
LECTURE NOTES

ON THE AKS SORTING NETWORK

Vašek Chvátal

Department of Computer Science, Rutgers – The State University of New Jersey

New Brunswick, NJ 08903, USA

1 INTRODUCTION

For the basics of sorting networks, see Chapter 28 of Cormen, Leiserson, and Rivest (1990).

A perfect halver is a comparator network with output wires split into blocks BL, BR of

equal sizes in such a way that, given any input consisting of a distinct keys, the network

places the a/2 smaller keys in BL and it places the a/2 larger keys in BR. Perfect halvers

may be used as modules to construct a sorting network with N wires such that N = 2d for

some positive integer d. This network is a series composition of networks N0, N1, . . . , Nd−1

such that each Nt is a parallel composition of 2t perfect halvers of equal sizes; the 2d−t output

wires of each perfect halver in Nt are split into two blocks of equal sizes and each of these

blocks carries the input of a perfect halver in Nt+1.

Unfortunately, this scheme yields sorting networks of depth Ω((logN)2): every perfect

halver with a wires must have depth greater than lg(a/2). (To see this, consider an output

wire y in BR and let X denote the set of all the input wires from which a key can travel

to y. We must have |X| > a/2: otherwise placing keys 1, 2, . . . |X| on the wires in X and

placing keys |X|+1, |X|+2, . . . a on the remaining a− |X| input wires yields an input that

sends one of the a/2 smaller keys to the output wire y.) Fortunately, Ajtai, Komlós, and

Szemerédi (1983a, 1983b) proved that a variation on this theme yields sorting networks of

depthO(logN) : instead of the perfect halvers, we can use weaker modules of constant depth,

whose weakness is made up for by a more intricate way of piecing the network together.

1

Like the output wires of a perfect halver, the output wires of the weaker module are split

into blocks BL, BR such that |BL| = |BR| = a/2. Unlike a perfect halver, the weaker module

may misdirect a small fraction of the smaller a/2 input keys to BR and it may misdirect a

small fraction of the larger a/2 input keys to BL. A partial compensation for this defect is

an explicitly designated set F of output wires (typically about 5% of their total) such that

(in a sense made precise at the end of section 2.1), for every input of a distinct keys, most

of the smallest keys end up in F ∩ BL and most of the largest keys end up in F ∩ BR.

Interconnections between these modules may be described in terms of a complete binary

tree of depth d. At each time, the 2d wires of the network are distributed throughout the

nodes of the tree; in the beginning, all the wires are held in the root; the objective is to

allocate one wire to each leaf in the end in such a way that the sequence of the 2d keys held

in the 2d leaves is sorted.

In the network built from perfect sorters, this objective is accomplished simply: at each

time t = 0, 1, . . . , d− 1, the 2d wires are distributed throughout the t-th level of the tree. At

this time, each node x on the t-th level holds 2d−t wires; these wires are used as input of a

perfect halver; between times t and t+ 1, the wires from output block Bj are sent down to

the j-th child of x. At time d, each leaf of the tree holds a single wire and the sequence of

the wires held in the 2d leaves is sorted. Two clean features of this crude scheme are that

• at all times, all the keys held in a node are addressed below this node,

• as time progresses, wires keep moving steadily to the bottom of the tree.

The more intricate scheme of interconnecting imperfect modules approximates these features

in the sense that

• at all times, most of the keys held in a node are addressed below this node,

• as time progresses, wires tend to wander erraticaly to the bottom of the tree.

At each time t, each node that holds any wires at all uses them as input wires of an imperfect

module; between times t and t+1, it sends all the wires of the output block F to its parent,

it sends all the wires of the output block BL − F to its left child, and it sends all the wires

of the output block BR − F to its right child. Since the modules are not perfect halvers, a

2

small fraction of the keys may be sent down in a wrong direction at any time; these stray

keys will eventually be sent back up again, so that they may correct the wrong turn.

