
Monohrome and Color Image Denoising Using NeighboringDependeny and Data CorrelationDongwook Cho and Tien D. BuiDept. of Computer Siene & Software Engineering, Conordia University,1455 De Maisonneuve Blvd. West, Montreal, Quebe, H3G 1M8, CanadaABSTRACTIn this paper, two approahes for image denoising that take advantages of neighboring dependeny in the waveletdomain are studied. The �rst approah is to take into aount the higher order statistial oupling betweenneighboring wavelet oeÆients and their orresponding oeÆients in the parent level. The seond is basedon multivariate statistial modeling. The estimation of the lean oeÆients is obtained by a general ruleusing Bayesian approah. Various estimation expressions an be obtained by a priori probability distribution,alled multivariate generalized Gaussian distribution (MGGD). The experimental results show that both ofour methods give omparatively higher peak signal to noise ratio (PSNR) as well as little visual artifat formonohrome images. In addition, we extend our approahes to a denoising algorithm for olor image that hasmultiple olor omponents. The proposed olor denoising algorithm is a framework to onsider the orrelationsbetween olor omponents yet using the existing monohrome denoising method without modi�ation. Denoisingresults in this framework give notieable better improvement than in the ase when the orrelation between oloromponents is not onsidered.Keywords: Denoising, wavelet, olor image, orrelation, neighboring dependeny1. INTRODUCTIONFor the last deade, various denoising approahes using wavelet transform have been proposed and proved to beeÆient for images as well as for signals. They have shown that denoising using wavelet transforms produessuperb results. This is beause wavelet transform has the ompation property of having only a small number ofsigni�ant oeÆients and a large number of detailed oeÆients. Therefore, it is possible to suppress the noisein the wavelet domain by killing the detailed oeÆients that represent the detailed information as well as thenoise.Wavelet oeÆients are not strongly orrelated, but they still have dependeny on eah other. So many ofthe reent works have taken into aount this dependeny in order to obtain better oeÆient estimate. Caiand Silverman1 proposed a simple and e�etive approah for signal denoising by inorporating the neighboringoeÆients. Chen and Bui2 designed new neighboring threshold for multiwavelet based on NeighBlok. Theirmethod onsiders both multiwavelet properties and neighboring dependeny. Mihak et al.3 proposed a loalvariane estimator to get a loally-adaptive shrinkage value. Malfait and Roose proposed an image denoisingalgorithm using Markov random �eld image model as a priori.4 Also Pizuria et al.5 onsidered a joint inter- andintra-sale statistial model and improved the approah by Malfait and Roose. A parent oeÆient in the oarserlevel was also onsidered to estimate a threshold by Sendur and Selesnik.6 They obtained better results whenthey applied the loal variane together with the dual-tree omplex wavelet transform (DT CWT).7 DT CWTprovides better shift-invariant features and diretional seletivity than the usual separable wavelet transform.8Portilla et al.9 presented an image denoising algorithm whih is based on a Gaussian sale mixture (GSM) modelusing an overomplete multisale oriented basis. They de�ne a vetor using neighboring oeÆients and obtainan aurate estimate by the vetor operations. All these works show that inorporating di�erent informationlike neighbors and parents is helpful to remove noise and preserve details for natural image denoising.Further author information: (Send orrespondene to T.D.B.)T.D.B.: E-mail: bui�se.onordia.a, Telephone: 1-514-848-2424 ext. 3014D.C.: E-mail: d ho�se.onordia.a
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Most of the image denoising approahes we have mentioned have been designed for monohrome images.However more ommon image type in pratie is olor image omposed of multiple olor omponents. Onlya few olor image denoising algorithms using wavelet transform suh as Refs. 10 and 11 have been developed.Unlike monohrome images, olor images an be expressed as multiple omponents of monohrome images or aset of pixels represented by vetors. Therefore it is possible to extend most of the existing denoising approahesto olor image straightforwardly by denoising eah olor omponent independently. In this ase, orrelation anddependeny between olor omponents are ignored. In order to estimate denoised olor pixels aurately, it isneessary to take advantage of orrelation or dependeny of olor omponents. In the spatial domain, there havebeen some works whih onsider a pixel as a vetor of olors.12, 13 In this ase, it is possible to develop a ruleto estimate a orrelated vetor by averaging or utilizing