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Abstract

We present a new generalization called reliability branching of today’s state-of-the-art strong branching and pseudocost
branching strategies for linear programming based branch-and-bound algorithms. After reviewing commonly used branching
strategies and performing extensive computational studies we compare di3erent parameter settings and show the superiority
of our proposed new strategy.
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1. Introduction

In this paper we are dealing with mixed integer
programs (MIPs), which are optimization problems
of the following form:

c? =min cTx; Ax6 b; x∈ZI × RN\I ; (1)

with A∈Rm×n, b∈Rm; c∈Rn; I ⊆N = {1; : : : ; n}.
Among the most successful methods are currently

linear programming based branch-and-bound (B&B)
algorithms where the underlying linear programs
(LPs) are possibly strengthened by cutting planes.
Most commercial integer programming solvers, see
[6], are based on this method. As we will see below,
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B&B algorithms leave two choices: how to split a
problem (branching) and which (sub)problem to se-
lect next. In this paper we focus on the branching
step and introduce a new generalization that contains
many of the known branching rules as special cases.
We show that speci@c choices of parameters for this
new class of branching rules perform in most cases
better than the current rules when tested on real-world
instances.
In Section 2 we review current branching strategies

from the literature and present our new generalization.
In Section 3 the results of extensive numerical tests
on speci@c parameter choices are presented.
We use the following notation. XMIP denotes

the set of feasible solutions of (1), and we set
c? = ∞ if XMIP = ∅. The linear programming relax-
ation of (1) is obtained by removing the integrality
constraints

AcPLP = min{cTx | x∈PLP}; (2)
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where PLP = {x∈Rn |Ax6 b}. We also denote
AcPLP = ∞ if PLP = ∅. Obviously, AcPLP 6 c

?, since
PLP ⊇ XMIP. A typical LP based B&B algorithm for
solving (1) looks as follows:

Algorithm 1 (LP-based branch-and-bound):
Input: A MIP in the form (1).
Output: An optimal solution x? ∈XMIP and its value
c? = cTx? or the conclusion that XMIP = ∅, denoted
by c? := ∞.

1. Initialize the problem set S := {PLP} with the LP
relaxation of the MIP. Set c? := ∞.

2. If S = ∅, exit by returning the value c?

(with an optimal solution x?).
3. Choose a problem Q∈ S and delete it from S.
4. Solve the linear program AcQ = min{cTx | x∈Q}

with optimal solution AxQ, where Q might have been
strengthened by cutting planes.

5. If AcQ¿ c?, goto 2.
6. If AxQ ∈XMIP, set c? := AcQ and x? := AxQ, goto 2.
7. Branching: Split Q into subproblems, add them to
S and goto 3.

If it is clear from the context we omit Q from all
parameters and write Ac, Ax, etc. instead of AcQ, AxQ, etc.

2. Branching rules

Since branching is in the core of any B&B algo-
rithm, @nding good strategies was important to prac-
tical MIP solving right from the beginning [3,13]. We
refrain from giving details of all existing strategies,
but concentrate on the most popular rules used in to-
days MIP solvers. For a comprehensive study of B&B
strategies we refer to [8,10] and the references therein.
The only way to split a problem Q within an LP

based B&B algorithm is to branch on linear inequal-
ities in order to keep the property of having an LP
relaxation at hand. The easiest and most common in-
equalities are trivial inequalities, i.e., inequalities that
split the feasible interval of a singleton variable. To
be more precise, if i is some variable with a frac-
tional value Axi in the current optimal LP solution, we
set f+

i = 
 Axi� − Axi and f−
i = Axi −  Axi�. We obtain

two subproblems, one by adding the trivial inequality

xi6  Axi� (called the left subproblem or left son,
denoted by Q−

i ) and one by adding the trivial in-
equality xi¿ 
 Axi� (called the right subproblem or
right son, denoted by Q+

i ). This rule of branch-
ing on trivial inequalities is also called branching
on variables, because it only requires to change
the bounds of variable i. Branching on more com-
plicated inequalities or even splitting the problem
into more than two subproblems are rarely incor-
porated into general MIP solvers, even though it
can be e3ective in special cases, see for instance
[4,5,15].
The basic algorithm for variable selection may be

stated as follows.

Algorithm 2 (generic variable selection):
Input: Current subproblem Q with an optimal LP so-
lution Ax �∈ XMIP.
Output: An index i∈ I of a fractional variable Axi �∈ Z.