Rather than follow the original Ajtai-Komlós-Szemerédi schedule of moving wires through

the tree, we shall describe a simpler scheme proposed later by Paterson (1990) with a few

missing details filled in. (A similar, but not quite the same, implementation of Paterson’s

proposal has been worked out by Pippenger (1990).) In section 2.1, we specify the number

of wires held in each node of the tree at each time; in section 2.2, we prove that the resulting

network sorts, provided that the quality of its modules is good enough. Construction of the

modules will be taken up in section 3.

2 THE NETWORK

As in the preceding section, we shall write N = 2d; it will be convenient to assume that

d is a multiple of four and d ≥ 8.

The sorting network that we are going to describe is the series composition of two compo-

nents, which we will refer to as the body of the network and its tail . The body nearly sorts:

in terms of the complete binary tree with N leaves, it distributes the N input keys through

the N/64 nodes on level d− 6 in such a way that

each of the 64 keys held in a node on level d− 6 is addressed below this node.

The tail is just a parallel composition of N/64 copies of a sorting network on 64 wires.

2.1 Construction of the body

The body is the series composition of components indexed by variable t called time. At each

time t, the N wires are distributed throughout the tree in such a way that the actual number

of wires held in a node x depends only on t and on the depth i of x; we let a(i, t) denote this

number. To relocate the wires between times t and t+ 1, each node on level i sends π(i, t)

wires to its parent and it sends χ(i, t) wires to each of its two children.

3

t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i a(i, t)

0 4096 256 64 16

1 2048 512 128 32 8

2 960 1008 252 64 16

3 384 480 504 126 32 8

4 192 240 252 64 16

5 96 120 126 32

6 48 60 64

7 24

i π(i, t)

0 0 0 0 0

1 128 32 8 0 0

2 192 48 12 4 0

3 384 96 24 6 0 0

4 192 48 12 4 0

5 96 24 6 0

6 48 12 0

7 24

i χ(i, t)

0 2048 128 32 8

1 960 240 60 16 4

2 384 480 120 30 8

3 0 192 240 60 16 4

4 0 96 120 30 8

5 0 48 60 16

6 0 24 0

7 0

The values of a(i, t), π(i, t), and χ(i, t) when N = 4096.

4

In the beginning, all the wires are held in the root:

a(0, 0) = N. (2.1)

Between t = 0 and t = 1, the root splits the set of N wires into two equal parts and sends

them down to its two children:

π(0, 0) = 0, χ(0, 0) = N/2, and a(1, 1) = N/2. (2.2)

Between t = 1 and t = 2, each of the two nodes on level 1 sends N/32 of its N/2 wires back

to the root and distributes the remaining wires evenly among its children:

π(1, 1) = N/32, χ(1, 1) = 15N/64, and a(0, 2) = N/16, a(2, 2) = 15N/64. (2.3)

Let α(t) and ω(t) denote the top and the bottom level, respectively, that contain nonempty

nodes at time t: formally, α(t) is the smallest i with a(i, t) 6= 0 and ω(t) is the largest i with

a(i, t) 6= 0 . In particular,

α(0) = ω(0) = 0; α(1) = ω(1) = 1; α(2) = 0, ω(2) = 2.

As t increases, we let the top first oscillate between levels 0 and 1,

α(t) =

 0 if 0 ≤ t ≤ d− 5 and t is even,

1 if 0 ≤ t ≤ d− 5 and t is odd,

and then begin a perodic zig-zag descent with period four and the average speed of one level

per two iterations,

α(t) =



(t− d+ 5)/2 if t ≥ d− 6 and t ≡ 1 mod 4,

(t− d+ 6)/2 if t ≥ d− 6 and t ≡ 2 mod 4,

(t− d+ 7)/2 if t ≥ d− 6 and t ≡ 3 mod 4,

(t− d+ 8)/2 if t ≥ d− 6 and t ≡ 0 mod 4.

We let the bottom descend steadily in a perodic zig-zag movement with period three and

the average speed of one level per three iterations,

ω(t) =


(t+ 2)/3 if t ≥ 1 and t ≡ 1 mod 3,

(t+ 4)/3 if t ≥ 1 and t ≡ 2 mod 3,

(t+ 6)/3 if t ≥ 1 and t ≡ 0 mod 3.