order statistis between the vetors (or pixels).In this paper, we disuss denoising approah for both monohrome and olor images. We introdue twoeÆient methods we have proposed for monohrome image denoising. The �rst approah is to take advantage ofthe higher order statistial oupling between neighboring wavelet oeÆients and their orresponding oeÆientsin the parent level. The other is based on multivariate statistial modeling. Here the lean oeÆients areestimated by a general rule using Bayesian approah. Various estimation expressions an be obtained by a prioriprobability distribution alled multivariate generalized Gaussian distribution (MGGD). The method an takeinto aount various related information. Besides, we have developed the general framework whih utilizes oloromponents in the wavelet domain by deorrelating them statistially. In the deorrelated spae, the samplespae is randomly distributed and this results in more robust estimation for lean image.The organization of this paper is as follows. In Set. 2, we study two di�erent approahes for monohromeimage denoising. These methods have been motivated by how to eÆiently inorporate and utilize neighboringwavelet oeÆients. In Set. 3 olor denoising method is proposed based on one of our monohrome imagedenoising methods Experimental results are shown and ompared with the existing methods in Set. 4. And�nally we give the onlusion and future work to be done in Set. 5.2. TWO APPROACHESIn this setion, we briey study and ompare two di�erent image denoising methods. In both methods, neighbor-ing oeÆients of given noisy image are utilized to estimate those of lean image aurately. However they havedi�erent approahes to obtain the lean estimates. The �rst method utilizes the Lp-norm of a vetor omposedof all the related neighboring oeÆients by omparing it with universal threshold.14 On the other hand, theseond method generally estimates the lean oeÆients using Bayesian statistis based on our multivariate apriori model.We de�ne some ommon notations �rst. Let A be a lean natural image with size N �N , B a noisy imagewhih an be expressed as B = A + �C, and C zero-mean Gaussian white noise, whih is C�N(0; 1). �2 isnoise variane. After performing multiresolution wavelet deomposition on B, we get the wavelet oeÆient yj;k,whih is the k-th wavelet oeÆient in j-th level for B. Due to the linearity of the wavelet transform, we have:yj;k = xj;k + �zj;k; (1)where xj;k and zj;k are the wavelet oeÆients of A and C respetively in the same loation as yj;k.2.1. NeighLevel : a simple and eÆient wavelet denoising methodIn the wavelet domain, the strong dependeny between parent and hild oeÆients has been widely realized inimage oding and denoising sine zerotrees were introdued by Shapiro.15 Among them, Cai and Silverman1proposed a simple and e�etive approah for a signal denoising. The method, alled NeighBlok, takes theneighboring oeÆients into aount and obtains a threshold by omparing the sum of squared neighboringoeÆients with Donoho's universal threshold. In addition, parent and hild oeÆients have inter-dependenysimilar to neighbors. Therefore, if we an properly utilize neighbors spread both vertially and horizontally asshown in Fig. 1, a better performane an be expeted.
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Boat512x512 σ=30Figure 2. Performane hanges as funtion � in �� = �� fordi�erent kinds and sizes of images when NeighLevel (M =5) is applied using DT CWT.Based on these ideas, we proposed an eÆient image denoising approah alled NeighLevel for a monohromeimage in Ref. 16. This an be briey desribed in the following equation:x̂j;k = yj;k"1� (M2 + 1)��2,� Xsl2Nj;k s2l + p2�#+or in general, x̂j;k = yj;k �1� d ���� ��kykr ����r�+ ; (2)where sl denotes the oeÆient to be thresholded and its neighbors in anM�M window, and p is a orrespondingparent of the oeÆient to be thresholded, whih is a oeÆient mathed in the oarser level (see Fig. 1). yis a d-dimensional vetor omposed of all the related oeÆients inluding the oeÆient to be thresholded,neighbors and parent and kykr denotes Lr-norm (we mostly set r to 2). �� = ��, where � is the universalthreshold � =p2�2 logN2. � is given as a parameter whih satis�es 0 � � � 1.In Eq. (2), it should be noted that a normalized fator, d orM2+1, is used whih is the number of orrelatedelements in the ontext. By this rule, the e�et of the loal variane from the parent level is onsidered as wellas from the urrent level.In this method, it is important to hoose an appropriate paramter �. The universal threshold is designed forsmoothness rather than for minimizing the errors. So � is more meaningful when the signal is suÆiently smoothor the length of the signal is lose to in�nity. Natural images, however, are usually neither suÆiently smoothnor omposed of in�nite number of