
Theoretical Computer Science 78 (1991) 159-187

North-Holland

ere
sets 0

resentation an
•

OSSI e wor

Serge Abiteboul**
INRIA Rocquencourt, France

Paris Kanellakis***

159

•

Department of Computer Science, Brown University, P.O. Box 1910, Providence. RI 02912, USA

Gosta Grahne****
University of Helsinki. Finland

Abstract

Abiteboul, S., P. Kanellakis and G. Grahne, On the representation and querying of sets of possible
worlds, Theoretical Computer Science 78 (1991) 159-187.

We represent a set of possible worlds using an incomplete information database. The representation
techniques that we study range from the very simple Codd-table (a relation over constants and
uniquely occurring variables called nulls) to much more complex mechanisms involving views of
conditioned-tables (programs applied to Codd-tables augmented by equality and inequality condi­
tions). (1) We provide matching upper and lower bounds on the data-complexity of testing
containment, membership and uniqueness for sets of possible worlds. We fully classify these
problems with respect to our representations. (2) We investigate the data-complexity of querying
incomplete information databases for both possible and certain facts. For each fixed positive
existential query on conditioned-tables we present a polynomial time algorithm solving the possible
fact problem. We match this upper bound by two NP-completeness lower bounds, when the fixed
query contains either negation or recursion and is applied to Codd-tables. Finally, we show that
the certain fact problem is co NP-complete, even for a fixed first order query applied to a Codd-table.

1. Introduction

In order to extend the applicability of relational databases, one must provide a
mechanism for representing incomplete information [4] (i.e., for representing sets

* A preliminary version of this paper appeared in the proceedings of the ACM SIGMOD International
Conference on the Management of Data, pp.34-48, 1987.

** Work supported by the Projet de Recherche Coordonnee 803.
*** Work performed while visiting INRIA Rocquencourt; partly supported by an IBM Faculty

Development Award and by NSF grant IRI-8617344.
**** Work performed while visiting INRIA Rocquencourt.

0304-3975/91/$03.50 © 1991 Elsevier Science Publishers B.V. (North-Holland)

160 s. Abiteboul, P. Kanellakis, G. Grahne

of possible worlds}. The most common such mechanism is null values. The basic
idea is to replace some of the occurrences of constants in the relations of the database
by variables, and thus model many possible worlds instead of a single one. Although
null values are an algebraic tool, they do have close analogs in logical databases,
e.g., [13, 17]. There already is a large volume of interesting work on querying
incomplete information databases. The focus of most of this work has been a search
for the "correct" semantics for query programs applied to incomplete information
databases, e.g., [1,4, 7,9, 10, 11, 13, 17, 18). We refer to [10] for a detailed treatment
of the topic.

On complete information databases, efficient evaluation is a fundamental property
of many database query languages, such as, relational calculus [15] and DA TALOG
[3]. More formally, all these languages express queries on complete information
databases whose data-complexity is in PTIME [2, 16]. Data-complexity is defined
to be the complexity of evaluating the answer as a function of the database size
and not of the query program size, which is assumed to be a fixed parameter. This
approach to computational complexity restricts the analysis by assuming fixed
relation arities, i.e., fixed tuple widths. Clearly it leads to a reasonable measure,
given that the number of tuples in a typical database dominates (by orders of
magnitude) the tuple width and the size of an application program.

The subject of our paper is a comprehensive data-complexity analysis of problems
related to representing and querying databases with null values. We only consider
programs that express queries with PTIME data-complexity on complete information
databases, since we believe that these are the only "feasible" programs in common
database query languages. There has been some previous work on the data­
complexity of querying incomplete information databases. The most significant
contribution is [17], which investigates the computational complexity of evaluating
certain answers for a wide range of second-order queries on incomplete information
databases. Our results refine and extend both [17] and [10).

A less realistic alternative (which we do not pursue here) is to let the query
program size be part of the input size. Then the complexity of evaluation increases
exponentially [5,16]. This increase is due to a certain incompleteness of relational
algebra with respect to the algebra of polynomials [5]. Such problems were first
noted in [8, 12], as part of the study of nulls in weak universal instances. Data­
complexity avoids these anomalies, by factoring out the query program representa­
tion and maintaining only the combinatorics of the uncertainty in the database.

Section 2 contains a detailed definition of the framework. We now outline,
in two parts, our results on representation (contained in Sections 3 and 4) and
on querying (contained in Section 5). Section 6 contains conclusions and open
questions.

1.1. Representation

Our representations form a hierarchy: from single possible worlds; to our simplest
case of uncertainty, which is the Codd-table or table for short; to intermediate cases

Sets of possible worlds 161

of uncertainty, which are Codd-tables with additional conditions; and finally to the
most general case of uncertainty, views of Codd-tables with additional conditions.
Let us describe this hierarchy using the example of Fig. 1.

A Codd-table (table) is a relation with constants and variables, where no variable
occurs twice. An inequality-table (i-table) is a table with a conjunction ofinequalities;
these are listed on top of the table. An equality-table (e-table) is a table with a
conjunction of equalities; we do not list these on top but incorporate them directly
in the table, this is standard practice. Combining the two we obtain a global-table
(g-table) which is an e-table together with a conjunction of inequalities; these are
listed on top of the e-table. A conditioned-table (c-table) is an extension ofa g-table
with one more column. This column contains the local conditions; where a local
condition is a conjunction of inequalities and equalities attached to a tuple. The
set of possible worlds represented by a c-table naturally results from instantiating
the variables with constants and by satisfying the conditions. Finally, we have a
view of a set of possible worlds, by applying a given query program to every possible
world described by a c-table.

0 1 x
y z 1
2 0 v

table Ta

0 1 x
x z 1
2 0 z

e - table n

o 1 2
2 0 1
200

•

I x f; 0, y f; z I
0 1 x
y z 1
2 0 v

i-table Tc

012
3 0 1
205

I x f; z I
0 1 x
x z 1
2 0 z

9 - table Td

012
201
200

Ixf;1,yf;21
0 1 z = z
0 x y=o
y x xf;y

c - table To

o 1
3 2

Fig. l. Representations of sets of instances and examples of corresponding instances.

Remark. Tables are isomorphic to a very restricted form of the "logical databases"
in [17]. Our e-tables have also been called "V-tables" and "naive-tables" [1, 7, 10].
Our g-tables are similar constructs to the "logical databases" of [17]. The c-tables
are like the "C-tables" of [10] augmented by one conjunction of equalities and
inequalities, that is the global condition. The local conditions of both "C-tables"
and our c-tables are conjunctions of equalities and inequalities.

A central computational problem is the containment problem: "is a set of possible
worlds a subset of another set of possible worlds?" A special case of this problem
is the membership problem: "is a complete information database one of a set of

162 S. Abiteboul, P. Kanellakis, G. Grahne

possible worlds?" The (superficially) dual question about representations is the
uniqueness problem: "is a set of possible worlds the same as a complete information
database?"

Tables have an important computational property, which makes our choosing
them as the simplest representation of uncertainty more meaningful. From a reduc­
tion to bipartite matching it follows that membership is in polynomial-time for sets
of worlds represented by tables (Theorem 3.0. This is a similarity with complete
information databases and a distinction from the other, more complex, representa­
tions of uncertainty used here. It will be evident from our results that tables have
"good" computational properties.

We determine the computational complexity of membership (Theorem 3.1),
uniqueness (Theorem 3.2) and containment (Theorems 3.1, 3.2,4.1,4.2) with respect
to our hierarchy. For this complete classification we use homomorphism techniques
from database theory and logspace-reductions from computational complexity. We
use the standard complexity classes PTIME (polynomial time) and NP= l:.f, coNP =

TIf, I.~, TI~ (from the first two levels of the polynomial time hierarchy [14,6]).
Let us explain our results using Fig. 2. For the containment problem we have 49

cases. These cases depend on a choice among seven kinds of representation for
each dimension of this figure. The vertical dimension is the set of worlds tested for
containment in the set of worlds of the horizontal dimension. The seven kinds are
as follows:
• a complete information database (instance in Fig. 2),
• x-tables, where x is in {(Codd), e, i, g, c} (x-table in Fig. 2),
• a program applied to x-tables (view in Fig. 2)

(here the upper bounds are the same for all xs and the lower bounds hold for
tables).

ew

nstance table e·table

3.2.4 4.2.4 L--__::..:...~~

3.1.2 N P 3.1 N

4.2.3
4.2.5

4.2.1
;...--

Fig. 2. The complexity of the containment problem.
•

In every one of the cases of Fig. 2 we provide the upper bounds; these are the
areas for PTIME (or P), NP, coNP and n~. These upper bounds follow from
Proposition 2.1(1,2,3), Theorem 3.1(1), Theorem 3.2(1), and Theorem 4.1(1,2,3).
Note the differences between membership and uniqueness.