1. Let C = {i∈ I | Axi �∈ Z} be the set of branching
candidates.

2. For all candidates i∈C, calculate a score value
si ∈R.

3. Return an index i∈C with si =maxj∈C{sj}.

In the following we focus on the most common
variable selection rules, which are all variants of Al-
gorithm 2. The di3erence is how the score in Step 2
is computed.
The ultimate goal is to @nd a fast branching strategy

that minimizes the number of B&B nodes that need
to be evaluated. Since a global approach is unlikely,
one tries to @nd a branching variable that is at least a
good choice for the current branching. The quality of
a branching is measured by the change in the objec-
tive function of the LP relaxations of the two children
Q−
i and Q+

i compared to the relaxation of the parent
node Q.
In order to compare branching candidates, for each

candidate the two objective function changes �−
i :=

AcQ−
i

− AcQ and �+i := AcQ+
i
− AcQ are mapped on a single

score value. This is typically done by using a function
of the form (cf. [10])

score(q−; q+) = (1 − �) · min{q−; q+}
+ � · max{q−; q+}: (3)
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The score factor � is some number between 0 and 1. It
is usually an empirically determined constant, which
is sometimes adjusted dynamically through the course
of the algorithm (we use � = 1=6). Note that special
treatment is necessary, if one of the subproblems Q−

i
or Q+

i is infeasible.
In the forthcoming explanations all cases are sym-

metric for the left and right subproblem. Therefore
we will only consider one direction, the other will be
analogous.

2.1. Most infeasible branching

This still very common rule chooses the variable
with fractional part closest to 0:5, i.e., si =0:5− | Axi −
 Axi� − 0:5|. The heuristic reason behind this choice is
that this selects a variable where the least tendency
can be recognized to which “side” (up or down) the
variable should be rounded. As the numerical results
in Section 3 indicate, the performance of this rule is in
general not better than selecting the variable randomly.

2.2. Pseudocost branching

This is a sophisticated rule in the sense that it keeps
a history of the success of the variables on which
already has been branched. This rule goes back to [3].
In the meantime various variations of the original rule
have been proposed. In the following we present the
one used in SIP [12]. For alternatives see [10].
Let &+i be the objective gain per unit change in vari-

able i at node Q, that is

&+i = �+i =f
+
i : (4)

Let �+i denote the sum of &+i over all problems Q,
where i has been selected as branching variable and
Q+
i has already been solved and was feasible. Let �+i

be the number of these problems. Then the pseudo-
costs for the upward branching of variable i are

�+
i = �+i =�

+
i : (5)

Using si=score(f−
i �

−
i ; f

+
i �

+
i ) inAlgorithm2yields

what is called pseudocost branching.
Observe that at the beginning of the algorithm �+i =
�+i =0 for all i∈ I . We call the pseudocosts of a vari-
able i∈ I uninitialized for the upward direction, if
�+i = 0. Uninitialized upward pseudocosts are set to
�+
i =�

+
avg, where�

+
avg is the average of the initialized

upward pseudocosts over all variables. This average
number is set to 1 in the case that all upward pseudo-
costs are uninitialized. The pseudocosts of a variable
are called uninitialized if they are uninitialized in at
least one direction.

2.3. Strong branching

The idea of strong branching, introduced in
CPLEX 7.5 [7] (see also [2]), is to test which of
the fractional candidates gives the best progress be-
fore actually branching on any of them. This test is
done by temporarily introducing a lower bound  Axi�
and subsequently an upper bound 
 Axi� for variable
i with fractional LP value Axi, and solving the linear
relaxations.
If we choose as candidate set the full set C =

{i∈ I | Axi �∈ Z} and if we solve the resulting LPs to
optimality, we call the strategy full strong branching.
In other words, full strong branching can be viewed
as @nding the locally (with respect to the given score
function) best variable to branch on. We will see in
Section 3 that selecting this locally best variable usu-
ally works very well in practice w.r.t. the number of
nodes needed to solve the problem instances.
Unfortunately, the computation times per node of

full strong branching are high. Accordingly, most
branching rules presented in literature may be inter-
preted as an attempt to @nd a (fast) estimate of what
full strong branching actually measures.
One possibility to speedup full strong branching is

to restrict the candidate set in some way, e.g. by con-
sidering only a subset C′ ⊆ C of the fractional vari-
ables. To estimate the changes in the objective func-
tion for a speci@c branching decision, often only a few
simplex iterations are performed, because the change
of the objective function in the simplex algorithm usu-
ally decreases with the iterations. Thus, the parame-
ters of strong branching to be speci@ed are the size of
the candidate set C′, the maximum number � of dual
simplex iterations to be performed on each candidate
variable, and a criterion according to which the can-
didate set is selected.
In SIP, the size of the candidate set is not @xed

in advance to a speci@c value, but the candidates are
evaluated with a “look ahead” strategy: if no new
best candidate was found for � successive candidates,
the evaluation process is stopped. By evaluating
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variables with largest pseudocost scores @rst, only
the most promising candidates are evaluated. The it-
eration limit for strong branching evaluations is set
to � = 2A�, where A� is the average number of sim-
plex iterations per LP needed so far. Note that this
number only protects from unexpected long simplex
runs, on average the candidate LPs will be solved to
optimality.