pixels. In fat, if we suppose that an optimal threshold that minimizes meansquare error (MSE) (or maximizes peak signal to noise ratio (PSNR)), � is always muh less than 1.0 for naturalimages as shown in Fig. 2. Espeially we got very similar � value for di�erent kinds and sizes of images whenwe applied soft thresholding rule. It might vary depending on the wavelet �lter, but the appropriate range issimilar for di�erent images and noise level we have tested in our experiments.2.2. Bayesian Estimation for Multivariate Statistial ModelAnother method we are going to present is to use the statistial model of lean wavelet oeÆients in additionto taking advantage of neighboring oeÆients. This drives us to use multivariate statistial model. In Ref. 17,we have proposed the general estimation rule in the wavelet domain to obtain the denoised oeÆients fromthe noisy image based on the multivariate statistial theory and Bayesian estimator. We briey introdue theestimator in the following.Let x be a d-dimensional wavelet oeÆient vetor, x = (x1; x2; � � � ; xd)t, where x1 is the wavelet oeÆientunder onsideration and xi (i = 2; � � � ; d) are the related oeÆients to be taken into onsideration, e.g. neighbors,parent and o�springs. Here for simpliity, we replae the double subsripts in xj;k by a single subsript xi. The



orresponding vetors y and z an be similarly de�ned for the noisy image B and the noise C. We assume thatxi, yi and zi orrespond to eah other in both deomposition level and loation. Therefore,y = x+ �z: (3)For the sake of simpliity, we omit subsripts j; k in Eq. (3) and the rest of the paper.Our onern lies mainly in obtaining the estimate of a lean wavelet oeÆient vetor, x̂. x̂ should be obtainedonly from y, a wavelet oeÆient vetor of the noisy image B. One of the ways to estimate x̂ is to use MAPestimator to maximize p(xjy). MAP estimator for x̂ an be obtained as follows:x̂ = arg maxx2Rd [ln p(yjx) + ln p(x)℄= arg maxx2RdF (x); (4)where F (x) represents the term inside argmax. This means that the optimal value x̂ with minimum probabilityerror an be estimated by p(yjx) and p(x).From Eq. (3), p(yjx) is the multivariate Gaussian distribution with N(0;�z = �2I) sine Gaussian noise isindependently and identially distributed for eah element of the vetor. Hene,ln p(yjx) = �d2 ln (2��2)� (y � x)t(y � x)2�2 : (5)We assume that p(x) is known. p(x) might vary depending on the type of sample images. Also supposethat g(x) = ln p(x) and there exists x̂ whih satis�es F (x̂) > limxi!�1F (x). From Eqs. (4) and (5), Eq. (4) isequivalent to the solution of the following equation:rF (x̂) = � x̂� y�2 +rg(x̂) = 0, x̂ = y + �2rg(x̂): (6)Therefore the estimate of x highly depends on the probability density of lean wavelet oeÆients, p(x).The existing models for wavelet denoising are usually based on univariate statistial model whereas p(x) isa multivariate pdf in our model. There are several multivariate funtions whih are symmetri spherially likemultivariate Gaussian model. In our paper, we use extended generalized Gaussian distribution (GGD) model18for its simple form and to ahieve good �tting results. We all this model multivariate generalized Gaussiandistribution (MGGD): p(x) =  exp(�� (x� �)t��1x (x� �)� ��) ; (7)where � and � are parameters whih an represent the spherial shape of the model and  indiates a normalizedonstant de�ned by �, � and the ovariane matrix �x.When the dimension of x is one (salar), the MGGD is still appliable and is denoted by UGGD. MGGDis a partiular ase of the v-spherial distribution de�ned by Fern�andez.19 Using MGGD model, we an derivemore spei� forms of Eq. (6). Sine we an assume that � = 0,rg(x) = � 2��� (xt��1x x)��1��1x x: (8)From Eqs. (6) and (8), x̂ = ��x̂ + 2�2��� (x̂t��1x̂ x̂)��1I��1 �x̂y: (9)



To simplify Eq. (9), we de�ne q(x̂) = x̂t��1x̂ x̂. Hene :q(x̂) = yt ��x̂ + 2�2�fq(x̂)g��1�� I��2�x̂y: (10)Eqs. (9) and (10) allow us to solve for x̂.However, there is no general solution for Eq. (10). To overome this problem, we an de�ne a partiularondition for �, � and �x̂ or use a numerial method. In our ase, we simply use Newton's method.3. COLOR IMAGE DENOISINGUnlike monohrome images, a olor image an be desribed as a set of multiple image omponents. In this paper,the olor image representation is based on the trihromati theory, whih separates the olor image as three oloromponents, i.e. red, green, and blue (RGB olor spae). Therefore we assume that a given noisy image inludesrandomly distributed Gaussian additive noise for eah RGB hannel. RGB olor spae models a physial olorelement, so it does not onsider human visual system (HVS). Various olor spaes whih onsider HVS (e.g.HSI, YIQ, L*a*b, et) have been proposed for this purpose.13 Many of these olor spaes an separate twounorrelated parts, luminane and hrominane� while RGB olor