All cases not in the PTIME area are shown complete in their respective classes.
They are all the cases "strictly" in NP, coNP, TI~. For this it suffices to show

Sets of possible worlds 163

hardness for the cases in Fig. 2 that include references to theorems. It is easy to see
that the other hardness results follow trivially. These lower bounds are Theorem
3.1(2,3,4), Theorem 3.2(3,4), Theorem 4.2(1,2,3,4,5).

Perhaps, the most interesting lower bound is Theorem 4.2(1): "containment is
IU-complete, even if the subset possible worlds are represented by a table and the
superset possible worlds are represented by an i-table". We highlight that the highest
complexity is reached with a very small amount of expressibility.

In a sense, our lower bounds are syntactically tight. For all the lower bounds
with views we use positive existential queries applied to tables. There is one
exception. As shown in Theorem 3.2(2), for positive existential queries on e-tables
the uniqueness problem is in polynomial-time. Thus, the exception is the query for
Theorem 3.2(4), which is positive existential with ;c applied to a table.

1.2. Querying

The view mechanism for specifying sets of possible worlds is a natural step towards
querying an incomplete information database. In this context, a first question is the
possibility problem: "given a set of tuples and given a set of possible worlds (specified
as a view) is there a possible world where these tuples are all true?" A second
question is the certainty problem: "given a set of tuples and given a set of possible
worlds (specified as a view) are these tuples all true in every possible world?" Note
that, certainty implies possibility and that, certainty and,(certainty) are different
from the possibility and,(possibility).

Unbounded possibility
There are similarities between the possibility and the membership problems,

because the size of the given set of tuples for possibility can be of the same order
of magnitude as a possible world. The difference of course is that membership
requires the exact equality with a possible world. If we do not restrict the size of
the given set of tuples we have the unbounded possibility problem (Theorem 5.1)
which is clearly computationally related to membership (Theorem 3.1).

Bounded possibility
If we restrict the size of the set of given tuples for possibility we have the bounded

possibility problem. This problem seems more meaningful than unbounded possibil­
ity, because intuitively it corresponds to the practical question: "is this (small) list
of facts even possible?" Our analysis of the bounded possibility problem comple­
ments the literature, where much more attention has been given to the certainty
problem. Note that, for certainty the unbounded and bounded versions of the
problem are polynomial-time equivalent (Proposition 2.1). Our algorithm for
bounded possibility uses the algebraic completeness of conditioned-tables demon­
strated in [10]. In Theorem 5.2(1), we show that the data-complexity of positive
existential queries on conditioned-tables is in polynomial-time. Our lower bounds

164 S. Abiteboul, P. Kanellakis, G. Grahne

on possibility are also new and illustrate the effect both of "negation" and of
"recursion" on data-complexity. Namely, we extend positive existential queries in
two standard ways. One extension is the first order queries and the other is the
DATALOG queries. Both extensions lead to NP-completeness even if the condi­
tioned-tables are tables, see Theorem 5.2(2,3).

Certainty
There are two main observations in the literature on certainty. In its various forms,

the first observation follows from central results of [10] (based on "e-tables") and
[13,17] (based on "logical databases"). Namely, under particular syntactic restric­
tions on conditioned-tables and using positive queries, the certainty question can
be handled exactly as if one had a complete information database. In our framework
the syntactic restrictions are g-tables and the positive queries are the DATALOG
queries. This leads to Theorem 5.3(1), which we only list for completeness of
presentation, since it is due to [10,17]. The second observation deals with the
negative effects of the many possible instantiations of the null values. In [17] the
certainty question for a fixed first order query on an i-table is shown co NP-complete.
We extend this result to a first order query on a table; see Theorem 5.3(2).

2. Definitions and notation

2.1. Complete information databases

Let g; be a countably infinite set of constants. A relation R of arity (a) is some
finite subset of the g;a, where a is a nonnegative integer. A complete information

database or instance I of arity (a\ , ... , an) is an n-vector of relations (R\, ... , Rn),
such that, relation R, has arity (a;) i = 1, ... , n. A tuple belonging to a relation is
called a fact. We assume a fixed binary encoding for facts and instances. When we
say that fact t is in instance I we assume that the relation of I, where t belongs, is
also specified.

A query q of arity (a\, ... , an) ~ (b l , ... , bm) is a function from instances to
instances of appropriate arities. Thus, a query q and an instance I define another
instance q(I) called the q view of 1. One example of a query of arity (a \ , ... , an) ~
(aI, ... , an) is the identity function of this arity; we sometimes use the symbol - to
denote it, e.g., we use MEMB(-) instead of MEMB(identity). Given a query q we
say that the data-complexity of q is the complexity of the formal language:

Lq = {(t, 1) I fact t is in instance q(I)}.

The family of queries examined in this paper is QPTIME, namely the computable
database queries of [2] that have PTIME data-complexity. (For the detailed definition
we refer to [2].) In addition to their low data-complexity, these queries satisfy an
important genericity property: "for all bijections p on g; we have q(p(I)) = p(q(I)),

Sets of possible worlds 165

where p is extended to instances in the natural fashion". This condition says that
isomorphic inputs are mapped to isomorphic outputs and therefore the representa­
tion details, e.g., the encoding of facts, should not matter.

We refer to three commonly used subfamilies. The positive existential queries are
the simplest, most practival, and most investigated queries. They are expressed
exactly using relational expressions with operators project, natural join, union,
renaming, positive select; see [15]. They can be extended through "negation" to the
first order queries (see [2,15]), or (incomparably) through "recursion" to the
DATALOG queries (see [3]). (1) Positive existential queries are denoted here using
first order formulas with equality, but without universal quantification or negation,
i.e., ¢ cannot be used. (2) First order queries are denoted here using formulas of
first order logic with equality, i.e., ¢ can be used. (3) DATALOG queries are
denoted here using fixpoints of positive existential queries, i.e., we only use "pure"
DATALOG queries without ¢.

2.2. Incomplete information databases

An incomplete information database is a set of instances. A central issue for such
sets of instances is their representation, which we now describe. First, assume that
the set of variables "II" and the set of constants ~ are disjoint.

A table (short for Codd-table) T of arity (a) is the result of replacing some
occurrences of constants in a relation of arity (a) by distinct variables. i.e .• each
variable occurs at most once. A tuple t of a table T is a row of T (see Fig. I(a».

A condition is a conjunct of equality atoms of the form x = y. x = c and of inequality
atoms of the form x ¢ y, x ¢ c, where the x's and y's are variables and the c's are
constants. Note that we only use conjuncts of atoms and that the boolean true and
false can be respectively encoded as atoms x = x and x ¢ x. Conditions may be
associated with table T in two ways: (1) a global condition CPT is associated with
the entire table T; (2) a local condition CPt is associated with one tuple t of table
T. Note that, conditions associated with table T and tuple t may contain variables
not appearing in T or t.

A valuation u is a function from variables and constants to constants, such that
u(c) = c for each constant c. A valuation u naturally extends to a tuple t producing
a fact u(t) and to a table T producing a relation u(T). If formulas CPT, CPt are
conditions, we say that u satisfies CPT, CPt if its assignment of constants to variables
makes these formulas true.

A c-table (short for conditioned-table) is a table T together with an associated
global condition CPT and an associated local condition CPt for each tuple t of T (see
Fig. He». By convention. if we omit listing a condition then it is atom true. A g-table
(short for global table) is a c-table without local conditions (see Fig. l(d». An
i-table (short for inequality table) is a g-table, whose global condition consists
entirely of inequality atoms (see Fig. l(c». An e-table (short for equality table) is
a g-table, whose global condition consists entirely of equality atoms (see Fig. 1 (b».

166 S. Abiteboul. P. Kanellakis. G. Grahne

Definition.1. A given c-table represents a set of instances .1. If this c-table consists
of a table T of arity (a), a global condition <PT, and local conditions <P, for each
tuple t in T then it represents the following set of instances of arity (a):

.1 = {R I there is a valuation (T satisfying <PT such that relation R
consists exactly of those facts (T(t) for which (T satisfies <P,},

Example 2.1. Consider the valuation (T: (TX = 2, (TY = 3, (TZ = 0, (TV = 5. Let a be in
{a, b, c, d, e} and T", Ia be as in Fig. 1. Then Ia = (TT",.

Specializing the above definition we have: (l) for a table T, all valuations are
satisfying and .1 = {R I R = (T(T) for some (T}, (2) for a g-table (T, <PT), .1 =

{R I R = (T(T) for some (T satisfying <PT}. For a c-table, .1 is the empty set iff the
global condition is unsatisfiable. This can be checked in PTIME because a global
condition is a conjunction. For a c-table, .1 consists of a relation with only the
empty fact of arity (a) iff there are satisfying valuations for the global condition
but these valuations do not satisfy any local condition. This can also be checked in
PTIME, because all one has to do is check a formula in disjunctive normal form
for unsatisfiability.