2.4. Hybrid strong/pseudocost branching

Even with the speedups indicated at the end of Sec-
tion 2.3, the computational burden of strong branch-
ing is high, and the higher the speedup, the less precise
the decisions are.
On the other hand, the weakness of pseudocost

branching is that at the very beginning there is no in-
formation available, and si is almost identical for all
variables i∈C. Many of the early nodes are located in
the upper part of the search tree where the decisions
have the largest impact on the structure of the tree and
the subproblems therein. With pseudocost branching,
these decisions are taken with respect to pseudocost
values that are not useful yet.
To circumvent these drawbacks the positive aspects

of pseudocost and strong branching are put together in
the combination hybrid strong/pseudocost branching,
where strong branching is applied in the upper part
of the tree up to a given depth level d. For nodes with
depth larger than d, pseudocost branching is used.
This branching rule is available for example in LINDO
[11].

2.5. Pseudocost branching with strong branching
initialization

The decisions of pseudocost as well as the ones
of hybrid strong/pseudocost branching in the lower
part of the tree are potentially based on uninitialized
pseudocost values, leading to an inferior selection of
branching variables.
The idea to avoid this risk, which goes back to

[10], is to use strong branching for variables with
uninitialized pseudocosts and to use the resulting
strong branching estimates to initialize the pseudo-
costs. In contrast to the @xed depth level of hybrid
strong/pseudocost branching, this rule uses strong
branching in a more dynamic way.

2.6. Reliability branching

We generalize the idea of pseudocost branching
with strong branching initialization by not only us-
ing strong branching on variables with uninitialized
pseudocost values, but also on variables with unreli-
able pseudocost values. The pseudocosts of a variable
i are called unreliable, if min{�−i ; �+i }¡�rel, with �rel
being the “reliability” parameter. We call this new
branching rule reliability branching.
An outline of the selection of a branching variable

with reliability branching is given in the following
Algorithm 3 that replaces Step 2 of Algorithm 2.

Algorithm 3 (Reliability branching):

2. For all candidates i∈C, calculate the score
si = score(f−

i �
−
i ; f

+
i �

+
i ) and sort them in

non-increasing order of their pseudocost scores.
For all candidates i∈C with min{�−i ; �+i }¡�rel,
do:
(a) Perform a number of at most � dual simplex

iterations on each subproblem Q−
i and Q+

i .
Let �̃−

i and �̃+i be the resulting gains in the
objective value.

(b) Update the pseudocosts�−
i and�+

i with the
gains �̃−

i and �̃+i .
(c) Update the score si = score(�̃−

i ; �̃
+
i ).

(d) If the maximum score s∗ =maxj∈C {sj} has
not changed for � consecutive score updates,
go to 3.

2.7. Branching rule classi?cation

Some of the proposed branching rules can be ad-
justed with parameter settings. All of the strategies
using strong branching include the simplex itera-
tion limit � and the look ahead value �. The hybrid
strong/pseudocost branching exhibits an additional
depth parameter d, while the reliability branching
comes along with the reliability parameter �rel.
It is interesting to note that depending on the param-

eter settings, the branching rules have interrelations as
illustrated in Fig. 1.
Hybrid strong/pseudocost branching with d=0 as

well as reliability branching with �rel = 0 coincide
with pure pseudocost branching. With �rel = 1, re-
liability branching is equal to pseudocost branching
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Fig. 1. Interrelations between branching rules and their parameters.

with strong branching initialization. If the depth d
and the reliability �rel are increased, the number of
strong branching evaluations also increases, and with
d= �rel =∞, both strategies converge to pure strong
branching. Additionally, if the look ahead parameter
is set to �=∞, strong branching becomes full strong
branching.

�rel Classi@cation

0 pseudocost branching

1 pseudocost branching with strong branching

initialization

4; 8 best performing branching rules

∞ strong branching

3. Computational results

In this section we compare computational results
for di3erent branching rules and parameter settings
on several MIP instances. All calculations were per-
formed on a 833 MHz Alpha 21264 workstation with
4 MB Cache and 2 GB RAM.