5

These definitions imply that

• α(t) < ω(t) whenever 2 ≤ t ≤ 3d− 21, and

• α(3d− 20) = ω(3d− 20) = d− 6;

accordingly, the components whose series composition forms the body of the network are

indexed by t = 0, 1, . . . , 3d − 21; in terms of the binary tree, wires stop moving at time

t = 3d− 20, when we have

a(d− 6, 3d− 20) = 64. (2.4)

In addition, the definitions of α(t) and ω(t) imply that

• α(t) ≡ t mod 2 and ω(t) ≡ t mod 2 for all t;

numbers a(i, t) will be defined so that

a(i, t) 6= 0 if and only if α(t) ≤ i ≤ ω(t) and i ≡ t mod 2. (2.5)

Numbers a(i, t), π(i, t), and χ(i, t) defined for all i and t such that

2 ≤ t < 3d− 20, α(t) ≤ i ≤ ω(t), and i ≡ t mod 2

extend (2.1), (2.2), (2.3), and (2.4) into a feasible schedule for routing the N wires through

the tree if and only if they satisfy the following conditions:

Integrality:

All of a(i, t), π(i, t), and χ(i, t) are integers.

Flow balance:

π(i, t) + 2χ(i, t) = a(i, t) whenever 2 ≤ t < 3d− 20 and a(i, t) 6= 0,

χ(i− 1, t) + 2π(i+ 1, t) = a(i, t+ 1) whenever 2 ≤ t < 3d− 20 and a(i, t+ 1) 6= 0;

Boundary conditions:

a(0, 2) = N/16, a(2, 2) = 15N/64, and χ(d− 7, 3d− 21) + 2π(d− 5, 3d− 21) = 64.

6

The values that we shall use are defined in terms of numbers c(i, t) which, in turn, are

defined by

c(i, t) = N · 22i−t−2

and may be thought of as the capacities of nodes on level i at time t.

Conditions on i a(i, t) π(i, t) χ(i, t)

i = α(t) and α(t+ 1) = i+ 1 c(i, t) 0
1

2
a(i, t)

i = α(t) and α(t+ 1) = i− 1 c(i, t)
1

16
a(i, t)

15

32
a(i, t)

α(t) < i < ω(t) and i ≡ t mod 2
63

64
c(i, t)

1

21
a(i, t)

10

21
a(i, t)

i = ω(t) and t ≡ 1 mod 3
63

64
c(i, t)

1

21
a(i, t)

10

21
a(i, t)

i = ω(t) and t ≡ 2 mod 3
15

64
c(i, t)

1

5
a(i, t)

2

5
a(i, t)

i = ω(t) and t ≡ 0 mod 3
3

64
c(i, t) a(i, t) 0

The values of a(i, t), π(i, t), and χ(i, t) when 2 ≤ t ≤ 3d− 21.

Verifying Flow balance and Boundary conditions for these values is a routine

exercise; let us comment on Integrality. Since 2α(t) ≥ t− d+ 5 for all t, we have

c(α(t), t) ≥ 8 for all t.

Two easy corollaries of this easy observation are that

c(α(t), t) ≥ 64 whenever α(t+ 1) = α(t)− 1

(since c(i+ 1, t) = 8c(i, t+ 1) and that

c(i, t) ≥ 128 whenever i > α(t) and i ≡ t mod 2

7

(since c(i + 2, t) = 16c(i, t)). It follows not only that all of a(i, t), π(i, t), and χ(i, t) are

integers, but also — a fact used in the construction of the network — that

all of a(i, t) and π(i, t) are even integers.

Two constants, εB and εF , control the quality of all the modules used throughout the

network. By an (a, εB)-halver, we mean a comparator network on a wires with the output

wires collected in equally sized blocks BL, BR such that, for every input of a distinct keys,

(i) the network places at most εBa of its a/2 smallest input keys into output block BR,

(ii) the network places at most εBa of its a/2 largest input keys into output block BL.

By an (a, f, εB, εF)-separator, we mean an (a, εB)-halver with designated blocks FL, FR of

output wires such that

FL ⊆ BL, FR ⊆ BR, |FL| = |FR| = f/2

and such that, for every input of a distinct keys and for every k = 1, 2, . . . , f/2,

(iii) the network places at most εFk of its k smallest input keys outside output block FL,

(iv) the network places at most εFk of its k largest input keys outside output block FR.