The above definitions easily generalize to n-vectors of c-tables, as opposed to
l-vectors, and .1s of arity (at, .. . , an), as opposed to arity (a). For this generaliz­
ation, we assume that the sets of variables appearing in each table Tt , ••• , Tn are
pairwise disjoint; relationships between these variables can be established through
other variables in the global and local conditions. We close with our most general
representation of a set of instances, which is a set of views of .1 through q.

Definition q(.1). Let.1 be defined using an n-vector of c-tables of arity (at, ... , an)
and let q be a QPTIME query of arity (a l , •• • , an) -+ (b t , ••• , bm), then q(.1) is the
following set of instances of arity (b l , ••• , bm):

q(.1)={q(I)II instance in Ji}.

We sometimes use the notation rep (T) for the set of instances represented by
table T, rep (T, <PT) for the set of instances represented by g-table (T, <PT), etc.

2.3. The problems

We list some basic computational questions about incomplete information
databases. All of these questions can be answered in PTIME for complete informa­
tion databases.

Our notation matches the definition of data-complexity. Tables and conditions
are the parts of the inputs that contribute to asymptotic growth, i.e., they are
unbounded, for this we use capital letters (e.g., T, <PT, <P,), We also use capital
letters for sets of facts (e.g., R, I, .1, P) which can be of unbounded size. In our
framework queries, and therefore arities and tuple width, are fixed parameters, for
this we use small letters (e.g., q, a, b, t).

Sets of possible worlds

CONT(qo, q) (the containment problem)
parameter: qo, q
input: c-tables representing Jlo; c-tables representing Jl

question: qo(Jl 0) ~ q (Jl)?

MEMB(q) (the membership problem)
parameter: q
input: instance 10 ; c-tables representing Jl
question: is loin the set q (Jl)?

UNIQ(qo) (the uniqueness problem)
parameter: qo
input: c-tables representing Jlo; instance I
question: is qo(Jlo) the singleton set {I}?

POSS(k, q) (the possibility problem)
parameter: k, q
input: c-tables representing Jl; set of facts P of size k
question: 31 E q(Jl) such that all facts of P are facts of I?
POSS(*, q) is the same question where k is no longer a parameter.

CERT(k, q) (the certainty problem)
parameter: k, q
input: c-tables representing Jl; set of facts P of size k
question: V IE q(Jl) are all facts of P facts of I?
CERT(*, q) is the same question where k is no longer a parameter.

167

Remark. Note that the membership problem is a special case of the containment
problem, i.e., a containment where qo is the identity and Jlo is completely specified.
The uniqueness problem can be reduced to a membership (I E qo(Jlo» together with
a particular containment (qo(Jlo) ~ {I}). On the other hand, the possibility and
certainty problems cannot be reduced to the containment problem.

The crucial difference between complete and incomplete information is the large
number of possible valuations for the latter case. Because of the finite number of
variables in a set of c-tables only a finite number of valuations are nonisomorphic.
However, the number of such valuations may grow exponentially in the input size.
By simple reasoning about all valuations and guessing particular valuations, we
have some easy upper bounds.

Proposition 2.1. For any QPTIME queries qo, q we have the following:
(1) CONT(qo, q) is in II~;
(2) MEMB(q) is in NP;
(3) UNIQ(qo) is in coNP;
(4) POSS(*, q) is in NP;

168 S. Abiteboul. P. Kanellakis. G. Grahne

(5) CERT(*, q) is in coNP; and
(6) CERT(*, q) is polynomial time equivalent to CERT(1, q).

Proof. First we consider only a finite set of valuations. Let.:1 and X be, respectively,
the set of constants and variables that appear in the c-table inputs of CONT. Let
.:1' be a set of constants distinct from .1, with the same cardinality as X. The following
observation is obvious:

For every valuation u there is a valuation u' with values in .:1 u .1'
and a bijection p on the set of all constants, such that, u and po u'
satisfy the same conditions of the input c-tables and if applied to
them produce the same instances.

(1) CONT(qo, q) can be reduced to: for each valuation Uo with values in.:1 u .:1',
there exists a valuation u with values in .1 u.:1' such that a polynomial time
computable condition is true; '13 quantification. The reduction easily follows from
the previous observation and from the fact that QPTIME queries satisfy the genericity
condition: for all bijections p on £() we have q(p(I» = p(q(I» (see Section 2.1).

In cases (2)-(5), the same argument also restricts our attention to valuations with
values in .:1 u .:1'. For (2) and (4), we guess the right valuation; 3 quantification.
For (3) and (5), we reason about all valuations; V quantification. To see one case
in more detail, consider (2). MEMB(q) can be reduced to: there exists a valuation
u with values in .:1 u .:1' such that a polynomial time computable condition is true;
3 quantification.

(6) In order to answer CERT(k, q), all we have to do is repeat CERT(1, q) k
times. Note that this last argument does not hold for POSS(k, q), because POSS(1, k)
might return "yes", but each "yes" might refer to a different possible instance. 0

3. Membership and uniqueness

In this section we determine the computational complexity of the membership
(Theorem 3.1) and uniqueness (Theorem 3.2) problems. Tables have a polynomial
time membership problem. This is like instances and unlike e-tables, i-tables, or
views of tables. Despite some symmetry in their definitions, membership and unique­
ness are quite different. Also, note the role of #- in Theorem 3.2.

Theorem 3.1. Let,j be as in the definition of MEMB, then:
(1) MEMB(-) is in PTIME if,j is represented by tables.
(2) M EM B (-) is N P- complete, even if ,j is represented by a single e-table.
(3) MEMB(-) is NP-complete, even if ,j is represented by a single i-table.
(4) 3 positive existential query q such that MEMB(q) is NP-complete, even if,j is

represented by a single table.

Sets of possible worlds 169

Proof. The upper bound is derived by a reduction to the problem of bipartite graph
matching, which is known to be in PTIME. Critical use is made of the fact that al1
occurrences of variables are distinct symbols. Given that the membership problem
in general is in NP (by Proposition 2.1) the rest of the proof consists of reductions
of NP-hard problems to the MEMB problem.

(1) Reduction to bipartite graph matching: Given undirected graph G = (V, E),
with nodes V and edges E, a matching E' in G is a subset of E such that no two
edges of E' are incident on the same node. The (bipartite) matching problem is:
given (bipartite) graph G, find a maximum cardinality matching in it.

We prove the result for a single table. The case of a vector of tables is similar.
The following algorithm tests whether, given 10 and T, 10 is in rep (T).

input: an instance 10 = {Uj / i E [1 .. n]} and a table T = {VI /j E [1 .. m]} of the
• same anty.

output: yes iff 10 is in rep (T).

begin
a. let V={a,/iE[I .. nnu{b)/jE[I .. m]} be the union of two disjoint sets of

nodes;
b. let E = {(aj, bj) / u, E 10, v) E T and there is a valuation u S.t. Uj = u(VI)};

c. if for some j, bj is not connected to any a, then return no;
d. compute a maximum cardinality matching E' for the bipartite graph (V, E);
e. if #(E') = n then return yes else return no;

end

For 10 and T given in Fig. 3(a), the construction of the graph is illustrated in
Fig. 3(b). G in Fig. 3(b) is a binary relation that contains the edges (a" b) of the
bipartite graph. The algorithm is clearly in PTIME so it suffices to show that it is

correct.
First suppose that 10 is in rep (T). Then there is a valuation u such that 10 = a(T).

For each i in [1 .. n], let j(i) be such that a(Vj(l) = Uj. Such j(i), distinct for each

(a) (b)

10 T G

1 1 2 Xl 1 X2 al bl

3 2 3 X3 2 3 aj b3

1 4 5 1 X4 X5 a2 b2

1 2 3 1 2 3 a3 b3

1 2 X6 a4 b2

a4 b3

a4 b4

a4 b5

Fig. 3. Example for Theorem 3.1(1).

170 s. Abiteboul. P. Kanellakis. G. Grahne

i, exist since 10£u(T). Since u(T)=lo, step (d) is clearly reached. Let E'=
{(a;, bj (,» liE [1 .. n n. Clearly E' is a matching, and since # (E') = n, E' is maximum
cardinality and yes is returned.

Conversely, suppose that yes is returned. Consider a maximum cardinality match­
ing E'. Let j be in [1 .. m]. If (a" bj) is in E' for some i, let i(j) = i. Otherwise, let
i(j) be such that (ai(j) , bj) is in E. Such an i(j) exists because of step (c). Let u be
a valuation such that u(v) = Ui(j) for each j. Such a valuation exists since for each
j, (aj(j), b) E E and all variable occurrences are distinct. By construction, u(T) £ 10 ,

Since # (E') = n, for each i, there exists j such that (ai, b) E E', so u, = u(v). Hence
10£ u(T). Thus u(T) = 10 ,

(2) Reduction of graph 3-colorability: A known NP-complete problem [6] is the
graph 3-colorability problem: given an undirected graph, does there exist a function
from its nodes to the set of colors {t, 2, 3} such that no edge has nodes mapped to
the same color.

