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1 Linear programming reformulated

The problem of testing solvability of systems of linear inequalities is polyno-
mially reducible to the problem of finding nonnegative nonzero solutions of
systems of homogeneous linear equations. To see this, suppose that we have
an oracle for solving the latter problem; we are going to describe a way of
using this oracle to solve the former problem.

A system
Ax ≤ b (1)

of m linear inequalities is unsolvable if and only if it is inconsistent in the
sense that the system

y ≥ 0, yTA = 0, yT b < 0 (2)

in m variables has a solution. If the system

yTA = 0, yT b + s = 0 (3)

of homogeneous linear equations in m + 1 variables has no nonnegative
nonzero solution, then (2) has no solution, and so (1) is solvable; if the
oracle finds a nonnegative nonzero solution y, s of (3), then we distinguish
between two cases. In case s > 0, system (2) has a solution, and so (1) is
unsolvable; in case s = 0, we have a nonzero vector y such that

y ≥ 0, yTA = 0, yT b = 0

and we will use this vector to reduce the size of (1).
Writing (1) in the extensive form as

n∑
j=1

aijxj ≤ bi (i = 1, 2, . . . , m),

1



note that every solution of (1) must satisfy

0 =
n∑

j=1

(∑
i=1

yiaij

)
xj =

∑
i=1

yi


 n∑

j=1

aijxj


 ≤∑

i=1

yibi = 0,

and so it must satisfy

n∑
j=1

aijxj = bi whenever yi > 0.

Finally, consider an arbitrary subscript i such that yi > 0. If aik 6= 0 for
some k, then we may eliminate xk from (1) by the substitution

xk = bi/aik −
∑
j 6=k

(aij/aik) xj ;

if aij = 0 for all j, then we may either (in case bi ≥ 0) reduce (1) simply by
deleting the i-th inequality or (in case bi < 0) conclude at once that (1) is
unsolvable.

2 Diagonal matrix scaling

A matrix Q in Rn×n is called positive semidefinite if xT Qx ≥ 0 for all vectors
x in Rn. We let e denote the vector [1, 1, . . . , 1]T in Rn.

THEOREM 1 Every symmetric positive semidefinite matrix Q has pre-
cisely one of the following two properties:

(i) there is a diagonal matrix D such that De > 0 and (DQD)e = e,

(ii) there is a nonnegative nonzero vector x such that Qx = 0. ut

To see that no symmetric matrix Q has both of these properties, assume
the contrary; now 0 = (Qx)T (De) = xT (QDe) = xT (D−1e) > 0, a contradic-
tion. In Section 5, we shall prove that every symmetric positive semidefinite
matrix Q has at least one of these properties.
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Theorem 1 relates to linear programming as follows. Given an arbitrary
matrix A in Rm×n, write Q = AT A and observe that Q is symmetric positive
semidefinite. If x is a vector such that Qx = 0, then 0 = xT Qx = (Ax)T (Ax),
and so Ax = 0; in particular, if Q has property (ii), then the nonnegative
nonzero vector x satisfies Ax = 0. If Q has property (i), then write y = ADe
and observe that AT y = QDe = D−1e > 0; now the system Ax = 0 can
have no nonnegative nonzero solution x since any such x would satisfy 0 =
(Ax)T y = xT (AT y) > 0, a contradiction.

3 The algorithm

The Khachiyan-Kalantari algorithm, given a symmetric positive semidefinite
n×n matrix A and positive numbers δ, ε less than 1, returns either a diagonal
matrix D such that

De > 0 and ‖DADe− e‖ < δ

or a vector x such that

‖x‖ = 1 and xT Ax < ε.

In the description of the algorithm, I denotes the identity matrix and diag(v)
denotes the diagonal matrix whose diagonal is v.

ρ = (1− 1/(1 + 4
√

n))1/2;
D0 = I, k = 0;
while (Dke)

T A(Dke) ≥ ε · ‖Dke‖2 and ‖DkADke− e‖ ≥ 3/4
do solve the system (I + DkADk)z = e−DkADke− ρkDk(e− Ae) ;

Dk+1 = ρ · diag(Dk(e + z)), k = k + 1;
end
if (Dke)

T A(Dke) < ε · ‖Dke‖2

then return the vector ‖Dke‖−1 ·Dke ;
else D0 = Dk, k = 0;

while ‖DkADke− e‖ ≥ δ
do solve the system (I + DkADk)z = e−DkADke ;

Dk+1 = diag(Dk(e + z)), k = k + 1;
end
return the matrix Dk;

end
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It is not immediately obvious that the algorithm terminates. In Section
4, we shall prove that it does; in fact, we shall give the following upper bound
on the number of its iterations.