The module used in a node on level i at time t is an (a(i, t), π(i, t), εB, εF)-separator; the

node sends the wires from FL ∪ FR to its parent, it sends the wires from BL − FL to its left

child, and it sends the wires from BR − FR to its right child.

8

2.2 Analysis of the body

THEOREM 2.1 If there is a positive δ such that

εB ≤ 1

128
− δ

2

(
1 +

1

1− 64δ2

)
, (2.6)

εF ≤ 2δ(1− 16δ), (2.7)

then, at time 3d− 20, each node on level d− 6 holds 64 keys addressed below this node.

PROOF. An outsider is a key located in a node x but not addressed below x; an outsider

of order r is an outsider that would remain an outsider even if it were moved to the ancestor

of its current location that is r levels higher up in the tree. (In particular, “outsider” is

synonymous with “outsider of order zero”.) We aim to prove that, as long as some positive

δ satisfies (2.6) and (2.7), nodes on level d − 6 hold no outsiders at time 3d − 20. For this

purpose, consider the predicate

P(t): For all i = 0, 1, . . . , d and for all r = 0, 1, . . . , d,

each node on level i holds fewer than δrc(i, t)/64 outsiders of order r at time t.

Since c(d− 6, 3d − 20) = 64, we only need prove P(3d − 20); we will use induction on t to

prove P(t) for all t = 1, 2, . . . , 3d− 20.

Let M(i, t) denote the (a(i, t), π(i, t), εB, εF)-separator used in nodes on level i at time t.

As for the induction basis, all the outsiders in the two children of the root at time 1 were

sent down from the root between t = 0 and t = 1; since M(0, 0) is an εB-halver, each of the

two children receives at most εBN outsiders, and so P(1) is implied by (2.6).

As for the inductive step, its bulk consists of showing that only a few (if any) of the

keys a node u sends to its child v are not addressed below v; such misdirected keys are

either outsiders in u or else addressed below the sibling w of v. By the inductive hypothesis,

outsiders in u are scarce; since each M(i, t) is an εB-halver, most of its input keys that are

addressed below w get sent to w; we show first that u does not hold too many keys addressed

9

below w (Lemma 2.2). The argument relies on a simple formula for the total number of keys

held in a node and all its descendants; this formula is used twice, and so we set it on its own

as the following lemma.

LEMMA 2.1 If a(i, t) 6= 0 and i > α(t), then

d∑
j=i

2j−ia(j, t) = N · 2−i − c(i, t)/64.

PROOF. Trivially,

d∑
j=i

2j−ia(j, t) =
d∑
j=0

2j−ia(j, t)−
i−1∑
j=0

2j−ia(j, t) = N · 2−i −
i−1∑
j=0

2j−ia(j, t).

Writing m = (i− α(t))/2, observe first that m is a positive integer and then that

i−1∑
j=0

2j−ia(j, t) =
m∑
k=1

2−2ka(i− 2k, t)

=
63

64

m−1∑
k=1

2−2kc(i− 2k, t) + 2−2mc(i− 2m, t)

=
63

64

m−1∑
k=1

64−kc(i, t) + 64−mc(i, t)

=
c(i, t)

64
.

LEMMA 2.2 Let t be an integer which satisfies 1 ≤ t < 3d− 20 and P(t); let u be a node

of the tree, let i be the level of u, and let w be a child of u. Then u holds, at time t, fewer

than

1

2
a(i, t) +

(
1

128
+

δ

2(1− 64δ2)

)
c(i, t)

keys addressed below w.

PROOF.

Case 1: i < ω(t).

We may assume that a(i, t) 6= 0, since otherwise the conclusion is trivial. In the notation

x1 = number of keys addressed below w,

10

x2 = number of keys held (at time t) below w,

x3 = number of keys held (at time t) below w and not addressed below w,

x1 − (x2 − x3) counts the number of keys addressed below w and not held below w; this

quantity is an upper bound on the number of keys addressed below w and held in u.