For each instance G = (V, E) of the graph 3-colorability problem, an e-table T
(here the equalities are directly put in the table) and an instance 10 of arity 2 are
constructed in the following way. Pick an arbitrary orientation of the edges of G,
let {xa I a E V} be a set of distinct variables, and then,

(a) let T={ijli,jEI,2,3,i~j}u{xaxbl(a,b)EE},
(b) let 10 = {ij I i, j E I, 2,3, i ~ j}.
For example, consider the instance of the 3-colorability problem given in Fig.

4(a). The nodes are 1 ... 5 and the edges are listed in a binary relation, each with
an arbitrary orientation. The corresponding instance of the membership problem
for e-tables is exhibited in Fig. 4(c). It is easy to see that: G is 3-colorable iff 10 is
in rep(T).

(3) Reduction of graph 3-colorability. For each instance G = (V, E) of the graph
3-colorability problem, an i-table (T, cPT) and an instance 10 of arity 1 are constructed
in the following way. Pick an arbitrary orientation of the edges of G, and {xa I a E V}
a set of distinct variables, and then,

(a) let T={I,2,3}u{xa laE V}, with cPT={Xa~Xbl(a,b)EE},
(b) let 10={l,2,3}.
For example, consider the instance of the 3-colorability problem given in Fig.

4(a); the corresponding instance of the membership problem for i-tables is exhibited
in Fig. 4(b). It is easy to see that using the above reduction: G is 3-colorable iff 10
is in rep (T, cPT)'

(4) Reduction of graph 3-colorability: For reasons of clarity of exposition we use
databases with two relations. A simple modification of the proof suffices to show
the result for databases with one relation. Namely, by increasing the arity of the
largest relation and using constants, it is possible to simulate many relations by one.

For each input G = (V, E) to the graph 3-colorability problem, we construct two
tables T(R) of arity (5) and T(S) of arity (2), an instance 10 of arity (3,1), and a
positive existential query q of arity (5, 2) ~ (3, 1). In q. the relation symbols Rand
S are names for the arity (5) and the arity (2) relations, that are instances of the

Sets of possible worlds

(a) (b)

T 10

1 2 ~T 1
2 3 1 2
3 4 2 3
4 1 3
3 5

Xl

X2

X3

X4

Xs

~T == {Xl of: X2,

X2 of: X3, X3 of: X4,

X4 of: XI,X3 of: XS}

(d)

T

T(R) T(S)

1 Xl 2 YI 1 1 2

2 X2 3 Y2 2 1 3

3 X3 4 Y3 3 2 1

4 X4 1 Y4 4 2 3
3 Xs 5 Ys 5 3 1

3 2

T

1
1
2
2
3
3

Xl

X2

X3

X4

X3

Ro

1 1 1
1 1 4
1 4 1
1 4 4
2 1 1
2 1 2
2 2 1
2 2 2

...
433
4 3 4
443
444
5 5 5

171

(c)

fo

2 1 2
3 1 3
1 2 1
3 2 3
1 3 1
2 3 2

X2

X3

X4

Xl

Xs

10

So

1
2
3
4
5

Fig. 4. (a) Example graph for 3-colorability, (b) example for Theorem 3.1(3), (c) example for Theorem
3.1(2), (d) example for Theorem 3.1(4).

two tables. (Without loss of generality assume that G has no self-loops and that E
is a binary relation, where we list each edge once with an arbitrary orientation.)

Let V=={a,liE[l .. n]} and E=={(bj,cJUE[l .. m]}. Let {xjUE[l .. m]} and
{Yj IJ E [1 .. m]} be two disjoint sets of distinct variables. Then (T(R), T(S», 10 and
q == (q\, q2) are constructed as follows.

172 S. Abiteboul, P. Kanellakis, O. Grahne

(a) T(R) = {t) Ij E [1 .. m]} where t) is the tuple b)Xj9J
(b) T(S) = Hi I i,j E {l, 2, 3}, i;c j}.
(c) 10 consists of Ro = {ajk I a E {b), Cj} n {bk, cd where each (b, c) pair is an

edge in E} and So={jljE[I .. mH.
(d) ql = {xzz'13y([3vw(R(xyvwz) v R(vwxyz»]

A [3vw(R(xyvwz') v R(vwxyz'»)])}
q2 = {z 13xyvw(R(xyvwz) A S(yw))}.

Intuitively, for each tuple in R, the second-column (respectively, fourth-column)
contains the color of the vertex in the first-column (respectively, third-column).
Query q2 checks whether this is assignment of the three colors {I, 2, 3}, and ql checks
whether a vertex is assigned the same color in all places of the relation.

For example, consider the instance of the 3-colorability problem given in Fig.
4(a); the corresponding instance of the view-membership problem is exhibited in
Fig. 4(d). Suppose that f is a 3-coloring of G. Consider the valuation u defined by:
for each j, u(Xj) = f(b) and u(y) = f(c). It is easily seen that 10 = q(u(T». Indeed,
it is straightforward to argue that: G is 3-colorable iff 10 is in q(rep(T». 0

Theorem 3.2. Let"o be as in the definition of UNIQ, then:
(l) UNIQ(-) is ;n PTIME if "0 ;s represented by g-tables.
(2) UNIQ(qo);s in PTIME if qo ;s pos. exist. and ,jo is represented bye-tables.
(3) UNIQ(-) is coNP-complete, even if ,jo is represented by a single c-table.
(4) 3 positive existential with ;c query qo such that UNIQ(qo) is coNP-complete,

even if ,jo is represented by a single table.

Proof. (1) Assume that: if it follows from the global condition that a variable equals
a constant, then the variable is replaced by that constant in the table. This sim­
plification can be performed in PTIME. Then we have that: rep (T, tPT) = 1 iff (a)
tPT is satisfiable, and (b) T = I. Both (a) and (b) can be tested in PTIME.

(2) For this we use the technique of [10] to get a representation of aII possible
worlds resulting from the query qo. This representation is constructed and because
of lack of negation can be tested trivially for uniqueness. More precisely, use the
algorithm:

begin
a. compute c-table (T, tPT , {tP,}) equivalent to qo(To) as in [10] (see (*) below);
b. for each t in T, let T, be the e-table defined by T, = 1 v it};
c. for each t, compute a disjunctive normal form equivalent to (/)" say (/)'.1 v

(/)'2"'; ,

d. (/),,1 is conjunction of equalities and can be incorporated in T, to obtain e-table

T, 1 ; ,

e. consider the set {T"I I t E T, i} of e-tables and return yes iff
(a) for each u in 1 and each valuation uo, u is in qo(uo(To» and

Sets of possible worlds

(f3) for each t and i, rep (~) = {I};

end

173

(*) First note that, in step (a), the global condition <PT = true, and that the local
conditions {<P,} contain no negation since qo is positive existential. In this step the
local conditions are kept as formulas with both ors and ands. These formulas are
put in normal form in step (c).

To prove (2), we show that the algorithm is correct, and is in PTIME.
Correctness: Suppose (0:) and (P) hold. Let u be a valuation. By (0:), we have

that I ~ qo(u(To». Since rep (qo(To» = rep (T, <Pn {<P,}), qo(u(7;)) = u '(T, ,pT, {<P,})
for some valuation u '. Let u be in qo(u(To» = u '(T, <PT , {<P,}). Then u = u '(t) for
some t in T such that u'(,p,) is true. Thus u = u '(t) for some t in T, and i, such
that U'(<P,.,) is true. Clearly, u is in u'(T,.,}. By (P), u is in I. Hence qo(u(To»s;;; I
so 1= qo(u(To»·

Now suppose that rep(qo(To» = {I}. Clearly (0:) holds. Suppose that for some t
and i, rep (T,,,) is not {I}. Let u be a valuation such that u(T,.;) is not I. By this
and by step (b), u(,p,,,) is true, and u(t) is not in I. Thus u(<P,) is true. But then,
u(t) is in I, because {I} = rep (qo(To» = rep (T, <PT, {<P,}), a contradiction. Thus (~)

holds.
Efficiency. By [10], (a) can be done in PTIME. Clearly, (b) and (d) can be done

in PTIME. Using the c-table construction of [10], the local conditions generated
by the bounded size qo are of bounded size. Thus (c) can also be done in PTIME.
Since there is no global condition and no negation in the local conditions, (n) can
be tested in PTIME by the algorithm in [10] for certain answers. Finally, (~) can
be tested in PTIME by Theorem 3.2(1).

(3) Reduction of 3DNF tautology: We first state the co NP-complete problem of
3DNF tautology (see Fig. 5 for example 3CNF/3DNF formulas).

