-processing. We first produce the set

∆ = {(p, a, q, π0
p,+) : (p, a, q) ∈ δ},

where π0
p = 1 if p ∈ F , and π0

p = 0 otherwise. In this stage
we also build a set Γ0, containing information about a〈B〉,
for all a ∈ Σ, and blocks B in the current partition π0. More
specifically,

Γ0 =
⋃

Bj∈π0

{(p, a, q, π0
q ,−) : (p, a, q) ∈ δ, q ∈ Bj},

Again, the initial value of πq is 1 or 0 as in Moore-MR.
The sets ∆ and Γ0 are stored in the DFS. After the pre-
processing we execute rounds of two map-reduce jobs and
a wrap-up. The main idea is that, in each round, for each
splitter 〈S, a〉 ∈ Q, and each q, where q ∈ S, the reducer h(q)
in the first MR-job calculates a new block-id for all states p,
where (p, a, q, πp,+) ∈ ∆. It will be the responsibility of the
reducer h(p) in the second MR-job to update the block-id
in all relevant tuples.

First map function. At round i, each mapper is assigned
a chunk of ∆ and chunk of Γi−1 according to Q. Note that
before the second and subsequent rounds, the set Γi−1 is
updated by the second job of the first round, according to
the partition πi−1. We have

Γi−1 =
⋃

Bj∈πi−1

{(p, a, q, πi−1
q ,−) : (p, a, q) ∈ δ, q ∈ Bj}.

For each tuple (p, a, q, πi−1
p ,+) in its chunk of ∆ the map-

per emits key-value pair 〈h(q), (p, a, q, πi−1
p ,+)〉, and for

each tuple (p, a, q, πi−1
q ,−) in its Γi−1, the mapper emits



〈h(q), (p, a, q, πi−1
q ,−)〉. After mapping all splitters, the

Master removes all elements of Q.

First reduce function. Reducer h(q) then receives, for
each 〈S, a〉 in Q, where q ∈ S, the tuples

• (p1, a, q, π
i−1
p1 ,+), . . . , (pm, a, q, π

i−1
pm ,+),

m ≤ n, of incoming a-transitions to q, and a subset of tuples

• (p1, a, q, π
i−1
q ,−), . . . , (pm, a, q, π

i−1
q ,−),

namely those that were in the current Γi−1. If state q had no
incoming a-transitions, or if q doesn’t participate in any of
the current splitters, the reducer does nothing. Otherwise,
some of the tuples (pj , a, q, π

i−1
q ,−), where j ∈ {1, . . . ,m}

were received, and for each such tuple, the state pj needs to
move to a new block. The identifier of this new block will
be computed from the values of πi−1

pj , πi−1
q , and βapj , where

βapj , is a bitvector of length k = |Σ|, such that βapj (i) = 1 if

a = ai, and βapj (i) = 0, otherwise. The reducer will output
update tuples

• (pj , π
i−1
pj , βapj , π

i−1
q )

Note that reducer h(q) will possibly also receive transitions
tuples (p′, a′, q′, πi−1

p′ ,+), in case h(q′) = h(q). These states

p′ will be updated only if (p′, a′, q′, πi−1
q′ ,−) also was re-

ceived.

Second map function. Each mapper is assigned its chunks
of ∆ as before, a chunk of Γi−1, and a chunk of the update
tuples produced by the first map-reduce job. The mapper
emits key-value pairs 〈h(p), (p, a, q, πi−1

p ,+)〉 from ∆, and

〈h(p), (p, πi−1
p , βap , π

i−1
δ(p,a))〉 from its assigned update tuples.

