PRATT'S PRIMALITY PROOFS

(Lecture notes written by Vašek Chvátal)

A theorem. It is a fact that an integer m greater than 2 is a prime if and only if there is an integer a such that

$$a^{m-1} \equiv 1 \pmod{m} \tag{1}$$

and

$$a^x \not\equiv 1 \pmod{m}$$
 for all $x = 1, 2, \dots, m-2$. (2)

(Such an a is referred to as the *primitive root* of the prime m.)

How to use the theorem: an illustration. To illustrate a use of this fact, let us certify primality of 1783 by proving that

$$10^{1782} \equiv 1 \pmod{1783} \tag{3}$$

and that

$$10^x \not\equiv 1 \pmod{1783}$$
 for all $x = 1, 2, \dots, 1781$ (4)

Having verified (3), we do not have to compute the 1781 values of $10^x \mod 1783$ in order to verify (4). Instead, we observe that $1782 = 2 \cdot 3^4 \cdot 11$ and then we evaluate only

To see that (4) follows, let x denote the smallest positive integer such that $10^x \equiv 1 \pmod{1783}$. With c, d the integers defined by cx + d = 1782 and $0 \leq d < x$ (specifically, $c = \lfloor 1782/x \rfloor$ and $d = 1782 \mod x$), we have $10^{cx+d} = 10^{1782} \equiv 1 \pmod{1783}$ and $10^{cx} = (10^x)^c \equiv 1 \pmod{1783}$; it follows that $10^d \equiv 1 \pmod{1783}$; since $0 \leq d < x$, minimality of x implies d = 0, and so x divides 1782. Since $10^{1782/2} \not\equiv 1 \pmod{1783}$, x does not divide $2 \cdot 3^3 \cdot 11$; since $10^{1782/11} \not\equiv 1 \pmod{1783}$, x does not divide $2 \cdot 3^4$; we conclude that x = 1782.

A formal proof system. More generally, having verified (1), we do not have to compute the m-2 values of $a^x \mod m$ in order to verify (2). Instead, we only need verify that $a^{(m-1)/p} \not\equiv 1 \pmod{m}$ for all prime divisors p of m-1. This observation leads to a formal proof system with two kinds of theorems, namely,

m,

interpreted as "m is a prime" and

(m, a, x),

interpreted as "each prime divisor p of x satisfies $a^{(m-1)/p} \not\equiv 1 \pmod{m}$ ". This formal system consists of one class of axioms, namely,

(m, a, 1) for all choices of positive integers m and a,

and two inference rules, namely,

 $(m, a, x), p \vdash (m, a, xp)$ as long as $a^{(m-1)/p} \not\equiv 1 \pmod{m}$,

and

 $(m, a, m-1) \vdash m$ as long as $a^{m-1} \equiv 1 \pmod{m}$.

For instance, the following sequence constitutes a formal proof of primality of 1783:

(S1)	(2,1,1)	axiom	
(S2)	2	from $(S1)$	since $1^1 \equiv 1 \pmod{2}$
(S3)	(3,2,1)	axiom	
(S4)	(3,2,2)	from $(S3)$ and $(S2)$	since $2^{2/2} \equiv 2 \pmod{3}$
(S5)	3	from $(S4)$	since $2^2 \equiv 1 \pmod{3}$
(S6)	(5,2,1)	axiom	
(S7)	(5,2,2)	from $(S6)$ and $(S2)$	since $2^{4/2} \equiv 4 \pmod{5}$
(S8)	(5,2,4)	from $(S7)$ and $(S2)$	since $2^{4/2} \equiv 4 \pmod{5}$
· · ·	5	from $(S8)$	since $2^4 \equiv 1 \pmod{5}$
· · ·	(11,2,1)	axiom	
(S11)	(11,2,2)	from $(S10)$ and $(S2)$	since $2^{10/2} \equiv 10 \pmod{11}$
(S12)	(11,2,10)	from $(S11)$ and $(S9)$	since $2^{10/5} \equiv 4 \pmod{11}$
(S13)	11	from $(S12)$	since $2^{10} \equiv 1 \pmod{11}$
(S14)	(1783, 10, 1)	axiom	
· /	(1783, 10, 2)	from $(S14)$ and $(S2)$	since $10^{1782/2} \equiv 1782 \pmod{1783}$
(S16)	(1783, 10, 6)	from $(S15)$ and $(S5)$	since $10^{1782/3} \equiv 1589 \pmod{1783}$
(S17)	(1783, 10, 18)	from $(S16)$ and $(S5)$	since $10^{1782/3} \equiv 1589 \pmod{1783}$
(S18)	(1783, 10, 54)	from $(S17)$ and $(S5)$	since $10^{1782/3} \equiv 1589 \pmod{1783}$
· /	(1783, 10, 162)	from $(S18)$ and $(S5)$	since $10^{1782/3} \equiv 1589 \pmod{1783}$
· · ·	(1783, 10, 1782)	from $(S19)$ and $(S13)$	since $10^{1782/11} \equiv 367 \pmod{1783}$
(S21)	1783	from $(S20)$	since $10^{1782} \equiv 1 \pmod{1783}$

A nice upper bound on the length of proofs. Easy induction shows that

(*) primality of any prime m can be proved in at most $6 \lg m - 4$ lines.

Let us spell out the details. Lines (S1) and (S2) prove primality of 2; lines (S1) through (S5) prove primality of 3; since $6 \lg 2 - 4 = 2$ and since $3^6 > 2^9$, claim (*) holds for m = 2 and m = 3. If m is any larger prime, then m - 1 is composite, and so there are (not necessarily distinct) primes p_1, p_2, \ldots, p_k such that $k \ge 2$ and such that $m - 1 = p_1 p_2 \ldots p_k$. A proof of primality of m consists of proofs of primality of these (at most k) primes followed by the k + 2 lines

$$(m, a, 1), (m, a, p_1), (m, a, p_1 p_2), \dots, (m, a, p_1 p_2 \dots p_k), m;$$

the induction hypothesis guarantees that the entire proof consists of at most

$$\sum_{i=1}^{k} (6 \lg p_i - 4) + k + 2$$

lines; the induction step is completed by observing that

$$\sum_{i=1}^{k} (6\lg p_i - 4) + k + 2 = 6\lg(m-1) - 3k + 2 \le 6\lg(m-1) - 4.$$

Checking the proofs. Short proofs may be difficult to check. But the proofs discussed here are not: verifying each line other than an axiom takes evaluating some $a^n \mod m$. The number of multiplications mod m required to do that does not exceed twice the number of bits in the binary encoding of n. Here is how it can be done:

```
u = a, v = n, w = 1;

while v > 0

do if v is even

then u = u^2 \mod m, v = v/2;

else w = uw \mod m, v = v - 1;

end

end

return w;
```

The invariant preserved by each execution of the body of the while loop is

```
w \cdot u^v \equiv a^n \pmod{m}.
```

What is the point of all this? The problem of recognizing primes belongs to NP.

```
And isn't that
a fine thing
to know.
```

_____*****_____

These notes are based on

V. R. Pratt, "Every prime has a succinct certificate", SIAM J. Computing 4 (1975), 214–220.