3eN F 1\ {c,}

CI = Xl V X2 V X3,

C2 = Xl V -'X2 V X4,

C3 = Xl V X4 V XS,

C4 = X2 V -,XI V XS,

Cs = 'Xl V -'X2 V -'Xs

3DN F v {C,}

CI = Xl 1\ X2 1\ X3

C2 = Xl 1\ -'X2 1\ X4,
•

C3 = Xl 1\ X4 1\ Xs

C4 = X2 1\ 'Xl 1\ Xs,

Cs = 'Xl 1\ -'X2 1\ -'Xs

Fig. 5. Example formulas. For V33CNF X = {XI' X2}. Y = {Xl. X4 • Xs}.

input: A set X of variables and H = {Cik liE [1 .. n], k E [1 .. 3]} such that for each
i, k, C,k is x or iX for some x in X.
question: is V, [/\k Cik] true for each truth assignment of X?

174 S. Abiteboul, P. Kanellakis, G. Grahne

To

1 1 2
1 2 3
1 3 4
1 4 1
1 3 5
0 1 Xl

0 2 X2

0 3 X3

0 4 X4

0 5 Xs

Fig. 6. Example for Theorem 3.2(4).

For each instance H of the 3DNF tautology problem, a c-table (To, tl>TO, {tl>,}),
and an instance I with a unary relation are constructed. Let X = {Xj jj E [1 .. m]},

and let {u, Ii E [l .. m]} be a set of distinct variables.
(a) To={t(i)liE[l.. n]} where t(i) has local condition tl>,(i). For each i in

[l .. n], unary tuple t(i) = 1 and tl>,(i) = 8;.1 II 8;.2 II 8;.3 where for each
k in {l, 2, 3}, 8;,k == (Uj = 1) if elk = Xj, and 81•k == (uj '# 1) if elk = IX)'

(b) tl>TO = true.
(c) I={l}.
Clearly, if H is satisfiable, I is a representative of (To, tl>TO, {tl>,}). It is easily

seen that if H is not a tautology, then the empty instance is also a representative.
Indeed, we have: H is a tautology iff I is the unique representative of (To, tl>TO' { tl>,}).

(4) Reduction of graph non-3-colorability: For each instance G = (V, E) of the
graph non-3-colorability problem, a table To is constructed in the following way:

To = {l ab I (a, b) E E} u {Oaxa I a E V}

where {xa I a E V} is a set of distinct variables. Consider the query:

qo = {l13xyz[R(1xy) II R(Oxz) II R(Oyz)] v 3yz[R(Oyz) II z'# 1 II z '# 2 II Z '# 3]}.

The table corresponding to the graph of Fig. 4(a) is shown in Fig. 6.
We may assume without loss of generality that G is not the empty graph. Consider

the valuation (To which assigns the value 4 to each variable. Then {l} = qo((To(To»·
Now suppose that f is a 3-coloring of G using colors in {l, 2, 3}. Consider the
valuation (T defined by: for each a, (T(xa) = f(a). Clearly, { } = qo«(T(To)). Indeed,
we have: G is not 3-colorable iff {l} is the unique instance in rep(qo(To». 0

4. Containment

For our upper bounds (Theorem 4.1) we use homomorphisms to refine Proposition
2.1. Our lower bounds (Theorem 4.2) together with the results of Section 3 exhaus-

Sets of possible worlds 175

tively cover all cases of Fig. 2. It is interesting to contrast Theorems 4.2(1) and

4.1(2,3).

Theorem 4.1. Let ~o, ~ be as in the definition of problem CONT, then:

(1) CONT(qo, -) is in coNP if ~ is represented by tables.

(2) CONT(-, -) is in NP if ~o is represented by g-tables and ~ by e-tables.

(3) CONT(-, -) is in PTIME if ~o is represented by g-tables and ~ by tables.

Proof. (1) Consider the negation of the problem. All one has to do is (a) guess a
valuation (To, (b) compute 10 = qo((To (To», and (c) check that 10 is not in ~. As in
the proof of Proposition 2.1, by genericity, only a polynomial number of valuations
have to be considered. For each of these guesses,
• since qo is a QPTIME query, step (b) is in PTIME; and
• since ~ is represented by a vector of tables, by Theorem 3.1(1), (c) is in PTIME.
Thus, one has to perform a polynomial number of guesses and for each guess a
polynomial time computation. Therefore the negation of the problem is in NP, so

the problem is in coNP.
To prove (2) and (3), it suffices to use the properties of MEMB and to prove the

following claim.

Claim. Let (To, cf>TO) be a g-table and Tan e-table. Let X be the set of variables

appearing in To. Let {ax I x E X} be a set of distinct constants not occurring in ~) or
T. We denote by Ko the instance obtained by replacing each occurrence of each variable

x in To by ax. Then, rep (To) c;:; rep (T) iff Ko E rep (T).

Proof of the claim. (i) First suppose that Ko is in rep (T). Then Ko = CT(T) for some
valuation CT. Let 10 be in rep(To). Then 10 = (To(To) for some valuation (To. Consider
the mapping p over the set of constants defined by p(a,) = CTo(x) for each x in X,
and the identity elsewhere. Now consider the valuation (T' of T defined by u'(x) =

p(u(x» for each x occurring in T. Then 10 = u'(T), so 10 E rep(T). Thus rep(~) c;:;

rep (T). (ii) Now suppose that rep (To) c;:; rep (T). Since Ko is in rep (To) (all equalities

and inequalities are satisfied) we have that Ko is in rep (T). 0

Theorem 4.2. Let ~o, ~ be as in the definition of problem CONT, then we have that,
(1) CONT(-, -) is n~-complete even if ~ is represented by a single i-table and ~o

is represented by a single table.
(2) 3 positive existential q such that CONT(-, q) is n~-complete even if ~ is

represented by a single table and ~o is represented by a single table.
(3) CONT(-, -) is n~-complete even if ~ is represented by a single e-table and ~o

is represented by a single c-table.
(4) 3 positive existential qo such that CONT(qo, -) is coNP-complete even if ~ is

represented by a single table and ~o is represented by a single table.

176 S. Abiteboul, P. Kanellakis, G. Grahne

(5) 3 positive existential qo such that CONT(qo, -) is n~-complete even if .1 is
represented by a single e-table and .10 is represented by a single table.

Proof. (1) Reduction ojlrJ3 3CNF: We first state the n~-complete problem used [14].

input: two disjoint sets X and Y of variables, and a conjunction H of or-clauses
over Xu Y such that for each c in H, #(c) = 3.
question: does there exist for each truth assignment of X, a truth assignment of
Y which makes H true?

Let H = {Ck IkE [1 .. p n be a conjunction of or-clauses over Xu Y. Suppose that
we have X = {x, I iE [1 .. nn, and Y ={Xj Ij E [n + 1 .. n+ m]}. Then To and (T, tPT)

of arity 4 are constructed as follows.
(a) To ={Oz,ii!iE[I .. n]}u{lOiiliE[l .. n]}

u {abcO! a, b, C E {O, I}, a + b + c;c O}.
(b) T = {ujw,ii liE [1 .. n]} u {v,y,ii liE [1 .. n]}

u {abcO I a, b, c E {O, I}, a + b + c;c O}
U {Zk.tZk,2Zk,301 k E [1 .. p]}.

(c) C={w,;c5,Yj;c6IiE[I .. n]}

U {zk,j ;c Zk'.j" I for some x, x is the jth member of clause k
and ,x is the j'-member of clause k'}

U {zk,J ;c VI! for some I in [1 .. n], XI is the jth member of kth clause}
u {Zk,J ;c ud for some I in [1 .. n], ,XI is the jth member of kth clause}.

Consider the instance of the 1rJ33CNF problem of Fig. 5. The corresponding
tables are represented in Fig. 7

Intuitively, for each i in [1 .. n], x, assigned to "true" corresponds to O'o(Zj) =5,
O'(Yi) = 5, 0'(Uj) = 1 and 0'(Vi) = 0; and Xj assigned to "false" corresponds to O'o(Zi) = 6,
0'(w,) = 6, 0'(u,) = 0 and 0'(Vi) = 1. If O'o(Zj) is neither 5 nor 6, x, is neither bound
to true nor false.

Let X, Y, H be an instance of the 1rJ33CNF problem that is answered positively.
Let 0'0 be a valuation of To. Consider the truth assignment 'To of X defined by:
'TO(Xi) is true iff O'O(Zi) = 5. Since the question is answered positively, there is an
extension 'T of 'To which satisfies H. Consider the valuation 0' defined by:

(i) for each i, if O'o(z,) = 5 then 0'(u,) = 1, 0'(w,) = 0, 0'(v;} = 0, O'(y;} = 5 else
O'(u;} =0, O'(W,) = O'o(Zj), O'(V;) = I, O'(Yj) =0;

(ii) for all i, k, if 'T satisfies the kth member of ith clause, O'(zj.d = 1 else O'(zi,d = o.
Note that 'To satisfies x, iff 0' o(Zj) = 5 iff 0'(ui) = 1 and 0'(vj) = O. Otherwise, 0'(u,) = 0

and 0'(Vi) = 1. Since 'T satisfies H, it is easy to see that O'o(To) = 0'(T). To conclude
that O'o(To) E rep (T, tPT), it is straightforward to check that 0' satisfies tPT. Hence
rep (To) ~ rep (T, tPT).