Trivially,

x1 =
1

2
N2−i.

Lemma 2.1, with i+ 2 in place of i, guarantees that

x2 = 2(N · 2−(i+2) − c(i+ 2, t)/64) =
1

2
N2−i − 1

2
c(i, t).

P(t) guarantees that

x3 <
∑
j≥1

22j−1δ2j−1c(i+ 2j, t)/64 =
c(i, t)

64

∑
j≥1

(2δ)2j−142j <
c(i, t)

64
· 32δ

1− 64δ2
.

Altogether,

x1 − (x2 − x3) <

(
1

2
+

δ

2(1− 64δ2)

)
c(i, t);

the assumption of this case guarantees that a(i, t) ≥ 63c(i, t)/64, and so(
1

2
+

δ

2(1− 64δ2)

)
c(i, t) ≤ 1

2
a(i, t) +

(
1

128
+

δ

2(1− 64δ2)

)
c(i, t).

Case 2: i = ω(t).

Lemma 2.1 guarantees that

1

2
N2−i =

a(i, t)

2
+
c(i, t)

128
;

again, the left-hand side of this equation is the number of keys addressed below w. 2

LEMMA 2.3 Let t be an integer which satisfies 1 ≤ t < 3d−20 and P(t); let v be a node of

the tree and let i+1 be the level of v. Then v holds at time t+1 fewer than c(i+1, t+1)/64

outsiders.

11

PROOF: Let X denote the set of all outsiders that are held in v at time t + 1 and let us

write

x ∈ XP if x ∈ X and x is held in the parent of x at time t,

x ∈ XL if x ∈ X and x is held in the left child of x at time t,

x ∈ XR if x ∈ X and x is held in the right child of x at time t.

Furthermore, let u denote the parent of v and let w denote the sibling of v. Lemma 2.2

guarantees that u holds, at time t, fewer than

1

2
a(i, t) +

(
1

128
+

δ

2(1− 64δ2)

)
c(i, t)

keys addressed below w; P(t) guarantees that u holds, at time t, fewer than c(i, t)/64 out-

siders; all the remaining keys held in u at time t are addressed below v. It follows that a

perfect halver in place M(i, t) would send to v fewer than(
3

128
+

δ

2(1− 64δ2)

)
c(i, t)

keys that are not addressed below v; since M(i, t) is only an εB-halver, it may misdirect up

to εB · a(i, t) additional keys to v; it follows that

|XP | <
(

3

128
+

δ

2(1− 64δ2)
+ εB

)
c(i, t).

P(t) guarantees that

|XL| <
δc(i+ 2, t)

64
and |XR| <

δc(i+ 2, t)

64
:

at time t, each key in XL ∪XR is an outsider of order one in a child of v. Altogether, we

have

|X| = |XP |+ |XL|+ |XR| <
((

3

128
+

δ

2(1− 64δ2)
+ εB

)
· 1
2

+ 2 · δ
64
· 8
)
c(i+ 1, t+ 1),

and so |X| < c(i+ 1, t+ 1)/64 by (2.6). 2

LEMMA 2.4 Let t be an integer which satisfies 1 ≤ t < 3d− 20 and P(t); let v be a node

of the tree, let i + 1 be the level of v, and let r be a positive integer. Then v holds at time

t+ 1 fewer than δrc(i+ 1, t+ 1)/64 outsiders of order r.

12

PROOF. We may assume that a(i+ 1, t+ 1) 6= 0, since otherwise the conclusion is trivial.

With u standing for the parent of v, let us first show that

(i) π(i, t) ≥ 3c(i, t)/64, or else u holds no outsiders at time t.

For this purpose, let us assume that π(i, t) < 3c(i, t)/64, and so i = α(t) and α(t+1) = i+1

by the definition of π(i, t). Now if i = 0, then u holds no outsiders since it is the root; if

i ≥ 1, then α(t) ≤ (t− d + 7)/2, and so c(i, t) ≤ 32, in which case the absence of outsiders

from u at time t is guaranteed by P(t).

Now let X denote the set of all outsiders of order r that are held in v at time t+ 1 and

let us write

x ∈ XP if x ∈ X and x is held in u at time t,

x ∈ XL if x ∈ X and x is held in the left child of x at time t,

x ∈ XR if x ∈ X and x is held in the right child of x at time t.