omponents are highly orrelated.The main diÆulty in applying the denoising algorithm for monohrome images to olor images is the fat thata olor image is multi-hannel and the hannels are orrelated to eah other. The simplest and straightforwardway to apply the denoising algorithms diussed in Set. 2 to olor images is to onsider eah olor hannel as asingle monohrome image and denoise eah hannel separately. As an be expeted, this approah does not takeadvantage of any olor information.Our proposed olor denoising sheme is depited in Fig. 3. The framework estimates lean wavelet oeÆientsby di�erent analyses whih an make the olor hannels deorrelated and onsider HVS. The analyses generatemultiple estimates and onstrut probable ranges of lean oeÆients in the olor vetor spae. In the limitedranges of the vetor spae, we an deide an estimated oeÆient vetor whih has the highest a posteriori.3.1. Color Spae Conversion for Human Visual SystemRed, green, and blue are primary olors to represent any physial wavelength of visible light. Physially anyoptial systems inluding opti nerves of man and harge-oupled devies aquire these primary olors from thereeted light of an objet. However, our olor translation system is di�erent in that luminane information isonsidered to be more important than hue and saturation. Among many olor spaes that onsider HVS, we useYUV olor onversion from RGB spae de�ned in the following:0� YUV 1A = 0� 0:299 0:587 0:1140:596 �0:275 �0:3210:212 �0:523 0:311 1A0� RGB 1A ; (11)where (R;G;B)t and (Y; U; V )t denote olor vetors for eah spae. YUV olor spae an be onverted linearlyfrom RGB spae. Due to the linear properties of both the wavelet transform and the onversion to YUV olorspae, the onversion to YUV an therefore be performed in the wavelet domain. We prefer the linear onversionin order to preserve the noise properties. In Eq. (1), we an notie that the noise is still zero-mean Gaussian aftera linear transformation. However, the variane for eah olor hannel may vary. In our ase, the noise varianesfor Y, U, V omponents beome �2Y = (0:299�R)2 + (0:587�G)2 + (0:114�B)2�2U = (0:596�R)2 + (0:275�G)2 + (0:321�B)2�2V = (0:212�R)2 + (0:523�G)2 + (0:311�B)2respetively, where �R, �G, and �B are given noise standard deviations for eah RGB hannel.�Luminane part substitutes intensity, lightness, or brightness depending on the olor system. Chrominane informa-tion inludes hue and saturation.
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Figure 3. Proposed olor image denoising framework using deorrelation-based seletive estimation3.2. Deorrelation Approah in the Wavelet DomainSine RGB olor spae is strongly orrelated for natural images, one an assume that unorrelated spae an behelpful for image denoising. In fat, one of the important inspirations in denoising methods using wavelet trans-form is drawn from weak orrelation property between wavelet oeÆients. Rao and Jones developed denoisingmethod for a multisensor.20 They show the similarity between Karhunen-Loeve (KL) and wavelet transformsand utilize the unorrelation properties in spatio-temporal manner. KL transform is able to deorrelate stronglyorrelated multihannel data perfetly. It has been used for image analysis and oding widely. From Eq. (1), wede�ne one olor pixel as a vetor, v = (vr ; vg; vb)t. Hene, we an denote a wavelet vetor omposed of waveletoeÆients from eah olor omponent as follows:y = x+�1=2z z; (12)where �1=2z = diag(�R; �G; �B). In order to deorrelate the given wavelet vetors, we obtain the KL transformmatrix �, whih satis�es �t�y� = �, where �y is a ovariane matrix of the given wavelet vetors y, � is adiagonal matrix ontaining the eigenvalues of �y, and � is an eigenmatrix of �y expressed as � = [aij ℄, whereaij denotes the element of i-th row and j-th olumn in a 3�3 matrix �. They are all 3�3 matries. Then thetransformed vetors yKL = �ty (13)beome ideally unorrelated. In this ase, our denoising problem is to estimate xKL = �tx. From Eqs. (12) and(13), yKL = xKL +�t�1=2z z. Therefore,�2j = (a1j�R)2 + (a2j�G)2 + (a3j�B)2;where �j denotes noise standard deviation for a transformed hannel j and j = 1; 2; 3. Sine KL transform islinear like YUV olor onversion, the noise model in the transformed domain is also Gaussian. Then we an applya monohrome denoising algorithm without modi�ation for eah transformed hannel. Sine � is orthogonal,inverse KL transform an be obtained from Eq. (13) as follows:y = �yKL (14)The main advantage of KL transform is the ideal deorrelation depending on the given data. In our framework,KL transform is performed for eah subband in the wavelet domain in order to take maximum advantages ofmultiresolution analysis property of wavelets. We note that any denoising algorithm an be applied to eah ofthe estimation proedures for the denoised wavelet oeÆients.