Conversely, suppose that rep (To) ~ rep (T, tPT). Let 'To be a truth assignment for
X. Consider the valuation 0'0 of To defined by O'o(z;} is 5 if 'To(x;) is true and is 6
otherwise. Since rep (To) ~ rep (T, tPT), O"o(To) = 0"(T, tPT) for some valuation O'. One

Sets of possible worlds

To T
'"

0 ZI 1 1 <l>T

1 0 1 1 UI WI 1 1
0 Z2 2 2 VI YI 1 1
1 0 2 2 u2 w2 2 2
0 0 1 0 V2 Y2 2 2
0 1 0 0 0 0 1 0
0 1 1 0 0 1 0 0
1 0 0 0 0 1 1 0
1 0 1 0 1 0 0 0
1 1 0 0 1 0 1 0
1 1 1 0 1 1 0 0

1 1 1 0
ZI1 ZI2 ZI3 0

Z21 Z22 Z23 0

Z31 Z32 z33 0
Z41 Z42 Z43 0
Z51 Z52 Z53 0

<l>T = {WI =I- 5,Yl =I- 6,W2 =I- 5,Y2 =I- 6,Zl1 =I- Z42,zl1 =I- ZSI,Z21 =I- z42,

Z21 :/= z5), Z31 :/= Z42, z31 :/= zs), Z12 :/= Z22, Z12 :/= ZS2, Z41 :/= Z22,

Z41 :/= Z52,Z33:/= Z53,Z43:/= Z53,ZI1 :/= Vl,Z12:/= V2,Z13:/= V3,

Z21 :/= V), z22 :/= U2, z23 :/= V4, Z31 :/= v), Z32 :/= V4, Z33 :/= Vs

Z41 :/= V2, z42 :/= UI, Z43 :/= v5 ZSl :/= Ul, zS2 :/= u2, zS3 :/= us}

Fig. 7. Example for Theorem 4.2(1).

can check that a encodes an extension of To which satisfies H. Thus we have:

The answer to the instance of V33CNF problem is yes iff rep (To)

s;; rep (T, <PT)'

177

(2) Reduction of V33CNF: The proof is given for databases of more than one
relation. By standard modifications one can prove the single relation case.

Given an instance of the V33CNF problem, a vector of tables T=(T(R), T(S)},

a vector of tables To = (To(Ro), To(So», and a query q = (qt. q2) are constructed. Let
H = {Ck IkE [I .. pH be a set of clauses over Xu Y. Suppose that X = {x,1 i E [1 .. nH,
and Y={xj\jE[n+I .. n+mJ}.

(a) To(Ro) = {iv,1 i E [I .. n]} where {v;} is a set of distinct variables.
(b) To(So)={klkE[l .. p]}.
(c) T(R)={iuiliE[I .. nJ} where {uJ is a set of distinct variables.
(d) T(S) = {kZk.ji11 x, is the jth member of kth clause}

u {kzk.jiO I,x; is the jth member of kth clause}.
(e) q = (q), q2) where ql = {xy I R(x, y)} and

q2 = {xI3yz[S(xlyz)] v 3x'x"y[S(x'lyO) 1\ S(x"lyl) 1\ x = 0]
v 3x'y[R(yO) 1\ S(x'lyl) 1\ x = 0]
v 3x'y[R(yl) 1\ S(x'lyO) 1\ x = OJ}.

The previous construction is illustrated in Fig. 8 for the instance of Fig. 5.

178 s. Abiteboul, P. Kanellakis, G. Grahne

To(Ro) To(So) T(R) T(S)

1 VI 1 1 Ul 1 Zll 1 1

2 V2 2 2 U2 1 Z12 2 1

3 1 Z13 3 1

4 2 Z21 1 1

5 2 Z22 2 0

2 Z23 4 1
3 Z31 1 1

3 Z32 4 1

3 Z33 5 1
4 Z41 2 1
4 Z42 1 0

4 Z43 5 1
5 ZSI 1 0

5 ZS2 2 0
5 ZS3 5 0

Fig. 8. Example for Theorem 4.2(2).

Intuitively, O"o(v,) = 1 corresponds to Xi assigned to true, and O"O(Vi) =0 to X,

assigned to false. Any other value means freedom for Xi.

Let X, Y, H be an instance of the problem that is answered positively. Let 0"0 be
a valuation of To. Consider the truth assignment To of X, s.t. To(X,) is true iff
uo(Vi) = 1. Since the answer is yes, there is an extension T of To which satisfies H.
Consider the valuation u of T defined by:

(i) for each i, u(u;) = uo(v,),
(ii) u(Zk.j) = 1 iff T satisfies the kth member of jth clause, and u(zk,) = 0 otherwise.
By (i), qt(u(T»=u(T(R»=uo(To(Ro». Let k be in [l .. p]. Then one of the

three disjuncts in Ck is satisfied by T. Thus klii' is in u(T) for some i, t. Hence k
is in q2(u(T». To conclude that q2(0"(T» = uo(To(So», it suffices to notice that by
construction, 0 cannot be in qi u(T». Hence rep (To)c;; q(rep (T».

The converse is also similar. So we have that: the answer to the instance of
V33CNF problem is yes iff rep (To) c;; q(rep (T».

(3) This case follows from the proof of case (5) below and the technique of [10].
Namely, the c-table used in the hardness reduction here is the result of applying
the query qo on the table from case (5). By [10] this application leads to a c-table
describing the same set of worlds and can be done in PTIME.

(4) Reduction of 3DNF tautology: The proof is given for databases of more than
one relation. By standard modifications one can prove the single relation case.

For each instance H of the 3DNF tautology problem, tables To = (To(Ro), To(So»),
query qo, and table T of arity 1 are constructed. Let H = {Ci liE [1 .. pH, and
X = {Xj Ij E [1 .. mH. Then To, qo, and T are constructed as follows:

(a) To(Ro)={ijllxj is member ofc\ause i}u{ij0l-,xj is member of clause i}.
(b) To(So) = {juj U E [1 .. mH.
(c) qo = {x 13yz«Ro(xyz) " So(yz» v X = On.
(d) T={zt, ... ,zp}.

Sets of possible worlds 179

The construction for the formula of Fig. 5 is illustrated in Fig. 9.
Suppose that H is not a tautology. Then there is a truth assignment T such that

T falsifies H. Let lTo be the valuation defined by lTo(u,) = 0 if T satisfies Xi, and
lTo(u,) = I otherwise. Since T falsifies H, and H is in DNF, T falsifies Ci for each i.
Let i be in [1 .. p]. Since T falsifies CIt one member of that clause is not satisfied
by T. Suppose that that member is xl" (The case ,x, is treated in a similar way.)
Since T falsifies x,, lTu(u,) = 1. Since x, is member of CIt iji E ~)(Ro). Therefore
iji E lTo(To(Ro», and ji E lTo(To(So». Hence i E qo(lTo(~)). Thus qo(lTo(1;)) =

{O, 1, ... ,p}, and qo(lTo(To»e rep(T). The converse is similar and one can show
that: H is a tautology iff qo(rep(To»c;;; rep(T).

(5) Reduction of 'v'33CNF: Again for clarity we use many relation databases.
Given an instance of the 'v'33CNF problem, a vector of e-tables T = (T(R), T(S»,
a vector of tables To = (To(Ro), To(So», and a query qo = (qolt q(2) are constructed.
Let H={CklkE[I .. p]} be a set of clauses over Xu Y. Suppose that X=
{x,liE[I .. n]}, and Y={x,UE[n+I .. n+m]}.

(a) To(Ro)={ijkliE[I .. p],j, kE[O . . I]}.
(b) To(So)={iy,z,liE[l..n]}.

(c) qOI = {xyz I Ro(xyz)}.
(d) q02 = {xw 13yz«So(xyy) II W = 1) v (So(xyz) II W = O»}.
(e) T(R) = {iu,I! x, is member of clause i}

u {iu,O !,x, is member of clause i}
u{iiOliE[I .. p]}u{iOI!iE[I .. p]}u{iziz,!iE[I .. p]}.

(f) T(S)={iu;jiE[I .. n]}u{iO!iE[I .. n]}.

The construction is illustrated in Fig. 10 for the 'v'33CNF example of Fig. 5.
Intuitively, x, E X assigned to true corresponds to a tuple (iaa) in So and two

tuples (il), (i0) in S. An assignment to false is represented by a tuple (iab) with
a ~ b in So and a tuple (i0) in S. Now consider R and a clause i. The tuples (i01)
and (iIO) are in R; one tuple in {iOO, ill} is obtained if the ith clause is satisfied,
and the other one can be provided by (iz,z,).