3.1. Test set

Our test set consists of instances from MIPLIB 2003
[1] and instances used by Mittelmann [14]. We se-
lected all problems where CPLEX [7] 9.0 needs at least
5000 branching nodes and at most one hour CPU time
for solving. (CPLEX was run with default settings, ex-
cept that “absolute mipgap” was set to 10−10 and “rel-
ative mipgap” to 0:0, which are the corresponding val-
ues in SIP.)
In all runs, we used a time limit of 3600 s. Note

that the version of SIP used here utilizes CPLEX 9.0
as embedded LP solver. The strong branchings are
performed using CPXstrongbranch().
What makes benchmarking branching strategies dif-

@cult are the complex interrelations between cutting
plane generation, primal heuristics, node selection,
and branching variable selection. For example, it is
possible that a “worse” branching rule results in less
branching nodes and a smaller solution time for a spe-
ci@c instance, because the variable selection leads in-
cidentally to an early discovering of a good or optimal
primal solution. However, we dispensed with setting
the optimal solution values beforehand, since leading
towards feasible solutions fast is a desirable property
of branching rules.
Hence, for our comparison of the branching strate-

gies we used the default parameter settings except
that cuts are generated in the root node only. For
this parameter setting, which is commonly known as
cut-and-branch, the inSuence of the branching strat-
egy is emphasized best.
To verify that the branch-and-bound environment

we used with SIP is state-of-the-art, we also ran CPLEX
9.0 on our test set. To better compare the branch-
ing decisions we used SIP’s preprocessing and cutting
plane generation also in CPLEX instead of CPLEX’ own
routines. In this way both, CPLEX and SIP, operated
with pure branch and bound on the same problems. In
CPLEX we used the default branching strategy which
to the best of our knowledge is some variant of pseu-
docost branching.

3.2. Description of tables and ?gures

In Table 4, the summary of all computational results
is presented. Columns labeled “total” give the sums of
the results over all instances, columns labeled “geom.”
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give the geometric mean over all instances. The last
column lists how many instances where not solved to
optimality because the limit of one hour CPU time
was reached.
Tables 1 and 2 describe in detail some of our com-

putational results. These tables show for each instance
and each branching strategy the number of nodes ex-
plored and the time needed to solve all the instances.
The number put in parentheses behind the branching
rules is the reliability setting for reliability branch-
ing and the depth setting for hybrid strong/pseudocost
branching (str/ps).
Numbers in bold face indicate the “winner” for a

particular instance between hybrid strong/pseudocost
branching with d = 10, reliability branching with
�rel = 1 which is equal to pseudocost branching
with strong branching initialization, and reliability
branching with �rel = 8. This is done separately for
�= 4 and 8.
We did not base our conclusions on performances

of single instances and discuss those in detail. We
rather rely on average numbers over all instances. It
is common sense that the geometric mean is a fair
criterion for comparison and we used it as the basis
for our conclusions in the next section.
One interesting observation in Table 2 is that most

infeasible branching is basically as good as random
branching showing that this rule is of no use. We
refrain from considering both rules any further in the
following discussion.
Table 3 gives the number of strong branch-

ing evaluations performed, i.e., the number of
CPXstrongbranch() calls, which is the number of
times a fractional variable was evaluated with strong
branching by solving its two subproblems. The last
column shows the average depth of the node tree as
encountered while doing full strong branching. This
gives an indication on how balanced the trees are,
the smaller the number the more balanced the trees
are. Examples can be seen in Fig. 5 which display
the trees of vpm2 (left) with a low average depth and
neos3 (right) with a very high average depth.

3.3. Results

We have performed a comprehensive computational
study of all variants of branching strategies discussed
in this paper. For each parameter setting, reSected by

an intersection point of two lines in Fig. 1, we ran all
instances. The total number as well as the geometric
mean in terms of B&B nodes, time and strong branch-
ing evaluations is shown in Table 4 for all of these
runs.
Fig. 2 illustrates the geometric means of all runs.

The circles, squares and stars indicate runs with reli-
ability branching, hybrid strong/pseudocost branch-
ing, and strong branching, respectively. The CPLEX
run is marked with an ‘×’. The numbers give, depend-
ing on the branching strategy, information about the
parameters �rel, d, and �.
The following conclusions may be drawn from these

numbers:

(i) Strong branching (stars in Fig. 2) performs re-
markably well with respect to the number of eval-
uated nodes, but, as expected, not with respect
to time. Only two instances could not be solved
by full strong branching within 3600 s. Without
time limit, qiu is solved in 15 659 nodes and
11 133 s, while neos7 is solved in 476 601 nodes
and 33 418 s.
The only instance where none of the variants

of strong branching needs the least number of
nodes is neos7. Especially unexpected is that full
strong branching needs to evaluate considerably
more nodes than pseudocost branching. This is
due to the fact that pseudocost branching is (in-
cidentally) able to @nd the optimal solution very
early (after two minutes and 15 277 nodes). Note
that as a consequence pseudocost branching is
more than twice as fast per node than most in-
feasible branching.