3.3. Bayesian Seletion of Candidate VetorsPrevious setions imply that there might be many ways to estimate the lean wavelet oeÆients. In this paperwe will follow the approah in Set. 2.2 where we assume that the lean wavelet oeÆient is an estimate thatmaximizes the a posteriori p(xjy). If p(xjy) an be modeled aurately, we an estimate the lean oeÆient ina loally on�ned vetor spae with less omputational ost. Suppose that the power set 2D = fx̂1; x̂2; � � � ; x̂mgis onstruted from the estimated vetor set D obtained by the two di�erent ways at the end of step 4 of theframework in Fig. 3. Then in order to estimate the most probable we evaluate the following equation for eahelement vetor of 2D:x̂ = arg maxx22D ln p(yjx) + ln p(x)= arg maxx22D "�12 ln (2�)3j�zj+  � (y � x)t��1z (y � x)2�2 �� (x� �)t��1x (x� �)� ��# : (15)4. EXPERIMENTAL RESULTSIn our experiments, we have used 8-bit gray-level images and RGB olor images with 512�512 sizes from USC-SIPI image database and other publi soures. The noise model we assume is zero-mean additive white Gaussiannoise (AWGN). In addition, we also used olor images taken by onsumer digital ameras to see how the denoisingalgorithms an enhane the pratially used images whih inlude naturally generated noise.The wavelet �lter we have used is dual-tree omplex wavelet transform (DT CWT) suggested in Ref. 8.DT CWT has helpful properties for the denoising suh as redundany and diretionality. We also have hosenDaubehies' length 8 wavelet �lter (DAUB. 8) whih is one of the most ommon mother wavelets for denoisingfor omparison.4.1. Evalutions for Monohrome ImagesFor NeighLevel, determining the parameter � in Eq. (2) is required. We found that the value is loated in apartiularly narrow range even for diverse types of images with di�erent size and noise level. We set � to 0.16 �0.19 depending on the sizes of the neighboring window and parent when we use DT CWT. From our experiments,we found that � is slightly bigger if the neighboring window beomes smaller.For the other approah using MGGD model, we need to hoose the elements of vetor x whih inludes theestimated oeÆient itself and other losely related oeÆients suh as neighbors, parent, and others. In addition,the proper parameters for the statistial model are neessary for better estimation. This ould be diÆult sinethey are deided ase by ase empirially depending the type of images, the subband in the wavelet domain andthe hosen elements of vetor x. For this ombination of elements, we selet the parameters of MGGD modelas � = 1=6 and � = 1=2 for simpliity in our experiments. In our ase, we use the following estimation for �̂x :b�x = �y��2I sine the noise is independently distributed. In this ase, an M�M loal window that surroundseah element of y is applied. This is on the same basis as the loal variane whih is empirially used in reentworks.3, 7 In our experiments, the loal ovariane produes higher quality of image when a 7�7 window isapplied for eah element.To evaluate and analyze our algorithms, we ompared them with the existing e�etive approahes.3, 7, 9, 21{26Denoised images an be ompared both visually and numerially. For di�erent noise varianes, the measuredPSNR values are listed in Tab. 1 for our proposed and other methods. The results are ategorized in terms ofthe type of the wavelet used sine denoising results are strongly dependent on the wavelet transforms. We usethe experimental results from the original papers and the PSNR table in Ref. 7. GSM results for DAUB. 8�lters are obtained from the software o�ered by Portilla.9 A omparison of seleted methods is given in Figs. 4for a 512� 512 size Boat images. Wiener �ltery is also inluded sine it onsiders the neighboring dependenyand ahieves eÆaious performane with simple linear �lter even if wavelet transforms are not applied. OuryWe used wiener2 funtion in MATLAB image proessing toolbox with a 5�5 neighboring window and unknown noiselevel.