Second reduce function. Each reducer h(p) will receive
tuples

• (p, a1, δ(p, a1), πi−1
p ,+), . . . , (p, ak, δ(p, ak), πi−1

p ,+)

from ∆, and possibly update tuples

• (p, πi−1
p , β

ai1
p , πi−1

δ(p,ai1 )), . . . , (p, πp, β
aim
p , πδ(p,aim )),

where m ≤ k. If the reducer received the update tuples, it

first computes βp =
∨m
j=1 β

aij
p , and will then write the value

πip = πi−1
p · βp · πi−1

δ(p,ai1 ) · . . . · π
i−1
δ(p,aim ),

in the above tuples from ∆ and Γi−1. Finally, the reducer
outputs all its updated (or not) ∆ tuples and updated (or
not) Γi−1 tuples as Γi.

Proposition 3. At the end of i:th round of Hopcroft-
MR, πip = πiq if and only if p ≡i q.

Proof. We have π0
p = π0

q iff p ≡0 q by definition. As-

sume that πi−1
p = πi−1

q iff p ≡i−1 q, and suppose that

πip = πiq. Then necessarily πi−1
p = πi−1

q , βp = βq, and

πi−1
δ(p,aij )

= πi−1
δ(q,aij )

for all ij ∈ {i1, . . . , im}. By the in-

ductive hypothesis p ≡i−1 q and δ(p, aij ) ≡i−1 δ(q, aij ),
for all ij ∈ {i1, . . . , im}. The remaining possibility is that
δ(p, aj) 6≡i−1 δ(q, aj), for some j such that βp(j) = βq(j) =
0. Then, for all splitters 〈S, aj〉 in Q at round i, there are
no states r ∈ S, such that δ(p, aj) = r or δ(q, aj) = r. On

the other hand, since p ≡i−1 q it must be that δ(p, aj) ≡i−2

δ(q, aj). Since we had δ(p, aj) 6≡i−1 δ(q, aj), it follows that
either δ(p, aj) or δ(q, aj) was moved to new block at round
i − 1, which means that a sub-block of πi−1

δ(p,aj)
or πiδ(q,aj)

was put in Q for round i, contradicting our assumption that
βp(j) = βq(j) = 0.

Suppose then that p ≡i q. Then p ≡i−1 q and by the in-
ductive hypothesis, πi−1

p = πi−1
q . Also, for all j ∈ {1, . . . , k},

δ(p, aj) ≡i−1 δ(q, aj), and by the inductive hypothesis
πi−1
δ(p,aj)

= πi−1
δ(q,aj)

. Denote πi−1
δ(p,aj)

by S. We have two

cases to consider: In the first case 〈S, aj〉 is in Q at round i.
Then βp(j) = βq(j) = 1 and reducer h(p) will in the second
job concatenate πi−1

δ(p,aj)
generated in the first job by reducer

h(δ(p, aj)) to πip and reducer h(q) will concatenate πi−1
δ(q,aj)

to πiq. Since πi−1
δ(p,aj)

= πi−1
δ(q,aj)

, it follows that πip = πiq.

In the second case, 〈S, aj〉 is not in Q at round i. Then
βp(j) = βq(j) = 0, meaning that πi−1

δ(p,aj)
and πi−1

δ(q,aj)
were

not part of πip and πiq, and that therefore πip = πiq.

Wrap-up. The Master now executes lines 17 – 26 of Algo-
rithm 2. If there is any split, Master will put new splitters
into Q and initiates another round of the two map-reduce
jobs.

Dealing with large block-labels: In Hopcroft-MR the
block-identifiers πp consist of (k + 2)i bits after round i. In
order to avoid long bitstrings, between rounds we use a PHF
with range {0, . . . , n2 − 1}, as in Moore-MR.

4.3 Communication Cost of the Algorithms
It is known that, in the worst case, ≡ = ≡n−2, where

n is the number of states in the DFA [9]. This happens
in “linear” DFAs, such as A = ({p, q, r}, {a}, δ, {r}) from
Section 4.1. This means that Algorithm Moore-MR needs
n− 1 rounds in the worst case. It follows from Lemma 9 in
[2], that Hopcroft-MR requires the same number of rounds
as Moore-MR.