(ii) With respect to time, regardless of the speci@c pa-
rameter setting, reliability branching always out-
performs hybrid strong/pseudocost branching, as
can be seen by comparing the circles with the
rectangles in Fig. 2.
At least one reason why hybrid strong/

pseudocost branching performs worse than re-
liability branching can be seen in Fig. 5. What
is shown are the branch-and-bound trees gen-
erated by full strong branching visualized with
VBCTOOL [9]. The @rst tree is from vpm2
and is reasonably balanced. The second one
is from neos3 and looks like a path. The right
branch (@xing a variable to one) is nearly always
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Table 1
B&B nodes needed to solve each problem instance

Lookahead= 4 Lookahead= 8 PLE 9.0

Example Random Most inf. Pscost Full str. Str/ps(10) Reli(1) Reli(8) Strong Str/ps(10) Reli(1) Reli(8) Strong (SIP cuts)

aSow30a ¿1 248 221 ¿1 025 389 276 002 46 649 164 112 203 544 181 397 44 455 210 127 170 547 171 909 55 478 105 204
cap6000 7454 6717 6791 3402 4957 5076 4253 3452 4957 5076 4253 3452 4982
gesa2-o ¿1 023 765 ¿1 150 438 126 459 13 743 75 141 57 534 53 881 15 831 74 673 79 841 50 078 21 988 37 293
mas74 ¿4 662 991 ¿4 725 208 5 160 828 551 780 5 163 685 5 478 830 5 521 061 ¿790 014 4 886 438 5 296 806 5 425 001 ¿645 364 5 617 512
mas76 2 935 689 2 038 945 603 683 114 228 587 813 496 370 482 122 125 516 666 398 496 370 336 826 188 882 507 536
misc07 47 941 17 955 19 407 2713 49 822 35 187 54 932 5228 50 893 41 902 55 740 5394 86 825
pk1 1 064 666 850 198 437 758 56 546 294 469 367 763 331 339 128 299 298 771 367 763 311 611 143 206 366 340
pp08aCUTS 1877 1740 673 124 355 673 489 201 318 651 464 148 663
qiu ¿163 998 ¿165 538 15 471 ¿2974 25 180 16 479 18 405 6178 23 974 16 148 14 847 ¿6416 9443
rout ¿714 812 ¿702 392 309 779 2 836 45 457 44 232 13 883 4179 39 212 39 192 19 743 11 305 ¿1 467 395
vpm2 92 880 40 258 22 568 1457 11 710 13 780 9648 1974 10 826 17 409 10 054 1812 4306
ran8 x 32 321 933 674 613 40 069 4902 29 957 26 360 17 668 6824 30 526 31 697 21 092 4249 45 143
ran10 x 26 ¿1 637 058 ¿1 500 171 128 327 8520 54 965 64 640 48 065 8279 56 448 68 237 48 626 11 112 56 548
ran12 x 21 ¿1 667 430 ¿1 471 340 234 915 13 420 126 153 172 161 135 037 12 185 135 165 159 383 124 455 18 577 196 478
ran13 x 13 907 443 758 186 149 239 9147 86 648 109 241 95 288 16 033 86 566 97 195 93 939 20 516 97 325
mas284 162 255 123 569 21 586 3226 18 700 24 383 21 179 4564 17 799 21 217 20 360 5580 21 472
prod1 ¿2 854 213 2 317 393 89 293 10 644 72 890 63 674 64 186 14 670 69 992 65 679 62 689 15 609 106 369
bc1 33 631 34 127 40 781 2981 42 882 35 132 25 196 3666 40 212 35 132 25 196 3603 18 463
bienst1 66 099 58 841 19 418 3687 13 594 10 427 13 911 5274 13 602 9248 9951 5340 12 963
neos2 ¿640 712 ¿703 794 ¿609 109 618 195 730 187 331 22 742 4405 244 292 83 146 30 790 2685 158 240
neos3 ¿403 674 ¿393 853 ¿446 035 1402 ¿505 184 ¿737 254 556 835 13 215 ¿536 938 ¿736 396 626 894 15 306 606 168
neos7 ¿471 073 ¿339 479 390 910 ¿44 061 ¿546 623 535 586 202 482 ¿55 369 ¿598 209 498 573 252 766 ¿55 799 422 264
swath1 33 021 81 309 19 924 8285 64 320 36 264 35 161 11 268 73 512 66 995 10 615 16 471 128 017
swath2 83 441 ¿240 136 211 976 22 002 71 595 278 413 28 808 ¿44 510 162 695 258 934 85 510 ¿36 277 390 480