THEOREM 2 In the Khachiyan-Kalantari algorithm, the first while loop
goes through at most

d(1 + 4
√

n) · ln((16n + 4
√

n + 4) · ‖e−Ae‖2 · ε−1)e

iterations and the second while loop goes through at most

dlg lg(1/δ)− lg lg(4/3)e

iterations.

The second while loop of the Khachiyan-Kalantari algorithm is an appli-
cation of Newton’s method . This general method, given a mapping F : Rn →
Rn, constructs a sequence of points in Rn aimed at approximating a solution
x of F (x) = 0. For each point x in this sequence, the method constructs the
next point x + y by finding a solution y of

F (x) + J(x)y = 0,

where J(x) is the matrix featured in the linear approximation

F (x + y) ≈ F (x) + J(x)y.

This matrix is called the Jacobian matrix ; the entry in its i-th row and its
j-th column equals

∂Fi

∂xj
(x),

where Fi(x) denotes the i-th component of F (x) and xj denotes the j-th
component of x. In the Khachiyan-Kalantari application, F is defined by

F (x) = ADe−D−1e with D = diag(x) :

for this choice of F , we have

J(x) = A + D−2,
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and so the system F (x) + J(x)y = 0 can be solved by setting

y = Dz with (I + DAD)z = e−DADe.

As we shall prove later, the initial condition ‖D0AD0e−e‖ < 3/4 guarantees
a doubly exponential decrease of ‖DkADke− e‖.

The first while loop falls in the category of path-following methods, also
called homotopy methods . These methods, given a mapping G : Rn → Rn,
construct a sequence of points in Rn aimed at approximating a solution x of
G(x) = 0. For this purpose, they define a mapping H : Rn × [0, 1] → Rn

such that

(i) a solution x of H(x, 1) = 0 is readily available and

(ii) H(x, 0) = G(x) for all x;

then they construct a sequence of points (x, t) in Rn × [0, 1], with t starting
at 1 and monotonically converging to 0, that approximate solutions of

{(x, t) : H(x, t) = 0}.
In the Khachiyan-Kalantari algorithm, H is defined by

H(x, t) = DADe− e + tD(e−Ae) with D = diag(x);

as we shall prove later, the first while loop maintains the invariant

‖H(Dke, ρk)‖ <
1

2
.

Each iteration of this while loop represents an iteration of Newton’s method:
if

F (x) = ADe−D−1e + ρk(e− Ae) with D = diag(x),

then J(x) = A + D−2, the system F (Dke) + J(Dke)y = 0 can be solved by
setting

y = Dkz with (I + DkADk)z = e−DkADke− ρkDk(e−Ae),

and so the transition Dk 7→ ρ−1Dk+1 is a Newton step. (A change of variable,
Nk = ρ−kDk, makes this transition simply Nk 7→ Nk+1.)
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4 Proof of Theorem 2

LEMMA 1 If Q is a positive semidefinite matrix in Rn×n and if z is a
vector in Rn, then ‖(I + Q)z‖ ≥ ‖z‖.

Proof. Schwarz’s inequality (also called the Cauchy-Schwarz inequality or
— after its original discoverer — the Buniakovskii inequality) asserts that
|xT y| ≤ ‖x‖ · ‖y‖. In particular,

‖z‖ · ‖(I + Q)z‖ ≥ zT (I + Q)z = ‖z‖2 + zT Qz ≥ ‖z‖2.

ut
LEMMA 2 Let A be a positive semidefinite matrix, let D be a diagonal
matrix, let z and b be vectors such that

(I + DAD)z = e−DADe−Db

and let D′ be the matrix defined by

D′ = diag(D(e + z)).

Then

(i) ‖e−D′AD′e−D′b‖ ≤ ‖e−DADe−Db‖2,

(ii) if ‖e−DADe−Db‖ < 1 and De > 0, then D′e > 0.

Proof. Writing Z = diag(z), observe that D′ = (I + Z)D, and so

e−D′AD′e−D′b = e− (I + Z)DAD(e + z)− (I + Z)Db = Zz.