We need to account for the amount of data communicated
in each round. In Moore-MR each transition (p, a, q) ∈ δ
gives rise to tuples (p, a, q, πp,+) and (p, a, q, πq,−) in ∆.
The first tuple is mapped to h(p) and the second to h(p)
and h(q). This gives a replication rate of 3. A state can
be encoded using log n bits and an alphabet symbol using
log k bits. Since block-labels are in the range {0, . . . , n2−1}
using PPHF, these require 2 logn bits. We note that since
PPHF actually is a Map-Reduce job, the mappers in this
job emit updated block numbers which require (k + 1) log n
bits as a result of the concatenation operations in the main
Map-Reduce job. Thus a tuple (p, a, q, πp/πq,+/−) requires
logn+log k+logn+(k+1) logn+1 = Θ(k logn) bits. Since
there are kn transitions, a total of Θ(k2n logn) bits need to
be communicated.

The reducers in Moore-MR output the above updated two
type of tuples, and possibly an update tuple (p, true). It
follows from [5] that the total number of update tuples ever
emitted is bounded by O(n logn), which however is absorbed
in one round by O(k2n logn). We therefore have

Proposition 4. The communication cost for Moore’s
MR-algorithm is O(k2n2 logn)

The analysis for Hopcroft-MR is similar, except that there
are two MR jobs in each round, and only two tuples are



mapped for every transition in the input DFA. As in Moore-
MR, there can be at most n logn update tuples in total. All
of this yields O((logn+log k)kn) bits of communication per
round. We can assume k < n, which gives us O(kn logn)
bits per round.

Proposition 5. The communication cost for Hopcroft’s
MR-algorithm is O(kn2 logn)

The effect of skewed input. One of the problems with
the Map Reduce framework is that the reducers might not
be evenly utilized. This happens when the input is “skewed”
in some way. We note that in Moore-MR, each reducer h(p)
receives k tuples representing outgoing transitions, and k
dummy tuples. However, reducer h(p) also receives dummy
tuples representing transitions leading into p. There is at
least one, and at most n incoming transitions for each state.
Thus we can expect that those reducers h(p), where p has
a large number of incoming transitions, have to deal with
larger inputs than those reducers h(p′), where p′ has only
a few incoming transitions. Thus the reducers h(p′) might
have to wait for the h(p) reducers.

The same phenomenon occurs in the first Reduce job in
Hopcroft-MR, where each reducer h(q) receives tuples cor-
responding to transitions leading into state q. However, in
the second Reduce job all reducers receives tuples corre-
sponding to outgoing transitions. However, Hopcroft-MR
is inherently sensitive to skewness, as the splitting is deter-
mined by a state q, for all blocks B that contain a state p,
such that (p, a, q) ∈ δ. On the other hand, Moore-MR de-
termines a new block for a state p based on all its outgoing
transitions, and each sate has exactly k outgoing transitions.
The possible skewness in number of incoming transitions is
only manifested in the way we update the dummy tuples
representing transitions incident upon p. We are currently
exploring ways of circumventing this skewness sensitivity in
Moore-MR.

5. EXPERIMENTAL RESULTS
In this section we examine the behavior of Moore-MR

and Hopcroft-MR by implementing them on Apache Hadoop
2.7.2 on a cluster of two machines, and then running the al-
gorithms on various types of DFA’s. The number of reducers
in the experiments was set to 128.

5.1 Data Generation
We first briefly describe the sample data we ran the al-

gorithms on. In a DFA (Q,Σ, δ, qs, F ) where |Q| = n and
|Σ| = k, we assume that Q = {1, . . . , n}, qs is state 1, and
Σ = {1, . . . , k}. We will generate four types of DFA’s:

• Slow DFA’s. This family of automata was described
in [5]. Slow DFA’s behave badly for Hopcroft’s and Moore’s
(serial) algorithms. Here each newly generated block has
a constant number of states and at each iteration only one
block can be split. The prototypical slow DFA is a “linear”
one, where F = {n} and δ(i, j) = i + 1, for all i ∈ Q \ {n}
and j ∈ Σ. Additionally, δ(n, j) = n for all j ∈ Σ. Linear
DFA’s are already minimal.