Total (24) 21 246 277 19 421 589 9 381 001 929 347 8 251 942 9 000 334 7 937 968 1 325 589 8 332 543 8 663 537 7 813 409 1 294 569 10 467 429
Geom. mean 275 789 262 369 88 707 7242 65 966 70 014 48 773 11 640 69 489 69 501 48 377 12 715 79 269



T
.
A
chterberg

et
al./O

perations
R
esearch

L
etters

33
(2005)

42
–
54

49

Table 2
Time in seconds needed to solve each problem instance

Lookahead=4 Lookahead=8 CPLEX 9.0

Example Random Most inf. Pscost Full str. Str/ps(10) Reli(1) Reli(8) Strong Str/ps(10) Reli(1) Reli(8) Strong (SIP cuts)

aSow30a ¿3600.0 ¿3600.0 582.5 2212.6 364.6 403.6 416.4 704.7 457.6 391.7 368.2 1522.8 330.6
cap6000 57.1 50.3 52.6 47.4 41.1 38.6 36.1 58.9 40.7 37.8 36.3 59.5 18.8
gesa2-o ¿3600.0 ¿3600.0 442.7 864.2 275.0 203.2 199.1 463.7 272.5 284.3 195.7 926.6 93.9
mas74 ¿2651.9 ¿2683.5 2734.2 3087.1 2750.3 3015.9 2807.4 ¿3600.0 2902.2 3066.4 3104.2 ¿3600.0 1995.3
mas76 1307.1 916.0 291.7 486.6 274.5 240.6 225.1 420.2 315.3 242.2 161.2 713.9 136.8
misc07 123.4 54.8 54.6 299.3 141.6 97.5 150.2 213.3 143.2 113.2 150.2 267.4 225.6
pk1 501.3 483.7 249.9 488.5 154.3 199.2 193.3 658.1 157.2 200.8 170.3 885.0 161.7
pp08aCUTS 6.8 7.7 3.4 12.4 7.8 4.5 5.4 10.3 10.3 4.4 5.5 9.9 2.4
qiu ¿3600.0 ¿3600.0 332.3 ¿3600.0 927.4 369.5 419.1 1901.9 1213.9 371.2 341.9 ¿3600.0 152.2
rout ¿3600.0 ¿3600.0 976.9 621.2 150.0 135.7 58.4 254.7 165.2 122.2 81.3 785.8 ¿3600.0
vpm2 124.5 62.6 30.6 43.5 18.2 18.6 15.7 25.4 19.1 25.0 16.3 30.9 4.1
ran8 x 32 592.4 1790.9 78.7 212.1 62.4 54.7 38.3 141.8 59.3 63.7 47.2 133.0 76.2
ran10 x 26 ¿3600.0 ¿3600.0 192.5 463.0 89.0 99.5 86.5 183.1 100.3 104.7 82.0 294.2 113.0
ran12 x 21 ¿3600.0 ¿3600.0 412.4 757.1 208.9 272.5 214.5 317.4 222.2 250.8 199.0 529.3 419.1
ran13 x 13 1189.5 1168.8 217.7 287.4 132.8 159.9 136.9 233.7 134.4 144.8 136.1 355.0 126.9
mas284 146.4 116.5 24.6 59.5 28.5 28.8 25.9 48.5 27.8 23.7 24.1 71.0 15.4
prod1 ¿3600.0 1741.5 151.0 405.1 112.9 94.6 100.8 287.1 101.1 96.2 97.8 359.3 185.7
bc1 1243.8 1317.7 1218.5 1180.5 1337.0 1272.9 1120.0 1108.2 1282.2 1295.2 1153.0 1071.5 1947.4
bienst1 868.2 749.2 230.9 243.0 121.3 107.9 115.3 256.8 138.4 83.3 91.0 270.3 194.1
neos2 ¿3600.0 ¿3600.0 ¿3600.0 872.8 693.6 675.6 206.7 277.2 883.6 385.5 222.2 216.9 671.4
neos3 ¿3600.0 ¿3600.0 ¿3600.2 2882.3 ¿3600.0 ¿3600.0 2707.2 1284.6 ¿3600.0 ¿3600.0 3145.8 1550.2 2513.8
neos7 ¿3600.0 ¿3600.0 2009.4 ¿3600.0 ¿3600.0 2661.3 1039.8 ¿3600.0 ¿3600.0 2377.6 1350.3 ¿3600.0 1831.7
swath1 330.3 894.3 173.4 795.2 566.0 335.3 407.3 777.6 668.6 604.6 166.2 1166.1 693.1
swath2 1059.4 ¿3600.0 2285.3 2876.3 842.3 3109.8 407.2 ¿3600.0 1847.6 2864.5 1034.6 ¿3600.0 3108.2