Figure 4. Cropped images (128�128) using proposed algorithms for 512�512 Boat image with �=25 : Original (top-left),Noisy (top-enter; 18.60dB), V isuShrink soft (top-right; 24.06dB), V isuShrink hard (middle-left; 25.03dB), Wiener�lter (middle-enter; 27.22dB), NeighSure (middle-right; 28.48dB), NeighShrink (bottom-left; 28.90dB), NeighLevel(bottom-enter; 29.11dB), Multivariate (bottom-right; 29.12dB).



Table 1. Comparison table for proposed and existing methods with di�erent Gaussian noise (Lena 512� 512).Wavelet Approah PSNR(dB) by noise level(�)10 15 20 25 30Noisy image 28.12 24.62 22.14 20.16 18.60{ Wiener2 32.67 31.28 30.03 28.85 27.83DAUB. 8 MGGD 34.55 32.71 31.44 30.46 29.64NeighLevel 34.51 32.60 31.30 30.27 29.47SureShrink21 33.42 31.50 30.17 29.18 28.47BiShrink7 34.33 32.48 31.16 30.12 29.38HMT22 33.81 31.73 30.36 29.21 28.32LAWMAP3 34.24 32.27 30.92 29.90 -GSM9 34.23 32.35 31.03 30.23 29.21BayesShrink25 33.29 31.38 30.14 29.19 28.45DT CWT MGGD 35.35 33.70 32.46 31.48 30.68NeighLevel 35.41 33.72 32.50 31.48 30.70BiShrink7 35.31 33.64 32.37 31.37 30.51CHMT23 34.90 - - 29.90 -Bi 10/18 MMSE26 34.93 33.01 31.69 30.60 -SI Symm. 8 SI-AdaptShr24 - 33.37 32.09 31.07 -Steer. pyramid GSM9 35.61 33.90 32.66 31.69 -Matlab implementation takes less than 3 seonds for a 512�512 image with DT CWT on 2.4GHz Pentium IVfor NeighLevel. Sine there is no general solution for Eq. (10), iterative numerial solution is applied for themultivariate approah. It takes about 30 seonds for a 512�512 image with DAUB. 8 on the same system when10 elements are used. However, when x̂ an be alulated expliitly in Eq. (9) using spei� onstraints, it onlytakes less than 3 seonds under the same ondition.4.2. Evalutions for Color ImagesIn order to evaluate our method, we show the results using Wiener, a straightforward extension in RGB spaeusing NeighLevel, and our proposed framework desribed in Set. 3. Wiener �lter is the optimal minimummean squared error estimator whih onsiders neighboring information. The preliminary estimator for leanwavelet oeÆients is NeighLevel presented in Set. 2, in order to investigate how the orrelation between oloromponents a�ets the denoising results. We also tried to implement a method from Ref. 27, whih takesadvantage of hromati �lters with anisotropi di�usion for luminane hannel. Table 2 shows the denoisedresults with additive white noise N(0; 302) in terms of peak signal to noise ratio (PSNR). In Figs. 5 and 6, someof the results are displayed. The ompared denoising results in Fig. 5 are interesting sine Fig. 5() has rainbow-olored artifat while Fig. 5(d) looks more onsistent with the white mountains. We also tried to enhane animage without arti�ial Gaussian noise in Fig. 6. As an be seen, our proposed wavelet approah an remove thenoise in the image without too muh blurring. These results show that we an ahieve high-quality olor imagedenoising by deorrelation of olor omponents for most of natural images. However, for images that mainly useprimary olors hene are omparatively less orrelated suh as Pepper image, they do not show muh di�ereneas an be seen in Table 2. 5. CONCLUSIONIn this paper, we have presented gray-level image denoising methods and their appliation to olor image denois-ing. These approahes show that the dependeny between neighboring wavelet oeÆients is ritial informationfor image denoising. Also our experiments on olor image denoising reet that the orrelation between oloromponents must be maximally utilized for an eÆient denoising algorithm.



(a) Clean image (b) Noisy image (18.59dB) () Wiener (27.50dB)
(d) Chromati �lters (27.49dB) (e) NeighLevel (RGB) (29.62dB) (f) Proposed (30.99dB)

Figure 5. Denoising results for ropped F-16 image with Gaussian noise N(0; 302).

(a) A aptured frame using Sony PD-100 (b) original (top-left), Wiener (top-right), hromati�lter27 (bottom-left), and proposed (bottom-right)Figure 6. Denoising results of a natually orrupted image frame aptured by onsumer digital amoder
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