• Circular DFA’s. These DFA’s were also utilized in orig-
inal paper of Hopcroft. For all states i and alphabet sym-
bols j, we compute δ(i, j) as follows: 1

δ(i, j) =

{
(i+ j) mod n if j ≤ d k

2
e

(i+ b k
2
c − j) mod n otherwise.

We also have F = {i ∈ Q : i mod k = 0}. This type of
DFA does not exhibit any skew. If we assume that n is a
multiple of k, we will have i ≡ j iff i mod k = j mod k, so
the minimal version of the DFA is a similar circular DFA,
only with k states.

• Replicated-Random DFA’s. We first generate a ran-
dom DFA and then make k copies of it. We add a “global”
start state 0, from which symbol i takes us to (what was) the
start state of the ith copy DFA. The minimized version of
the Replicated-Random DFA is equal to the minimized ver-
sion of the original random DFA plus the new start state 0,
and its transitions to the old start state on all symbols.

• Star DFA’s. The last type of DFA has a star shape,
where F = {n}. For all states i and alphabet symbols j, we
compute δ(i, j) as follows:

δ(i, j) =


(
i mod (n− 1)

)
+ 1 if i 6= n and j = 1

n if i 6= n and j 6= 1

n if i = n.

This type of DFA exhibits drastic skew, and will be min-
imized to ({1, n}, {1, . . . , k}, γ, 1, {n}), where γ(1, j) = n
for all j ∈ {2, . . . , k}, γ(1, 1) = 1, and γ(n, j) = n for all
j ∈ {1, . . . , k}.

5.2 Experiments
• Slow DFA’s. We compared Slow DFA’s, each with 4 to
512 states and alphabet size k = 2. As we know, Moore-MR
updates all transitions in each round. According to Table 1,
in this particular dataset, the minimization takes exactly n
rounds for Moore-MR. In each round all n states are in-
volved. Thus, this requires n2 × O(k logn) = O(n2k logn)
bits. Since k = 2, we can consider it as a constant, so
the bound becomes O(n2 logn). On the other hand, in
Hopcroft-MR the total number of updated states is inde-
pendent from the number of rounds and is bounded by
O(n logn). Figure 1 clearly shows the above polynomial
relation between these two algorithms. However, Figure 2
shows that Hopcroft-MR takes more time than Moore-MR.
This is due to the fact that Hopcroft-MR has one more job
in each round. The relation here is linear and exhibits the
combined impact of number of map-reduce jobs and rounds
on execution time.

1Since initial state is labeled as 1, we map δ(i, j) = 0 to n.
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Figure 1: Communication cost on slow DFA for the
alphabet size k = 2
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Figure 2: Execution time on slow DFA for the al-
phabet size k = 2

• Circular DFA’s. The main feature of this class of au-
tomata is that each state has k incoming transitions. It
creates a uniform distribution of transitions both in map-
ping schemas based on source state (the Key-Value pairs
〈h(p), (p, a, q, πp,+)〉 in Moore-MR and in the second map
function in Hopcroft-MR) and in mapping schemas based
on target state (〈h(q), (p, a, q, πq,−)〉 in Moore-MR and the
first map function in Hopcroft-MR).

As can be seen from Figure 3, both Moore-MR and
Hopcroft-MR have the same communication cost on small
alphabets. On the other hand, similarly to the Slow DFA’s,
when the size of the alphabet is fixed and relatively small,
we see from Figure 4 that Hopcroft-MR requires more ex-
ecution time. This is mainly because the overhead around
I/O operations and job execution, as was the case for Slow
DFA’s. We note that when the number of states is increased,
both algorithms perform similarly.

