PRATT'S PRIMALITY PROOFS

(Lecture notes written by Vašek Chvátal)

A theorem. It is a fact that an integer m greater than 2 is a prime if and only if there is an integer a such that

$$
\begin{equation*}
a^{m-1} \equiv 1(\bmod m) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{x} \not \equiv 1(\bmod m) \text { for all } x=1,2, \ldots, m-2 \tag{2}
\end{equation*}
$$

(Such an a is referred to as the primitive root of the prime m.)

How to use the theorem: an illustration. To illustrate a use of this fact, let us certify primality of 1783 by proving that

$$
\begin{equation*}
10^{1782} \equiv 1(\bmod 1783) \tag{3}
\end{equation*}
$$

and that

$$
\begin{equation*}
10^{x} \not \equiv 1(\bmod 1783) \text { for all } x=1,2, \ldots, 1781 \tag{4}
\end{equation*}
$$

Having verified (3), we do not have to compute the 1781 values of $10^{x} \bmod$ 1783 in order to verify (4). Instead, we observe that $1782=2 \cdot 3^{4} \cdot 11$ and then we evaluate only

$$
\begin{aligned}
& 10^{1782 / 2} \bmod 1783=10^{891} \bmod 1783 \\
&=1782 \\
& 10^{1782 / 3} \bmod 1783=10^{594} \bmod 1783 \\
& 10^{1782 / 11} \bmod 1783=10^{162} \bmod 1783
\end{aligned}
$$

To see that (4) follows, let x denote the smallest positive integer such that $10^{x} \equiv 1(\bmod 1783)$. With c, d the integers defined by $c x+d=1782$ and $0 \leq d<x$ (specifically, $c=\lfloor 1782 / x\rfloor$ and $d=1782 \bmod x$), we have $10^{c x+d}=10^{1782} \equiv 1(\bmod 1783)$ and $10^{c x}=\left(10^{x}\right)^{c} \equiv 1(\bmod 1783)$; it follows that $10^{d} \equiv 1(\bmod 1783)$; since $0 \leq d<x$, minimality of x implies $d=0$, and so x divides 1782 . Since $10^{1782 / 2} \not \equiv 1(\bmod 1783), x$ does not divide $3^{4} \cdot 11$; since $10^{1782 / 3} \not \equiv 1(\bmod 1783)$, x does not divide $2 \cdot 3^{3} \cdot 11$; since $10^{1782 / 11} \not \equiv 1(\bmod 1783), x$ does not divide $2 \cdot 3^{4}$; we conclude that $x=1782$.

A formal proof system. More generally, having verified (1), we do not have to compute the $m-2$ values of $a^{x} \bmod m$ in order to verify (2). Instead, we only need verify that $a^{(m-1) / p} \not \equiv 1(\bmod m)$ for all prime divisors p of $m-1$. This observation leads to a formal proof system with two kinds of theorems, namely,
m,
interpreted as " m is a prime" and (m, a, x),
interpreted as "each prime divisor p of x satisfies $a^{(m-1) / p} \not \equiv 1(\bmod m)$ ". This formal system consists of one class of axioms, namely, ($m, a, 1$) for all choices of positive integers m and a, and two inference rules, namely,
$(m, a, x), p \vdash(m, a, x p)$
as long as $a^{(m-1) / p} \not \equiv 1(\bmod m)$,
and
$(m, a, m-1) \vdash m$
as long as $a^{m-1} \equiv 1(\bmod m)$.
For instance, the following sequence constitutes a formal proof of primality of 1783 :