We claim that

(ii) |XP | < εF δr−1c(i, t)/64.

Each key in XP is an outsider of order r−1 at time t, when it is held in u. Assumption P(t)

guarantees that u holds fewer than δr−1c(i, t)/64 outsiders of order r − 1 at time t; in turn,

claim (i) guarantees that the actual number of these outsiders is at most π(i, t)/3, and so

module M(i, t) places fewer than εF δr−1c(i, t)/64 of them on its output wires outside its F .

Each key in XL ∪XR is an outsider of order r + 1 at time t, when it is held in a child of

v; assumption P(t) guarantees that

(iii) |XL| < δr+1c(i+ 2, t)/64 and |XR| < δr+1c(i+ 2, t)/64.

Altogether, we have

|X| = |XP |+ |XL|+ |XR| <
((

εF δr−1

64

)
· 1
2

+ 2 · δ
r+1

64
· 8
)
c(i+ 1, t+ 1),

and so |X| < δrc(i+ 1, t+ 1)/64 by (2.7). 2

13

3 THE MODULES

3.1 Existence of expanders

The set of vertices of a bipartite graph is partitioned into two disjoint parts in such a way

that each edge has one endpoint in each of the two parts; a matching is a set of pairwise

disjoint edges; for each subset S of the vertex-set of a graph G, we write

NG(S) = {u : u is adjacent to at least one vertex in S }.

By a bipartite (n, d, µ)-expander, we shall mean a bipartite graph G such that

(i) G has n vertices in each part,

(ii) the edge-set that is the union of d matchings,

(iii) every nonempty set S of vertices in one part of G has |NG(S)| > min{µ|S| , n− |S|}.

THEOREM 3.1 If µ and d are positive integers such that

(µ+ 1) eµ+2

(
µ

µ+ 1

)d
<

1

3
, (3.1)

then, for every positive integer n, there is a bipartite (n, d, µ)-expander.

PROOF. Consider arbitrary but fixed positive integers n, d, and µ and take two disjoint

sets VL, VR of vertices such that |VL| = |VR| = n. By a perfect matching, we shall mean a set

of n pairwise disjoint edges, each of which has one endpoint in VL and the other endpoint in

VR. Let G denote the set of all unions of d perfect matchings and note that, as there are n!

distinct perfect matchings,

|G| = (n!)d.

For every positive integer s, write t = min{µs, n−s} and let B(s) denote the set of all graphs

in G such that some nonempty set S of vertices in one part of G has |S| = s, |N(S)| ≤ t.

Since B(s) = ∅ whenever s ≥ n (in fact, B(s) = ∅ whenever s > n/2),

G −
n−1⋃
s=1

B(s)

14

is the set of all (n, d, µ)-expanders; this set is nonempty whenever∑n−1
s=1 |B(s)|
| G| < 1; (3.2)

we are going to prove that (3.1) implies (3.2). More precisely, we are going to prove that

(3.1) implies

|B(s)|
| G| <

2

3s
. (3.3)

For this purpose, note that every edge-set E of a graph in B(s) can be manufactured as

follows:

(i) set E = ∅;

(ii) choose between i = 1 and i = 2;

(iii) choose a subset S of Vi such that |S| = s;

(iv) choose a subset T of the other Vj such that |T | = t

(we will have NG(S) ⊆ T);

(v) repeat d times

(add to E a perfect matching M such that NM(S) ⊆ T):

(vi) choose a subset S ′ of T such that |S ′| = |S|;

(vii) choose s pairwise disjoint edges

with one endpoint in S and the other endpoint in S′;

(viii) choose n − s pairwise disjoint edges

with one endpoint in Vi − S and the other endpoint in VL − S ′;

(ix) add the perfect matching chosen by (vi), (vii), and (viii) to E.

There are two choices in (ii); there are (ns) choices in (iii); there are (nt) choices in (iv);

there are (ts) choices in (vi); there are s! choices in (vii); there are (n− s)! choices in (viii).