Suppose that qo(rep(To» C;;; rep (T). We prove that the corresponding instance of
the 'v'33CNF problem is answered positively. Let T be a truth assignment of
Xl' ••. ,x". Consider the valuation lTo defined by: lTo(Y,)=lTo(z,) = 17 if T satisfies
Xi; and lTo(Y,) = 15, lTo(z,) = 17 otherwise. Since qo(rep (To» C;;; rep(T), there exists a

To(So)

1 1 1 1 UI

1 2 1 2 U2

1 3 1 3 U3

••• 4 U4
•

5 1 0 5 Us
5 2 0
5 5 0

Fig. 9. Example for Theorem 4.2(4}.

180 S. Abiteboul, P. Kanellakis, G. Grahne

To(Ro) To(So) T(R) T(S)

1 0 0

1 0 1
1 1 0
1 1 1

•••

5 0 0
5 0 1
5 1 0
5 1 1

1 YI ZI 1 1 0

2 Y2 Z2 1 0 1

• ••

5 1 0
5 0 1
1 Ul 1
1 U2 1
1 U3 1

• ••

5 Ul 0
5 u2 0
5 Us 0
1 Zl Zl

• ••

5 Zs Zs

Fig. 10. Example for Theorem 4.2(5).

1 UI

1 0

2 U2

2 0

valuation u of T such that qo(uo(To)) = u(T). By inspection of q02, for each i in
[1 .. n], u(u;) = 1 iff T satisfies Xj' Since qOl is the identity, u(Uj) = 0 or 1 for each
i in [1 .. n + m]. Consider the truth assignment T' defined by: T'(Xj) is true iff
a(uj) = 1. Clearly, T' is an extension of T. We next prove that T' satisfies H.

Let i be in [1 .. p]. Since qOI is the identity, iOO and ill are in qOI (ao(To», and
so in a(T(R». Thus one of the following two cases arise:

(i) "a(iz,z,) = iOO." Then, for somej, and iuJ l E T(R), a(iujl) = ill. Hence Xj is
member of the ith clause, and u(u}) = 1, i.e., T satisfies x} and the ith clause is satisfied.

(ii) "u(izjz,) = ill". Then, use the symmetric argument.
Hence T satisfies H and the instance H, X, Y of the V33CNF problem is answered
by yes.

The converse is similar and we thus have: the answer to the instance of V33CNF
problem is yes iff qo(rep(To» £ rep (T). 0

S. Possibility and certainty

The next theorem indicates how similar unbounded possibility is to membership,
from a computational point of view.

Theorem 5.1. Let,j be as in the definition of POSS, then we have that
(1) POSse *, -) is in PTIME if ,j is represented by tables.
(2) POSSe *, -) is NP-complete even if ,j is represented by a single e-table.
(3) POSSe *, -) is NP-complete even if ,j is represented by a single i-table.
(4) 3 positive existential q, s. t., POSSe *, q) is NP-complete even if ,j is represented

by a single table.

Sets of possible worlds

Proof. (1) The argument is a variation on that of Theorem 3.1 (0.
(2) Reduction of 3CNF satisfiability: We first state this problem.

181

input: Set X of variables and conjunction H of cardinality 3 or-clauses over X.
question: is there a satisfying truth assignment for H?

For each instance H of the 3CNF satisfiability problem, an e-table T, and a set
of facts P of width 3 are constructed. Let H = { Cj 1 i E [1 .. n]}, and X =

{Xj I) E [1 .. m]}. For each variable x) in X, let u" Yj be new variables.
(a) T={ju)y)IJE[I .. m]}u{jy)u)IJE[l .. m]}

u {(m + i)(m + ;)u) / c, contains Xj for some j}
u {(m + i)(m + i)Yj / Cj contains IX) for some j}.

(b) P = {jOI j E [I " m]} u {jlOIJ E [1 " m]}
u{(m+i)(m+i)I/iE[I .. n]}.

This reduction is illustrated in Fig. II (b) for the example formula of Fig. 5.
Suppose that T is a satisfying truth assignment of H. Consider the valuation u

defined by u(u) = 1, u(y) = 0 if rex) is true; and u(u,) = 0, u(yJ = 1 otherwise. It

(a) (b)

T p T p

1 Xu 1 1 1 Yl Ut 1 0 1

1 X12 2 1 1 UI YI 1 1 0

1 X13 3 1 2 Y2 U2 2 0 1

2 X21 4 1 2 U2 Y2 2 1 0

2 X22 5 1 3 Y3 U3 3 0 1

2 X23 3 U3 Y3 3 1 0

3 X31 4 Y4 U4 4 0 1

3 X32 4 u4 Y4 4 1 0

3 X33 5 Ys Us 5 0 1

4 X41 5 Us Ys 5 1 0

4 X42 6 6 UI 6 6 1

4 X43 6 6 U2 7 7 1

5 XSI 6 6 U3 8 8 I

5 XS2 7 7 Ul 9 9 1

5 X53 7 7 Y2 10 10 1
7 7 U4

~T = {XlI :f: X42, XlI :f: XSI, 8 8 Ut
x21 :f: X42, x21 :f: XSI, 8 8 u4

X31 :f: x42, X31 :f: XSl, 8 8 Us
X12:f: X22,X12:f: xS2, 9 9 U2

X41 :f: X22, X41 :f: XS2, 9 9 Yl

X33 :f: XS3,X43 :f: X53} 9 9 Us
10 10 Yl

10 10 Y2
10 10 Ys

Fig. It. (a) Example for Theorem 5.1(3), (b) example for Theorem 5.1(2).

182 S. Abiteboul. P. Kanellakis. G. Grahne

is easily seen that P ~ u(T). The converse is similar so we have:

There is a satisfying truth assignment for H iff P ~ 1
for some 1 in rep (T).

(3) Reduction of3CNF satisfiability. For each instance H of the 3CNF satisfiabil­
ity problem, an i-table (T, cPT), and an instance P of arity 2 are constructed. Let
H = {c,1 i E [1 .. n]}, and {x,,/.. liE [1,. n], k E {t, 2, 3}} be a set of distinct variables.

(a) T = {ix,./.. liE [1 .. n], k E {t, 2, 3}}.
(b) C = {X'k ¥- Xii I kth member of ith clause is some variable x,

and Ith member of jth clause is IX}.
(c) P={illiE[l..n]}.
This reduction is illustrated in Fig. II(a) for the example formula of Fig. 5. Now,

suppose that T is a satisfying truth assignment for H. Consider the valuation 17

defined by U(X,.k) = 1 if the kth member of the ith clause is satisfied by T; and
U(X"k) = 0 otherwise. It is easily seen that P ~ u(T, cPT)' The converse is similar.
Thus, there is a satisfying truth assignment for H iff P ~ I for some 1 in rep (T, cPT)'

(4) Consider the proof of Theorem 3.1(4). It can be shown that Gis 3-colorable

iff there exists K in q(rep (T» such that 10 ~ K. 0

Our next theorem is about bounded possibility, The upper bound is a consequence
of the fact that c-tables are representation systems in the sense of [10] and positive
existential queries can be incorporated explicitly in the c-table representation,
without any exponential growth. This growth may be unavoidable for first order
and DA TALOG queries as indicated by the lower bounds. Once again the interest
of the lower bounds lies in their syntactic simplicity.

Theorem 5.2. Let g be as in the definition of POSS(k, q), then we have that:
(1) POSS(k, q) is in PTIME for q pos. exist. and g is represented by c-tables.
(2) 3q first order query, s.t., POSS(1, q) is NP-complete even if g is represented

by tables.
(3) 3q DATALOG query, s.t., POSS(1, q) is NP-complete even if g is represented

by tables.

Proof. (1) The idea is to transform the given positive existential view of a c-table
into another equivalent c-table, that is not bigger than a polynomial of the size of
the input. This can be done because of the positivity of the queries and because of
their fixed length. One proceeds by structural induction on algebraic expressions
composed of: project, natural join, union, renaming, positive select. These are
equivalent to the positive existential queries and correspond to a subset of the c-table
manipulation rules from [10]. It is straightforward to see that these manipulation
rules have the desired behavior. Then one can find whether a bounded pattern is
possible by exhaustive search, with the size of the bounded pattern being an exponent
in the running time.

Sets of possible worlds 183

(2) Reduction of 3DNF nontautology: Let H = {cj } be the given set of clauses
and {xJ the given set of variables. Then a table T is constructed with variables {zj.d
and tuples the set:

{iz,.,J 11 Xj appears in position k of c,}

u {iz,.,JO l-lX} appears in position k of c,}.