In order to see the effect of the alphabet size, we ran ex-
periments using increasing alphabet size and a fixed number
(n = 1024) of states. Figures 5 and 6 show that the com-
munication cost and running time of Moore-MR are larger
than that of Hopcrpft-MR by a factor of k, as stated earlier
in Section 4.3.
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Figure 3: Communication cost on circular DFA for
the alphabet size k = 4
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Figure 4: Execution time on circular DFA for the
alphabet size k = 4
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Figure 5: Communication cost on circular DFA for
n = 210
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• Replicated-Random DFA’s. Here the size of alpha-
bet is fixed and equal to 4. The number of states in the
Replicated-Random DFA’s varies from 24+1 to 217+1. Each
DFA is replicated four times and the copies are connected
using an auxiliary start state. Results are plotted in Fig-
ures 7 and 8. These figures show that Replicated-Random
DFA’s behave similarly to Circular DFA’s. We note that the
small standard deviation of the distribution of tuples among
reducers in the Replicated-Random DFA’s (see Table 2) does
not affect the performance significantly. The irregular value
for the DFA in Figure 8 with 25+1 states is, as shown in Ta-
ble 1, due to the fact that the set of final states for this DFA
is empty and it converges at the beginning of the process.
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Figure 7: Communication cost on replicated-
random DFA for alphabet size k = 4
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Figure 8: Execution time on replicated-random DFA
for alphabet size k = 4

• Star DFA’s. The last dataset is designed to highlight the
sensitivity of the algorithms to data skewness. The main
property of this dataset is that (k − 1)n out of kn tran-
sitions will be mapped to one reducer. Interestingly, both
algorithms demonstrate the same performance which shows
both have the same sensitivity to skewness, as this is a clear
consequence of their mapping schemas. Results are plotted
in Figures 9 and 10. In conclusion, these two algorithms
behave equally when k is fixed and small.

On the other hand, when the number of states is fixed and
the alphabet size increases, there is a noticeable difference
between Moore-MR and Hopcroft-MR. Figure 11 shows the
difference in communication cost between these algorithms
when k increases, while, Figure 12 shows this difference in
execution time.
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Figure 9: Communication cost on star DFA for al-
phabet size k = 4
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Figure 10: Execution time on star DFA for alphabet
size k = 4
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Figure 11: Communication cost on star DFA for
n = 210
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5.3 Summary
The number of rounds required for each algorithm is cate-

gorized by the data sets and is listed in Table 1. For the Slow
DFA’s, Moore-MR and Hopcroft-MR both required exactly
n rounds, as it is expected. On the other hand, for Circu-
lar DFA’s, both algorithms accomplished the task in a fixed
number of rounds, independent from the size of the alpha-
bet. The same results are observed for Star DFA’s. Lastly,
running the algorithms on Replicated-Random DFA’s shows
that Hopcroft-MR has finished the task in fewer rounds than
Moore-MR.

Table 1: Number of rounds for minimizing DFA
using Moore-MR and Hopcroft-MR with differ-
ent datasets

Dataset k n M-MR a H-MR b

Slow 2 2 to 210 n n

Circular
4 24 to 217 3 2

22 to 27 210 3 2

Random

4 24 + 1 3 2

4c 25 + 1c 2 1

4 26 + 1 4 3

4 27 + 1 4 4

4 28 + 1 4 3

4 29 + 1 5 4

4 210 + 1 4 4

4 211 + 1 5 4

4 212 + 1 4 4

4 213 + 1 4 4

4 214 + 1 5 4

4 215 + 1 5 4

4 216 + 1 5 4

4 217 + 1 5 4

Star
4 22 to 217 2 1

22 to 27 210 2 1

aMoore-MR
bHopcroft-MR
cThis randomly generated DFA does not have any final
state and will minimize into a single state machine.

