Graphs

G = (V,E)
V - set of vertices, E - set of edges

Undirected graphs

Simple graph: V - nonempty set of vertices, E -
set of unordered pairs of distinct vertices (no multiple
edges or 10ops)

Multigraph: multiple edges allowed, loops not al-
lowed

Pseudograph: multiple edges and loops allowed

Directed graphs

Directed graph: V - set of vertices, E - set of ordered
pairs of vertices (loops allowed, multiple edges in the
same direction not allowed)

Directed multigraph: loops and multiple directed
edges allowed



Terminology: In undirected graphs vertex v and ver-
tex v are called adjacent in undirected G iff {u,v} is
an edge in G. We say {u,v} is incident on vertices u
and v. The degree d(v) of a vertex v is the number
of edges incident on w.



Handshaking Theorem: For an undirected graph G =
(V,E):

2e =) yev d(v)
(true even for graphs with multiple edges and loops)
Proof: It follows from the fact that each edge con-
tributes 2 to the sum of degrees of vertices since it's
incident to exactly 2 (possibly equal, i. e., loop) ver-
tices.

Theorem: An undirected graph has an even number
of vertices of odd degree.

Proof:

2e =) yev d(v) = ZUEVl d(v) + Z’UEVQ d(v)

V1 = set of odd degree vertices

Vo = set of even degree vertices

The second term of the RHS is even, hence 3y, d(v)
must also be even. But d(v) in this sum is odd, hence
the number of terms in this sum, i.e. |Vi| must be
even.




In a directed graph: (u,v) is an edge, wu is the initial
vertex (adjacent to v), and v is the terminal vertex
(adjacent from u).

d—(v) is in-degree of vertex v

(i. e., # of edges terminating at v).

dt(v) is out-degree of vertex v

(i. e., # of edges originating at at v).

Theorem: Let G be a directed graph. Then:

> d ()= dt(v) =B

veV veV



More terminology:.

e Complete graphs on n vertices K,:. a simple
graph with exactly one edge between any pair of
distinct vertices.

e Cycles (', n > 3. simple graph with vertices
v1,...,Un and edges {vy,vo}, ..., {vn,v1}.

e Wheels W,,,n > 3: add (n + 1)-st vertex to C,
and connect it to each of n vertices in C,,.

e n-Cubes (@),: simple graph with vertices repre-
senting 2" bit strings of length n,n > 1 such that
adjacent vertices have bit strings differing in ex-
actly one bit position.



e Bipartite graphs: simple graphs such that V can
be partitioned into 2 disjoint subsets V; and V5
such that each edge connects a vertex in V7 and a
vertex in Vo, and no edges connect 2 vertices that
are both in V7 or in V5.

e Complete bipartite graphs Ky, : |Vi| =m, |V5| =
n, there is an edge between two vertices iff one
vertex is in V7 and the other in V5.

e Local area networks.



Representing Graphs

Adjacency matrix: for simple graph G = (V,E), |V| =

n, is an nxn matrix A of 0’s and 1’s, such that:

_{ 1 if (vi,vj) €E
aij—

O otherwaise

Incident matrix:

. — 1 if edge e; is incident on v;
tJ 0 otherwaise

Examples: in class.




Isomorphism of graphs

Graphs with the same structure.

Definition: Two simple graphs G; = (V1,FE71) and
Go> = (V5, E») are isomorphic if:

a) There is a one-to-one and onto function f from
V7 to Vo and

b) Vertices a,b are adjacent in V7 iff vertices f(a), f(b)
are adjacent in V5 for all a,b in V7.

Examples: in class.

It is difficult to determine if 2 graphs are isomorphic.
There are n! possibilities to check! However, it is
simpler to show that two graphs are not isomorphic.



For isomorphism we have some invariant properties:

1. Two graphs must have the same number of ver-
tices and the same number of edges.

2. d(v;) and d(u;) must be the same if f(u;) = v;.

3. Other invariant properties will come later.

Examples: in class.




Graph Connectivity

Path: A path of length n from « to v in an undirected
graph is a sequence of edges eq, e, ....,en, Which starts
at v and ends at v.

A path is simple if it does not contain the same edge
twice.

Circuit: if u = v, the path from « to u is a circuit.

Connectedness: An undirected graph is connected if
there exists a path between every pair of vertices.

T heorem: There is a simple path between every pair
of vertices in a connected undirected graph.




Paths and isomorphism:

Many ways that paths and circuits can help to deter-
mine if 2 graphs are isomorphic.

Example: The existence of a simple circuit of a partic-

ular length is a useful invariant to show isomorphism.

Example: given in class.




Connectedness in directed graphs

Definition: A directed graph is strongly connected if
there exists a path from a to b and from b to a, when-
ever a,b e V.

Definition: A directed graph is weakly connected if
there exists a path between any 2 vertices in the un-
derlying undirected graph.

Theorem (Counting paths between vertices):

Let G be a graph with vertices vq,vo,....,v, and ad-
jacency matrix A . The number of paths of length
r from v; to v; is equal to the (i,5) element of the
power matrix A".

Proof and examples to be given in class.



Euler Paths and Euler Circuits

e An Euler circuit in G is a simple circuit (that does
not cross the same edge twice) containing every
edge of G.

e An Euler path in G is a simple path containing
every edge of (.

Example: given in class.




Necessary and sufficient conditions for Euler circuits
and Euler paths.

Theorem: If a connected graph has an Euler circuit
then every vertex must have even degree.

Proof: in class.

Theorem: A connected graph has an Euler path but
not an Euler circuit if and only if it has exactly two
vertices of odd degree.

Proof: in class.



Hamilton Paths and Circuits

e A Hamilton circuit is a (simple) circuit passing
through all vertices only once.

e A Hamilton path is a (simple) path passing through
all vertices only once.

Example: given in class.

There are no necessary and sufficient conditions for
the existence of Hamilton paths and circuits. For suf-
ficient conditions there are many.



Theorem: If GG is a simple graph with n > 3 then G has
a Hamilton circuit if the degree of each vertex is > [5].

Example: Gray codes (an application of Hamilton cir-
cuit to coding).

The Shortest Path Problems

Find the shortest path between two vertices of a weighted
graph.

Dijstra’s algorithm: All weights are positive.
(G is connected and simple graph.
w(i,j) = oo if (v;,v;) is not an edge.




Input: V,W
Denote: a = vg (the starting vertex), and z = v, (the

end vertex).

forir =1 ton
L(v;) = o0
L(a) =0
S=2¢
while (z & S)
{u= a vertex not in S with L(u) minimal
S=SU{u}
for all adjacent vertices v not in S
if L(u) + w(u,v) < L(v) then
L(v) = L(u) + w(u,v)}

L(z)= length of shortest path from a to z.