Total (24) 46202.2 48037.5 19945.8 26397.2 16499.4 17199.6 11132.7 20427.0 18362.5 16753.8 12380.2 25618.6 18617.4
Geom. mean 923.6 938.0 283.4 504.4 229.6 216.4 170.5 353.2 253.9 217.2 170.2 468.0 215.8
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Table 3
Strong branching evaluations performed and maximal depth of random branching

Lookahead= 4 Lookahead= 8 Avg. depth

Example Full str. Str/ps(10) Reli(1) Reli(8) Strong Str/ps(10) Reli(1) Reli(8) Strong Full str.

aSow30a 972 871 3625 396 2847 239 787 5604 397 2865 495 934 38.7
cap6000 4602 762 92 597 4683 762 92 597 4683 16.7
gesa2-o 401 182 2231 435 2331 114 464 3373 1841 2178 235 608 28.8
mas74 8 773 236 6609 98 649 6 094 848 10 531 88 673 6 617 267 23.3
mas76 1 508 479 6307 69 530 861 005 9080 69 558 1 551 253 21.2
misc07 85 451 3120 379 2471 65 988 2943 266 3262 84 665 29.9
pk1 897 902 7008 54 391 879 768 9334 54 402 1 256 800 24.6
pp08aCUTS 2227 954 61 433 1498 1531 60 438 1530 7.3
qiu 79 685 6879 48 363 47 170 11 732 48 370 87 289 11.6
rout 114 383 3004 573 2703 58 916 5554 426 3473 210 641 22.1
vpm2 21 665 1948 165 881 12 712 2971 141 1089 15 435 18.0
ran8 x 32 129 698 1770 570 2657 63 719 2765 667 2534 58 732 24.8
ran10 x 26 267 261 3038 536 1985 88 240 3771 586 3417 144 009 30.2
ran12 x 21 456 400 5414 593 2675 141 880 6588 940 2591 269 767 25.5
ran13 x 13 210 862 5304 167 1276 144 070 7920 311 1521 234 413 26.3
mas284 54 311 4350 110 462 32 685 5010 85 477 47 686 14.9
prod1 209 540 151 153 1202 118 575 335 158 1173 152 860 32.9
bc1 17 413 804 3189 5092 16 891 787 3189 5092 16810 35.9
bienst1 31 222 4150 27 211 27 841 4380 27 206 30 331 13.8
neos2 115 097 1076 9998 15 893 44 008 267 13 311 13 994 37 362 121.6
neos3 305 325 1264 11 730 45 143 170 679 270 19 218 54 459 223 816 134.6
neos7 475 374 1058 6170 11 256 344 673 171 5944 17 062 417 934 130.2
swath1 111 797 1682 1598 8170 80 944 3235 2088 6474 129 431 28.1
swath2 323 669 2304 1915 7425 310 410 3168 3551 8640 327 248 38.0

Total (24) 15 569 652 74 812 39 126 117 643 9 965 454 102 082 53 557 133 545 12 651 504 —
Geom. mean 146 784 2284 375 1850 86 189 2524 429 1998 119 799 28.2
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Table 4
Summary of all considered strategies

Strategy B&B nodes Time (s) Strong branchings Fails
Total Geom. Total Geom. Total Geom.

Random 21 246 277 275 789.4 46 202.2 923.6 0 0.0 11
Most infeasible 19 421 589 262 368.9 48 037.5 938.0 0 0.0 11
Pseudocost 9 381 001 88 706.8 19 945.8 283.4 0 0.0 2
Full strong 929 347 7241.7 26 397.2 504.4 15 569 652 146 784.2 2

Lookahead=4
Strong/pscost (5) 9 698 397 79 535.5 19 487.8 249.3 5792 216.2 2
Strong/pscost (10) 8 251 942 65 966.3 16 499.4 229.6 74 812 2284.2 2
Strong/pscost (15) 7 982 847 57 976.8 17 855.3 258.8 523 377 8137.8 2
Strong/pscost (20) 7 890 374 47 958.5 19 175.6 293.5 2 825 100 17 780.2 2
Reliability (1) 9 000 334 70 013.6 17 199.6 216.4 39 126 374.8 1
Reliability (4) 6 906 698 53 522.9 13 402.9 178.2 110 628 1176.7 0
Reliability (8) 7 937 968 48 772.8 11 132.7 170.5 117 643 1 850.3 0
Reliability (16) 6 022 024 44 649.9 10 782.6 179.0 187 578 3 640.6 0
Reliability (32) 7 940 797 39 655.2 11 103.0 184.2 253 014 5 837.8 0
Strong branching 1 325 589 11 639.5 20 427.2 353.2 9 965 454 86 188.6 3