Figures 13 – 16 represent the data distribution and execu-
tion time among all reducers only in the first round of exe-
cution. As is expected, for Circular and Replicated-Random
DFA’s the data is distributed and executed uniformly. How-
ever, for Star DFA’s these results show that both Moore-MR
and Hopcroft-MR are sensitive to skewness. The data dis-
tribution shows that one reducer receives most of the input
while the rest of the input is evenly shared among all other
reducers.
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Figure 13: Maximum number of transitions in re-
ducer groups for Moore-MR’s algorithm
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Figure 14: Maximum execution time in reducer
groups for Moore-MR’s algorithm
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Figure 15: Maximum number of transitions in re-
ducer groups for Hopcroft-MR’s algorithm
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Figure 16: Maximum execution time in reducer
groups for Hopcroft-MR’s algorithm



Statistical summary of the distribution of the tuples over
the reducers is shown in Table 2 for both algorithms. For all
four datasets the size of alphabet is set to 4 and the num-
ber of states is 217. The columns ”Min.” and ”Max.” show
the minimum and maximum number of tuples mapped to
each reducer in every job of the all rounds of execution. For
Hopcroft-MR we have two rows per DFA type describing the
two jobs. In Circular DFA’s, tuples are evenly distributed
for both incoming and outgoing transitions, and the stan-
dard deviation for both algorithms is 0. However, a high
degree of skewness is observed for Star DFA’s (all states
have one incoming transition except the final state, which
has (k − 1)n incoming transitions).

Table 2: Statistical summary of the distribution of
records among reducers

Dataset Min. Max. Avg. Std. Dev.

M
o
o
re

-M
R Circular 36864 36864 36864 0

Random 57600 61640 60194 768

Star 18432 804848 24576 69238

H
o
p

cr
o
ft

-M
R

Circular
16384 16384 16384 0

20480 20480 20480 0

Random
24972 28656 26890 671

35648 37712 36986 407

Star
2048 788483 8192 69240

6144 6147 6144 0.26412

6. CONCLUSION
In this paper we developed and studied implementations

in Map-Reduce of two algorithms for minimizing DFA’s.
Our analytical and experimental results show that the
Moore-MR algorithm and the Hopcroft-MR behave very
similarly when the alphabet size is small, whereas Hopcroft-
MR outperforms Moore-MR in communication cost when
the cardinality of the alphabet is at least 16, and in wall-
clock time when the cardinality is at least 32, both measured
on DFA’s with 1024 states. Moreover, our study shows
that both algorithms are equally sensitive to skewness in
the input data. However, Moore-MR (and serial Moore)
determines the block of a state based on its (constant num-
ber of) outgoing transitions, while Hopcorft-MR (and serial
Hopcroft) does it based on the transitions incident upon the
state. This means that there is potential to reduce skew-
sensitiveness in Moore-MR. In future work we will also in-
vestigate the average communication cost of Hopcroft-MR.
Finally, the capacity of the reducers (independently of the
mapping schema) may affect number of rounds needed. We
intend to explore this trade-off in future work.

7. REFERENCES
[1] F. N. Afrati and J. D. Ullman. Transitive closure and

recursive datalog implemented on clusters. In 15th
International Conference on Extending Database
Technology, EDBT, Berlin, Germany, pages 132–143,
2012.

[2] J. David. Average complexity of Moore’s and
Hopcroft’s algorithms. Theor. Comput. Sci.,
417:50–65, 2012.

[3] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[4] G. Grahne, S. Harrafi, A. Moallemi, and A. Onet.
Computing NFA intersections in Map-Reduce. In
Proceedings of the Workshops of the EDBT/ICDT
Joint Conference (EDBT/ICDT), pages 42–45, 2015.

[5] J. E. Hopcroft. An n logn algorithm for minimizing
states in a finite automaton. In Theory of Machines
and Computations, pages 189–196. Academic Press,
New York, 1971.
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