Altogether, there are

2

 n

s


 n

t



 t

s

 s! (n− s)!

d

15

different settings for the production line from start to finish; this quantity is an upper bound

on |B(s)| since every edge-set of a graph in B(s) arises from at least one of the settings. It

follows that

|B(s)|
| G| ≤ 2

 n

s


 n

t





 t

s


 n

s





d

;

using the inequalities (ns) ≤ ns/s! (which follows directly from the definition) and s! ≥ (s/e)s

(which follows by induction on s from the inequality 1+x ≤ ex), and (ts)/(
n
s) ≤ (t/n)s (which

is an elementary consequence of t ≤ n), we conclude that

|B(s)|
| G| ≤ 2

(
en

s

)s (en
t

)t (t
n

)sd
. (3.4)

In addition, note that ((µ + 1)/µ)d < ed/µ, and so the left-hand side of (3.1) is greater

than (µ+ 1) eµ+2−d/µ; in particular, (3.1) implies that

d > µ(µ + 2). (3.5)

We shall derive (3.3) from (3.1), (3.4), and (3.5).

Case 1: t = µs. In this case,(
en

s

)s (en
t

)t (t
n

)sd
=

(
en

s

(
en

µs

)µ (
µs

n

)d)s
=

(
µeµ+1

(
µs

n

)d−(µ+1)
)s

and s ≤ n/(µ + 1); since d− (µ+ 1) ≥ 0 by (3.5), it follows that

µeµ+1
(
µs

n

)d−(µ+1)

≤ µeµ+1

(
µ

µ+ 1

)d−(µ+1)

< µeµ+2

(
µ

µ+ 1

)d
<

1

3
.

Case 2: t = n− s. In this case,

n

s
≤ µ + 1, t ≤ µs,

(
n

t

)t
=
(
1 +

s

n− s

)n−s
≤ es, t

n
≤ µ

µ + 1
,

and so(
en

s

)s (en
t

)t (t
n

)sd
≤
(µ+ 1) eµ+2

(
µ

µ+ 1

)ds < 1

3s
.

2

16

3.2 From expanders to strong (2n, ε) -halvers

By an strong (2n, ε)-halver, we shall mean a comparator network on 2n wires with the output

wires collected in equally sized blocks BL, BR so that, for every k = 1, 2, . . . , n,

(i) the network places at most εk of its k smallest input keys into output block BR and

(ii) the network places at most εk of its k largest input keys into output block BL.

THEOREM 3.2 For every positive ε there is a positive integer d such that, for every

positive integer n, there is a strong (2n, ε)-halver of depth d.

PROOF. Given a positive ε, choose a positive integer µ such that 1/(µ+ 1) < ε. Theorem

3.1 guarantees existence of a positive integer d such that, for every positive integer n, there is

a bipartite (n, d, µ)-expander; for every choice of positive integer n, we are going to construct

a strong (2n, ε)-halver of depth d.

Given a bipartite (n, d, µ)-expander G, we shall construct a strong (2n, 1/(µ+1))-halver

H of depth d, whose 2n wires are identified with the 2n vertices of G. For this purpose,

let VL, VR denote the two parts of the vertex-set of G and let M1,M2, . . .Md denote the

matchings whose union is the edge-set of G. The t-th layer in the series decomposition of H

into d layers is defined by Mt: its comparators are precisely the edges of Mt and

(?) whenever two keys x and y come into the two wires of a comparator,

min{x, y} comes out on the wire in VL and

max{x, y} comes out on the wire in VR.

Wires in VL form the output block BL and wires in VR form the output block BR.

To see that H has defining property (i) of a strong (2n, 1/(µ + 1))-halver, consider an

arbitrary k = 1, 2, . . . , n, let Q denote the set of k smallest input keys, and let S denote the

set of all the wires in BR that hold keys from Q as their output values: our aim is to prove

that |S| ≤ k/(µ+ 1). For every u in NG(S), there are — by definition — a wire v in S and

a subscript t such that uv is an edge in Mt; let ut, vt denote the keys held in wires u, v after

17

the first t layers of comparators and let ud, vd denote the keys held in wires u, v after all d

layers of comparators. By definition of S, we have vd ∈ Q ; property (?) guarantees that

ud ≤ ut ≤ vt ≤ vd; it follows that ud ∈ Q and so, as u is an arbitrary element of NG(S),

|S|+ |NG(S)| ≤ k.