Lookahead=8
Strong/pscost (5) 8 653 318 74 730.8 17 389.5 239.6 7397 268.6 1
Strong/pscost (10) 8 332 543 69 489.0 18 362.5 253.9 102 082 2523.8 2
Strong/pscost (15) 7 456 685 59 398.8 20 479.8 295.7 750 577 9 983.1 2
Strong/pscost (20) 7 551 419 48 736.5 22 388.8 343.1 3 695 577 20 837.9 3
Reliability (1) 8 663 537 69 501.0 16 753.8 217.2 53 557 429.0 1
Reliability (4) 8 338 386 54 937.7 12 497.2 179.2 74 906 1 104.6 0
Reliability (8) 7 813 409 48 377.3 12 380.2 170.2 133 545 1 998.0 0
Reliability (16) 7 579 400 43 311.9 11 946.7 171.3 185 136 3589.7 0
Reliability (32) 7 207 836 42 047.5 11 835.7 186.5 259 482 5913.2 0
Strong branching 1 294 569 12 714.7 25 619.4 468.0 12 651 504 119 799.1 4

Lookahead=∞
Strong/pscost (5) 8 498 292 71 817.4 18 116.9 229.3 14 675 489.9 2
Strong/pscost (10) 9 247 636 70 125.8 20 472.1 276.2 154 458 3870.1 2
Strong/pscost (15) 6 670 440 56 926.6 19 907.4 312.2 890 187 13 127.2 3
Strong/pscost (20) 7 627 640 48 547.0 23 538.5 373.6 3 842 516 26 557.4 3
Reliability (1) 7 747 290 72 159.1 15 825.8 220.0 48 162 408.4 1
Reliability (4) 9 068 723 58 886.4 14 258.1 195.8 78 625 1096.6 2
Reliability (8) 8 551 045 54 118.3 13 563.0 189.6 135 541 2042.9 1
Reliability (16) 6 567 432 49 839.9 12 766.4 191.6 196 220 3601.0 0
Reliability (32) 7 502 942 41 636.1 12 393.6 192.5 281 822 6000.7 0
Strong branching 1 163 822 11 355.7 26 176.4 500.3 12 793 364 127 737.1 4

CPLEX/SIP cuts 10 467 429 79 269.0 18 617.4 215.8 — — 1

infeasible after two variables are @xed. Since hy-
brid strong/pseudocost branching uses a @xed
depth for deciding where to do strong branch-
ing, only very few strong branching evaluations
are performed, as shown in Table 3.

The last column of Table 3 gives the aver-
age depth of all nodes generated when using
full strong branching. If one compares this to
the depth setting of hybrid strong/pseudocost
branching and looks at the number of strong
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branchings performed, see also Table 3, the
diVculties with strategies based on some @xed
setting become obvious.

(iii) The lookahead � from a certain value upwards
does not seem to have much inSuence on the
number of nodes.
The higher the settings the more time is spent

per node evaluation, which seems not to pay o3.
This is not really a surprise recalling that a looka-
head of four means, no new best candidate found
in four consecutive tries. Since the candidates
are already ordered by pseudocost value and the
lookahead counter is reset with every new best
candidate found, a setting of four turns out to be
good enough to @nd the overall best candidate in
most cases.

(iv) Increasing the reliability �rel in reliability
branching or the depth d in hybrid strong/
pseudocost branching decreases the number of
evaluated nodes as expected.
See Fig. 3, where the ratio of the number of

nodes to strong branching evaluations is shown.
With an increasing number of strong branch-
ing evaluations we are converging towards
strong branching with respect to the number
of evaluated nodes. The curve of reliability
branching is always below the curve of hybrid
strong/pseudocost branching indicating that the
information provided by strong branching is
used in a much better way.
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Fig. 4 on the other hand demonstrates the
tradeo3 between number of nodes and time per
node. We again see that reliability branching
is always better than hybrid strong/pseudocost
branching. Fig. 4 also nicely reSects that pseu-
docost branching with strong branching initial-
ization (�rel = 1), see Section 2.5, is better than
pseudocost branching itself (�rel = 0), but this is
not the best choice. The performance increases
up to �rel = 8 and decreases with larger values
again.
Looking once again at Fig. 2 we see that the

setting (�rel = 8; � = 4) for reliability branching
marks a new sweet spot.
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Fig. 5. Comparison of node trees resulting from full strong branching for vpm2 and neos3.

4. Conclusion

It was shown that a more intensive dynamic use of
strong branching leads to signi@cant improvements in
both the number of B&B nodes and the time needed
to solve the considered problem instances.
It also became evident, that there is still a gap to the

number of nodes needed using full strong branching

Fig. 2. The question is whether it is possible to bridge
this gap without increasing the time spent per node
too much.
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