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Problem SAT

A truth assignment is a mapping f that assigns 0 (interpreted as “false”) or
1 (interpreted as “true”) to each variable in its domain; we shall enumerate
all the variables in this domain as x1, . . . , xn. The complement xi of each
such variable xi is defined by f(xi) = 1 − f(xi) for all truth assignments f ;
both xi and xi are called literals ; if u = xi then u = xi. A clause is a set of
(distinct) literals and a formula (in a conjunctive normal form) is a family
of (not necessarily distinct) clauses. A truth assignment satisfies a clause if
it maps at least one of its literals to 1; the assignment satisfies a formula if
and only if it satisfies each of its clauses. A formula is called satisfiable if it is
satisfied by at least one truth assignment; otherwise it is called unsatisfiable.
The problem of recognizing satisfiable formulas is known as the satisfiability
problem, or SAT for short.

Solving SAT by implicit enumeration

Given a formula F and a literal v in F , we let F|v denote the “residual
formula” arising from F when f(v) is set at 1: explicitly, this formula is
obtained from F by

• removing all the clauses that contain v,
• deleting v from all the clauses that contain v,
• removing both v and v from the list of literals.

Trivially, F is satisfiable if and only if at least one of F|v and F|v is satisfi-
able. This observation leads to a recursive algorithm that, given any formula
F , returns either the message SAT or the message UNSAT; this algorithm,
Implicit-Enumeration, is defined in Figure 1.
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if F = ∅ then return SAT end
if F includes the empty clause then return UNSAT end
choose a literal v of F ;
if Implicit-Enumeration(F|v) =SAT then return SAT end
if Implicit-Enumeration(F|v) =SAT then return SAT end
return UNSAT;

Figure 1: Implicit-Enumeration(F)

Optimal branching rules

Efficiency of Implicit-Enumeration depends on its implementation of the
instruction

choose a literal v of F ;

implementations of this instruction are called branching rules . For each for-
mula F , let Opt(F) denote the number of leaves in the recursion tree of
Implicit-Enumeration(F) minimized over all branching rules.

Random formulas

We will consider the “fixed-clause-length model” of randomly generating for-
mulas in a conjunctive normal form: A clause C is called ordinary if there
is no variable x such that x ∈ C and x ∈ C; in a random formula of m
clauses of length k over n variables, clauses are independent random vari-
ables C1, . . . , Cm such that each Ci is distributed uniformly over all the

(
n
k

)
2k

ordinary clauses of size k with variables coming from a fixed set of size n.

For every integer k greater than 1, there are positive constants ak and
bk such that, with probability 1 − o(1) as n → ∞, a random formula with
(1 + o(1))cn clauses of size k over n variables is satisfiable whenever c < ak

and unsatisfiable whenever c > bk. The existence of ak proportional to 2k/k
was proved in the special case 4 ≤ k ≤ 40 by Chao and Franco [3] and
without this restriction by Chvátal and Reed [5]; Achlioptas and Peres [1]
established ak = 2k ln 2−O(k) as k →∞. The existence of bk equal to 2k ln 2
is an observation apparently made first by Franco and Paull [6].
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Expected performance of optimal branching rules

For every choice of positive integers k, n, m, let fk(n, m) denote the expected
value of Opt(F) in a random formula of m clauses of length k over n vari-
ables.

Theorem 1 For every choice of an integer k and a real number c such that
k ≥ 3 and c > bk, we have

(1 + ε)n < fk(n, (1 + o(1))cn) < 2(1+o(1))γn

for some positive ε and for

γ =
k − 1

k

(
2k ln 2

ck

)1/(k−1)

. (1)

For instance, if k = 3 and c = 6, then γ = 4
9

√
ln 2 ≈ 0.37002, and so

f3(n, 6n) < 1.29238n for all sufficiently large n.

The lower bound in Theorem 1 follows from a theorem of Chvátal and
Szemerédi [4], whose proof gives a procedure for computing values of ε as a
function of k and c. (These are nothing to write home about.)

Proof of the upper bound: Given k,m, n, set

β =
k − 1

k

(
2k ln 2

k
· n

m

)1/(k−1)

;

next, given a random formula of m clauses of length k over n variables, branch
at random (that is, choose each new v from the uniform distribution on the
literals whose truth values have not been set yet) and, for each s = 0, 1, . . . , n,
let τ(s) denote the expected number of internal nodes of the recursion tree
on level s. In this notation,

fk(n, m) = 1 +
n∑

s=0

τ(s)

and

τ(s) = 2s

1−

(
s
k

)
(

n
k

)(1
2
)k

m

.
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In particular, τ(s) = 2s whenever s < k; if s ≥ k, then(
s
k

)
(

n
k

) >

(
s− k + 1

s

)k

·
(

s

n

)k

= (1− δ(s))
(

s

n

)k

with
δ(s) = 1−

(
1− k−1

s
)
)k

and so

τ(s) < 2s

(
1− (1− δ(s))

(
s

2n

)k
)m

< exp

((
s

n
− (1− δ(s))

2k ln 2
· m

n
·
(

s

n

)k
)
· n ln 2

)

≤ 2(1+ε(s))βn

with

ε(s) =

(
1

1− δ(s)

)1/(k−1)

− 1 .

Since ε(s) is a decreasing function of s, we conclude that

fk(n, m) <
∑

s<βn/2

2s + n · 2(1+ε(βn/2))βn,

which completes the proof.

Since branching at random on a random formula F is equivalent to
branching on F in any deterministic way that disregards all information
about F (for instance, always branching on the candidate xi that has the
smallest subscript i), the upper bound applies to any such branching rule.
Significant results on almost sure performance of such branching rules on
random formulas have been obtained by Beame, Karp, Pitassi, and Saks [2].
In particular, their Theorem 6.3 implies that, for every choice of an integer
k and a function m of n such that k ≥ 3 and m/n > bk, we have

fk(n, m) < 2O(αn)nO(1) with α =
(

n

m

)1/(k−2)

.

Problem: Improve the bounds on fk(n, (1 + o(1))cn).
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