Since G is a bipartite (n, d, µ)-expander G, we have

min{(1 + µ)|S| , n} < |S|+ |NG(S)| .

comparing the two bounds and keeping in mind that k ≤ n, we conclude that (1+µ)|S| < k.

A mirror image of this argument shows that H has defining property (ii) of a strong

(2n, 1/(µ + 1))-halver. 2

3.3 From strong (2n, ε)-halvers to separators

THEOREM 3.3 For every choice of positive εB, εF , and δ, there is a positive integer d

such that, for every choice of positive even integers a and f such that δa ≤ f ≤ a, there is

an (a, f, εB, εF)-separator of depth d.

PROOF. We may assume that δ ≤ 1 since otherwise there is nothing to prove. Now let

r be the smallest nonnegative integer such that 2rδ ≥ 1 and set ε = min{εB, εF/(r + 1)}.

Theorem 3.2 guarantees existence of a positive integer d0 such that, for every positive integer

n, there is a strong (2n, ε)-halver of depth d0; for every choice of positive even integers a

and f such that δa ≤ f ≤ a, we are going to construct an (a, f, εB, εF)-separator of depth

at most (r + 1)d0.

With t the smallest nonnegative integer such that 2tf ≥ a, the separator is a series

composition of t + 1 layers. Layer 0 is a strong (a, ε)-halver of depth d0; its output blocks

BL, BR define output blocks BL, BR of the separator. Layer 1 is a parallel composition of

two strong (a− 2t−1f, ε)-halvers of depth d0 (a− 2t−1f is positive and at most a/2); the left

halver draws its input wires from BL and collects its output wires in equally sized blocks

18

B1
LL, B

1
LR; the right halver draws its input wires from BR and collects its output wires in

equally sized blocks B1
RL, B

1
RR. Writing

B1
L = BL −B1

LR and B1
R = BR −B1

RL,

note that |B1
L| = |B1

R| = 2t−2f .

The subsequent layers are constructed recursively. Layer i is a parallel composition of

two strong (a, ε)-halvers of depth d0; a set Bi−1
L of 2t−if wires in BL forms the input wires of

the left halver and a set Bi−1
R of 2t−if wires in BR forms the input wires of the right halver;

the left halver and collects its output wires in equally sized blocks Bi
LL, B

i
LR and the right

halver collects its output wires in equally sized blocks Bi
RL, B

i
RR; we set Bi

L = Bi−1
L −Bi

LR

and Bi
R = Bi−1

R −Bi
RL.

If 1 ≤ k ≤ f/2, then this network places at most εk of the k smallest input keys in each

of the sets BR, B
1
LR, B

2
LR, . . . , B

t
LR, and so it places at most εFk of these k keys outside Bt

LL;

similarly, the network places at most εFk of the k largest input keys outside Bt
RR; we set

FL = Bt
LL and FR = Bt

RR. 2

19

REFERENCES

• M. Ajtai, J. Komlós, and E. Szemerédi (1983a), An O(n log n) sorting network, Proc.

15th Ann. ACM Symp. on Theory of Computing, pp. 1–9.

• M. Ajtai, J. Komlós, and E. Szemerédi (1983b), Sorting in c logn parallel steps,

Combinatorica 3, 1–19.

• B.E. Batcher (1968), Sorting networks and their applications, Proc. 32nd Ann. AFIPS

Spring Joint Comp. Conf., pp.307–314.

• T.H. Cormen, C.E. Leiserson, and R.L. Rivest (1990), Introduction to Algorithms,

MIT Press/McGraw-Hill.

• M.S. Paterson (1990), Improved sorting networks with O(log n) depth, Algorithmica

5, 75–92.

• N. Pippenger (1990), Communication networks, in: Handbook Of Theoretical Computer

Science, Vol. A, Algorithms and Complexity (J. van Leeuwen, ed.) The MIT Press/ Elsevier,

Chapter 15, pp. 805–833.

20