We have
‖Zz‖ = (

∑
j z4

j )
1/2 ≤ (

∑
j z2

j ) = ‖z‖2

and, by Lemma 1 with Q = DAD,

‖z‖ ≤ ‖e−DADe−Db‖. (4)

This proves (i). If ‖e−DADe−Db‖ < 1, then (4) guarantees that ‖z‖ < 1,
and so e + z > 0; this inequality and De > 0 imply D′e > 0. ut
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LEMMA 3 The first while loop maintains the invariant

‖e−DkADke− ρkDk(e−Ae)‖ <
1

2
. (5)

Proof. By induction on k. If k = 0, then (5) is satisfied as its left-hand side
equals zero. If (5) is satisfied for some value of k, then (i) of Lemma 2 with
D = Dk, b = ρk(e− Ae), and D′ = ρ−1Dk+1 guarantees that

‖e− ρ−2Dk+1ADk+1e− ρk−1Dk+1(e− Ae)‖ <
1

4
. (6)

In turn, (6) implies that

‖ρ−2Dk+1ADk+1e + ρk−1Dk+1(e−Ae)‖ <
1

4
+ ‖e‖ =

1 + 4
√

n

4
;

multiplying both sides of this inequality by 1− ρ2, we get

‖(1− ρ−2)Dk+1ADk+1e + (ρk+1 − ρk−1)Dk+1(e−Ae)‖ <
1

4
.

The sum of this inequality and (6) shows that (5) holds with k + 1 in place
of k. ut
LEMMA 4 The first while loop maintains the invariant

Dke > 0 . (7)

Proof. Invariant (5) and (ii) of Lemma 2 with D = Dk, b = ρk(e−Ae), and
D′ = ρ−1Dk+1. ut
LEMMA 5 The first while loop maintains the invariant

(Dke)
T A(Dke)

‖Dke‖2
<
(
16n + 4

√
n + 4

)
‖e− Ae‖2 · ρ2k . (8)

Proof. Invariant (5) and the condition ‖DkADke− e‖ ≥ 3/4 guarantee that

‖ρkDk(e−Ae)‖ >
1

4
; (9)
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since Dk is a diagonal matrix, we have

‖Dk(e− Ae)‖ ≤ ‖Dke‖ · ‖e− Ae‖ ;

this inequality and (9) imply

‖Dke‖ >
1

4‖e− Ae‖ρk
. (10)

Schwarz’s inequality and invariant (5) guarantee that

eT (DkADke + ρkDk(e− Ae)− e) ≤
√

n

4
,

and so

(Dke)
T A(Dke) ≤

√
n

4
− ρk(Dke)

T (e− Ae) + eT e ,

which, by Schwarz’s inequality once again, implies

(Dke)
T A(Dke) ≤

√
n

4
+ ρk‖Dke‖ ·‖(e− Ae)‖+ n .

This inequality and (10) imply (8). ut
LEMMA 6 The second while loop maintains the invariant

Dk > 0 and ‖DkADke− e‖ ≤
(

3

4

)2k

.

Proof. By induction on k, using Lemma 2 with D = Dk, b = 0, and
D′ = Dk+1. ut

5 Proof of Theorem 1

We are going to prove that every symmetric positive semidefinite matrix Q
has at least one of the properties

(i) there is a diagonal matrix D such that De > 0 and (DQD)e = e and
(ii) there is a nonnegative nonzero vector x such that Qx = 0.

For this purpose, let n denote the order of Q; write

S+ = {x ∈ Rn : x ≥ 0, ‖x‖ = 1}
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and f(x) = xT Qx for all x in Rn. Since f is a continuous function and since
S+ is a compact set, there is a point x∗ that minimizes f over S+; since Q is
positive semidefinite, f(x∗) ≥ 0; we shall distinguish between two cases.

Case 1: f(x∗) > 0.
Let us write Rn

+ = {x ∈ Rn : x > 0} and let us prove that the function

g : Rn
+ → R

defined by

g(x) =
1

2
xT Qx−

n∑
j=1

ln xj

has the following properties:

(a) for every positive t there is a positive r such that
g(x) > t whenever x ∈ Rn

+ and ‖x‖ > r,

(b) for every positive t there is a positive ε such that
g(x) > t whenever x ∈ Rn

+ and minj xj < ε.

For this purpose, note first that

g(x) ≥ 1

2
f(x∗)‖x‖2 − ln(min

j
xj)− (n− 1) · ln ‖x‖ ≥ 1

2
f(x∗)‖x‖2 − n · ln ‖x‖

for all x in Rn
+; now (a) follows from the asumption of this case and (b)

follows in turn.
Since g is continuous and differentiable, (a) and (b) guarantee that g

attains its minimum over Rn
+ and that every x minimizing g over Rn

+ satisfies

∂g

∂xj
(x) = 0 for all j = 1, 2, . . . , n

(actually, a little more careful inspection shows that g is strictly convex, and
so x is unique); in terms of D = diag(x), this system reads QDe−D−1e = 0,
and so Q has property (i).
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Case 2: f(x∗) = 0.
By assumption of this case, x∗ minimizes f over Rn, and so

∂f

∂xj

(x) = 0 for all j = 1, 2, . . . , n,

which means Qx∗ = 0, and so Q has property (ii). ut
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