(S1)	$(2,1,1)$	axiom	
(S2)	2	from (S1)	since $1^{1} \equiv 1(\bmod 2)$
(S3)	$(3,2,1)$	axiom	
(S4)	$(3,2,2)$	from (S3) and (S2)	since $2^{2 / 2} \equiv 2(\bmod 3)$
(S5)	3	from (S4)	since $2^{2} \equiv 1(\bmod 3)$
(S6)	$(5,2,1)$	axiom	
(S7)	$(5,2,2)$	from (S6) and (S2)	since $2^{4 / 2} \equiv 4(\bmod 5)$
(S8)	$(5,2,4)$	from (S7) and (S2)	since $2^{4 / 2} \equiv 4(\bmod 5)$
(S9)	5	from (S8)	since $2^{4} \equiv 1(\bmod 5)$
(S10)	$(11,2,1)$	axiom	
(S11)	$(11,2,2)$	from (S10) and (S2)	since $2^{10 / 2} \equiv 10(\bmod 11)$
(S12)	$(11,2,10)$	from (S11) and (S9)	since $2^{10 / 5} \equiv 4(\bmod 11)$
(S13)	11	from (S12)	since $2^{10} \equiv 1(\bmod 11)$
(S14)	$(1783,10,1)$	axiom	
(S15)	$(1783,10,2)$	from (S14) and (S2)	since $10^{1782 / 2} \equiv 1782(\bmod 1783)$
(S16)	$(1783,10,6)$	from (S15) and (S5)	since $10^{1782 / 3} \equiv 1589(\bmod 1783)$
(S17)	$(1783,10,18)$	from (S16) and (S5)	since $10^{1782 / 3} \equiv 1589(\bmod 1783)$
(S18)	$(1783,10,54)$	from (S17) and (S5)	since $10^{1782 / 3} \equiv 1589(\bmod 1783)$
(S19)	$(1783,10,162)$	from (S18) and (S5)	since $10^{1782 / 3} \equiv 1589(\bmod 1783)$
(S20)	$(1783,10,1782)$	from (S19) and (S13)	since $10^{1782 / 11} \equiv 367(\bmod 1783)$
(S21)	1783	from (S20)	since $10^{1782} \equiv 1(\bmod 1783)$

A nice upper bound on the length of proofs. Easy induction shows that

(\star) primality of any prime m can be proved in at most $6 \lg m-4$ lines.
Let us spell out the details. Lines (S1) and (S2) prove primality of 2; lines (S1) through (S5) prove primality of 3 ; since $6 \lg 2-4=2$ and since $3^{6}>2^{9}$, claim (\star) holds for $m=2$ and $m=3$. If m is any larger prime, then $m-1$ is composite, and so there are (not necessarily distinct) primes $p_{1}, p_{2}, \ldots, p_{k}$ such that $k \geq 2$ and such that $m-1=p_{1} p_{2} \ldots p_{k}$. A proof of primality of m consists of proofs of primality of these (at most k) primes followed by the $k+2$ lines

$$
(m, a, 1),\left(m, a, p_{1}\right),\left(m, a, p_{1} p_{2}\right), \ldots,\left(m, a, p_{1} p_{2} \ldots p_{k}\right), m
$$

the induction hypothesis guarantees that the entire proof consists of at most

$$
\sum_{i=1}^{k}\left(6 \lg p_{i}-4\right)+k+2
$$

lines; the induction step is completed by observing that

$$
\sum_{i=1}^{k}\left(6 \lg p_{i}-4\right)+k+2=6 \lg (m-1)-3 k+2 \leq 6 \lg (m-1)-4
$$

Checking the proofs. Short proofs may be difficult to check. But the proofs discussed here are not: verifying each line other than an axiom takes evaluating some $a^{n} \bmod m$. The number of multiplications mod m required to do that does not exceed twice the number of bits in the binary encoding of n. Here is how it can be done:

```
u=a,v=n,w=1;
while v>0
do if v}\mathrm{ is even
    then }u=\mp@subsup{u}{}{2}\operatorname{mod}m,v=v/2
    else w}=uw\operatorname{mod}m,v=v-1
    end
end
return w;
```

The invariant preserved by each execution of the body of the while loop is

$$
w \cdot u^{v} \equiv a^{n} \quad(\bmod m)
$$

What is the point of all this? The problem of recognizing primes belongs to NP.

And isn't that
a fine thing
to know.
\qquad

These notes are based on
V. R. Pratt, "Every prime has a succinct certificate", SIAM J. Computing 4 (1975), 214-220.