We want fact (1) to be certainly in the answer to a query q' iff the original 3DNF
formula is a tautology. For this, let q' = {II r/I} where r/I is as follows:

v 3xyzv[R (xyzv) "y '" 1 " Y '" 0]

Intuitively, r/I states that either (J'(T) does not represent a truth assignment, or
that truth assignment is satisfied by H. The proof of the following claim is straight­

forward.

Claim. H is a tautology iff 1 is a certain fact in q'(rep (T».

To see that, suppose that H is not a tautology. Let T be a truth assignment such
that TH does not hold. Consider the valuation (J' defined by:
• (J'Zi.k = 1 if x) appears in position k of c, and TX} is true;
• (J'Z"k = 1 if ,x) appears in position k of c, and TX} is false;
• UZ, k = 0 otherwise .

•
It is easy to verify that 1 is not in q'((J'T). The converse is also straightforward.

Now, for the bounded possibility problem take the query q = {II'r/I}. We have
that: 1 is a possible fact in q(rep(T» iff H is a nontautology.

(3) Reduction of3CNFsatisjiability. We can show that POSS(1, transitive-closure)

is NP-complete for a g-table representation, but it is in PTIME for a table representa­
tion. So instead, we use a query:

q)(R) = {xl R(x) v 3yz[R(y) " R(z)" R.(yx) " R2(ZX)]}.

The query q with input instances (Ro, R., R 2) is the least fixpoint of q., which

contains RD·
For each instance H of 3CNF satisfiability, we now give the construction of a

table T. Let X={xdiE[l .. nJ}, and H={CJ UE[I .. m]}. For each i in [1 .. n], let

t . J, a and h, be distinct constants. For each j in [1 .. m], let h. be a new constant.
" " " J

184 S. Abiteboul, P. Kanellakis, O. Orahne

Let a be a new constant. Then T is constructed as follows. The variables used are

{x;!iE[I .. nn·
T(Ro) = {a}.

T(R t)={atdiE[I .. n]}u{af,liE[I .. nn
u {aa,1 i E [1 .. n]} u {ab t}

u {b,b;+tl i E [1 .. n -I]} u {t,hj I if X; is in jth clause}

u {f,hJ I if ,X, is in jth clause} u {bn I}.

T(R2)={axt}u{a,x,+tliE[I .. n-l]}

u {t,ad i E [1 .. n]}

u {f,a; liE [1 .. n]} u {a,b, liE [1 .. n]}

u {ah t} u {hJhJ+tli E [1 .. m -I]} u {hm I}.

Consider the instance of the 3CNF satisfiability problem given in Fig. 5. A
graphical representation of T is shown in Fig. 12. The Ro unary relation is indicated
by all the a-labeled nodes, the R t relation is indicated by broken lines, and the R2
relation is indicated by continuous lines.

A simulation of the possible evaluations of q suffices to show the following
equivalence: H is satisfiable iff 1 is a possible answer in q applied to T. Let us
argue the two directions.

If H is satisfiable then there is a satisfying assignment T. Pick a valuation that
equates X; to t; if T(X;) is true and to /; if it is false. It is easy to perform the
evaluation (using Fig. 12) and to see that 1 is in the output.

Let 1 be in the output. In order for this to be the case we make two observations.
Call the group of nodes {t"f" a" b,} the i-group. (i) All the b, are in the output.
This is forced by the R t ancestors of 1. (ii) Exactly one X has to be valuated to the
nodes of each i-group. By the pigeonhole principle if this does not happen one
group (say the jth) will not have any X valuated to it. But then, one can argue that
b

J
cannot be in the output, a contradiction.
Based on the two observations (i), (ii) above we have that, if 1 is in the output

at most one of each pair (t,,/;) is in the output and all the xs are valuated in the
i-groups. Thus, for 1 to be in the output all the hs must be in the output. Finally,
it is easy to see that, the insertion of the hs in the output requires a satisfying
assignment to H. 0

Our last theorem is about certainty.

Theorem 5.3. Let.1 be as in the definition of CERT(*, q), then we have that
(1) [10,17] CERT(*, q) is in PTIME if q is a DATALOG query and .1 is

represented by g-tables.

Sets of possible worlds

a - -- - - ~a.5---""'> bs- -·1

Xs

,.
I
I
I
I
I
I
I
I

I

I
X4 I

t I

a_ - - - - - ~ a3 > ~3
\ ~
h~ --a I

I

X3

t

I
I
I
I

---~" b2

/z --a

A
I
I
I
I

I

tl
I

hf~-h ... ,
't4 f~--a I

I
I
I t 1 ,

a
I I
I e
a-." h14-t2

",
't3

Fig. 12. Example for Theorem 5.2(3).

185

(2) 3qfirst order query, s.t., CERT(1, q) is coNP-complete even if ~ is represented

by a table.
(3) CERT(1, -) is co NP-complete even if ~ is represented by a c-table.

Proof. (1) The upper bound follows directly from the central results of [10, 17]
and is only included here for completeness of presentation. The efficient algorithm
corresponds to manipulating the matrix representation of the g-tables (i.e., with
equalities incorporated) as if they were complete information databases.

(2) Reduction of 3DNF tautology: Consider the 3DNF formula H, the table T,
and the query q' of the proof of Theorem 5.2(2). Recall that: H is a tautology
iff 1 is a certain fact in q'(rep (T». This lower bound is a refinement of a lower
bound in [17].

(3) Similar to the proof of Theorem 3.2(3). 0

186 S. Abiteboul, P. Kanellakis, G. Grahne

6. Conclusions and open questions

We have investigated the data complexity of incomplete information databases.
We have focused on views of tabular representations, from the very simple Codd­
tables to the more complex conditioned-tables. In this setting we analyzed contain­
ment, membership, uniqueness, possibility, and certainty problems.

Many of our lower bounds are in terms of particular hard queries. Are there
syntactic characterizations for easy queries in each case? In particular, it would be
interesting to have good characterizations for the MEMB lower bound of Theorem
3.1{ 4). These would be positive existential views of Codd-tables, whose membership
question is in PTIME. We believe that they could serve as a starting point for
studying sufficient conditions for efficient evaluation in the presence of incomplete
information.

The null values used here are values present but unknown, sometimes constrained
through explicit conditions. It would be interesting to investigate null values, whose
presence is also unknown [18]. Finally, in our query programs we do not have
explicit operators for "certainty" and "possibility" [11]. What is the effect of such
"modal" operators on data-complexity?

References

[1] S. Abiteboul and G. Grahne, Update semantics for incomplete databases, in: Proc. 11th Internat.
Con/ on Very Large Databases (1985) 1-12.

[2] A.K. Chandra and D. Harel, Structure and complexity and relational queries, 1. Comput. System
Sci. 25 (1982) 99-128.

[3] A.K. Chandra and D. Harel, Horn clause programs and generalizations, 1. Logic Programming 2
(1985) 1-15.

[4] E.F. Codd, Extending the database relational model to capture more meaning, ACM Trans. Database
Systems 4 (1979) 397-434.

[5] 5.5. Cosmadakis, The complexity of evaluating relational queries, Inform. and Control 58 (1983)
101-112.

[6] M.R. Garey and D.S. Johnson Computers and Intractability: A Guide to the Theory of
NP.Completeness (W.H. Freeman, San Francisco, CA, 1979).

[7] G. Grahne, Dependency satisfaction in databases with incomplete information, in: Proc. 10th
Internat. Con/. on Very Large Databases (1984) 37-45.

[8] P. Honeyman, R. Ladner and M. Yannakakis, Testing the universal instance assumption, Inform.
Process. Lett. 10 (1980) 14-19.

[9] T. Imielinski, On algebraic query processing in logical databases, in: H. Gallaire and J. Minker,
eds., Advances in Database Theory, Vol. 2 (Plenum Press, New York, 1984).

[10] T. Imielinski and W. Lipski, Jr, Incomplete information in relational databases, 1. ACM 31 (1984)
761-791.

[11] W. Lipski, Jr, On databases with incomplete information, 1. ACM 28 (1981) 41-70.
[12] D. Maier, Y. Sagiv and M. Yannakakis, On the complexity of testing implications of functional

and join dependencies, 1. ACM 28 (1981) 680-695.
[13] R. Reiter, A sound and sometimes complete query evaluation algorithm for relational databases

with null values, 1. ACM 33 (1986) 349-370.

Sets of possible worlds 187

[14] L. Stockmeyer, The polynomial time hierarchy, Theoret. Comput. Sci. 3 (1976) 1-22.
[15] J.D. Ullman, Principles of Database and Knowledge Base Systems: Volume I (Computer Science

Press, 1988).
[16] M. Y. Vardi, The complexity of relational query languages, in: Proc. 14th ACM SIGACT Symp. on

the Theory of Computing (1982) 137-146.
[17] M.Y. Vardi, Querying logical databases, J. Comput. System Sci. 33 (1986) 142-160.
[18] c. Zaniolo, Database relations with null values, J. Comput. System Sci. 28 (1984) 142-166.

