Notes on the Master Theorem

These notes refer to the Master Theorem as presented in Sections 4.3 and 4.4 of

- [CLR] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to Algorithms MIT Press/ McGraw-Hill, 1990
and of
- [CLRS] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein, Introduction to Algorithms (Second Edition) MIT Press/ McGraw-Hill, 2001.

1 The recurrence and the recursion tree

A hypothetical divide-and-conquer algorithm divides a problem of size n (greater than 1) into a subproblems of size n / b, solves these subproblems recursively, and then combines their solutions into a solution of the original problem; problems of size 1 are solved directly, without any recursive calls. Naturally, a is a positive integer; in order for the size n / b of the subproblems, the size n / b^{2} of the sub-subproblems, etc. to become smaller and smaller, we assume that $b>1$; in order for these sizes to remain integral, we assume that b is an integer and that

$$
n=b^{m}
$$

for some nonnegative integer m. With $f\left(b^{k}\right)$ standing for the amount of work required first to divide a problem of size b^{k} into a subproblems of size b^{k-1} and later to combine solutions of these subproblems into a solution of the problem of size b^{k}, the total amount $T(n)$ of work required to solve the original problem satisfies the recurrence equation

$$
T\left(b^{k}\right)=a T\left(b^{k-1}\right)+f\left(b^{k}\right)
$$

whenever $k>0$.
In the corresponding recursion tree, the root represents the original problem of size n, its children represent the subproblems, their children represent the sub-sub problems, etc. Each internal node has precisely a children, and
so there are precisely a^{j} nodes on level j (the root being on level 0 , its children on level 1 , their children on level 2 , etc.); each of these a^{j} nodes represents a problem of size b^{m-j}; in particular, each of the a^{m} nodes on level m represents a problem of size 1 , and so it is a leaf of the tree. If $0 \leq j<m$, then the amount of work performed at a particular node on level j (not counting any of the work involved in the a recursive calls spawned from this node) is $f\left(b^{m-j}\right)$; the amount of work performed at a particular leaf is $T(1)$; it follows that

$$
\begin{equation*}
T(n)=\sum_{j=0}^{m-1} a^{j} f\left(b^{m-j}\right)+a^{m} T(1) . \tag{1}
\end{equation*}
$$

2 Very special cases of the Master Theorem

2.1 Starting point.

Formula (1) is particularly easy to simplify when the total work done on a level of the recursion tree is independent of the depth of the level:

$$
f(n)=a f\left(b^{m-1}\right)=a^{2} f\left(b^{m-2}\right)=\ldots=a^{m-1} f(b)=a^{m} T(1)
$$

This is the case if and only if

$$
\begin{equation*}
f\left(b^{k}\right)=a^{k} T(1) \text { for all } k=1,2, \ldots, m \tag{2}
\end{equation*}
$$

under this assumption, $T(n)=(m+1) f(n)$; now, since

$$
m=\frac{\lg n}{\lg b}
$$

it follows that

$$
T(n)=\Theta(f(n) \log n)
$$

For future reference, note that the assumption (2) may be recorded as

$$
\begin{equation*}
f(x)=T(1) x^{t} \quad \text { for all } x=b, b^{2}, \ldots, n \tag{3}
\end{equation*}
$$

with

$$
t=\frac{\lg a}{\lg b} .
$$

2.2 Continuation.

Next, we are going to consider the more general class of functions defined by

$$
f(x)=d x^{s}
$$

with arbitrary positive constants d and s. Here,

$$
T(n)=\sum_{j=0}^{m-1} a^{j} \cdot d\left(n / b^{j}\right)^{s}+a^{m} T(1)=d n^{s} \sum_{j=0}^{m-1}\left(a / b^{s}\right)^{j}+T(1) n^{t}
$$

and so, as long as $a / b^{s} \neq 1$ (which is equivalent to $s \neq t$),

$$
\begin{equation*}
T(n)=d n^{s} \frac{\left(a / b^{s}\right)^{m}-1}{\left(a / b^{s}\right)-1}+T(1) n^{t}=\frac{d b^{s}}{a-b^{s}}\left(n^{t}-n^{s}\right)+T(1) n^{t} \tag{4}
\end{equation*}
$$

If $s<t$, then $f(n)$ grows more slowly than the benchmark (3), and so the higher levels of the recursion tree contribute relatively less to the total work $T(n)$ and the lower levels contribute relatively more. In fact, the amount of work done in the leaves alone is representative of the grand total $T(n)$: since $a-b^{s}>0$, formula (4) implies that $T(n)=\Theta\left(n^{t}\right)$.

If $s>t$, then $f(n)$ grows faster than the benchmark (3), and so the lower levels of the recursion tree contribute relatively less to the total work $T(n)$ and the higher levels contribute relatively more. In fact, the amount of work done in the root alone is representative of the grand total $T(n)$: since $a-b^{s}<0$, formula (4) implies that $T(n)=\Theta\left(n^{s}\right)=\Theta(f(n))$.

2.3 Conclusion.

Theorem 1 Let a be a positive integer, let b be an integer greater than 1, and let d and s be positive real numbers. For all perfect powers n of b, define $T(n)$ by the recurrence

$$
T(n)=a T(n / b)+d n^{s}
$$

with a nonnegative initial value $T(1)$; write

$$
t=\frac{\lg a}{\lg b} .
$$

- If $s<t$, then $T(n)=\Theta\left(n^{t}\right)$.
- If $s=t$, then $T(n)=\Theta(f(n) \log n)$.
- If $s>t$, then $T(n)=\Theta(f(n))$.

3 Less special cases of the Master Theorem

Theorem 1 generalizes as follows:
Theorem 2 Let a be a positive integer, let b be an integer greater than 1, and let f be a real-valued function defined on perfect powers of b. For all perfect powers n of b, define $T(n)$ by the recurrence

$$
T(n)=a T(n / b)+f(n)
$$

with a nonnegative initial value $T(1)$; write

$$
t=\frac{\lg a}{\lg b} .
$$

- If $f(n)=O\left(n^{s}\right)$ with $s<t$, then $T(n)=\Theta\left(n^{t}\right)$.
- If $f(n)=\Theta\left(n^{t}\right)$, then $T(n)=\Theta(f(n) \log n)$.
- If $f(n)=\Omega\left(n^{s}\right)$ with $s>t$ and if

$$
\begin{equation*}
\exists c\left(c<1 \wedge\left(\exists k_{0} \forall k\left(k \geq k_{0} \Rightarrow a f\left(b^{k-1}\right) \leq c f\left(b^{k}\right)\right)\right)\right) \tag{5}
\end{equation*}
$$

then $T(n)=\Theta(f(n))$.
In response to a challenge that I proposed in class, Antonyi Ganchev constructed an example showing that the conclusion of the third case of Theorem 2 may be false if the "regularity condition" (5) is dropped. Here is his example with a slight modification: If

$$
f(n)= \begin{cases}n^{3} & \text { when } \lg n \text { is an even integer } \\ n^{2} & \text { otherwise }\end{cases}
$$

and

$$
T(n)=\left\{\begin{aligned}
\left(16 n^{3}+10 n^{2}-11 n\right) / 15 & \text { when } \lg n \text { is an even integer }, \\
\left(4 n^{3}+20 n^{2}-11 n\right) / 15 & \text { when } \lg n \text { is an odd integer }
\end{aligned}\right.
$$

then

$$
T(n)=2 T(n / 2)+f(n)
$$

whenever n is a power of 2 greater than 1 .

