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Intelligent Systems

Definition: Intelligent System

A system is intelligent if it accomplishes feats that, when carried
out by humans, require a substantial amount of intelligence.

Example Tasks

Medical diagnosis, processing of natural language, supervision
of complex processes.

Definition: Expert System

An expert system is an intelligent system which in an interac-
tive setting asks a person for information and, based upon the
response, draws conclusions or gives advice.

Definition: Intelligent Agent

An intelligent agent is an intelligent system which perceives its
environment by sensors and which uses that information to act
upon the environment.
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Observation

Expert systems and intelligent agents are special cases of intel-
ligent systems.
An example of an intelligent system that is not an intelligent
agent: an intelligent system that constructs expert systems
from data. That intelligent system is not an intelligent agent,
unless one accepts the odd notion that creating an expert sys-
tem constitutes acting upon an environment.

Terminology

“Model”: In propositional logic, a satisfying solution. Here, a
mathematical formulation of a real-world situation.
“Valid”: In propositional logic, a formula that always evaluates
to True. Here, a formulation that correctly represents a part
of the real world of interest.
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Levels of Thinking, Informal Definition

First Level (= thinking about problems)

Direct reasoning about problems.

Typical questions:
“Do symptoms s and t imply that disease d or e is present?”
“Is this log-in behavior typical for a hacker?”

Second Level (= thinking about thinking)

We think about which logic module of the first level is to be
used. May involve selection, modification, creation of module.

Third Level (= thinking about thinking about think-
ing)

We think about which process of the second level is to be used.
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Reduction to thinking at lower level generally cannot be
achieved by a polynomial algorithm. Note: “cannot” is meant
pragmatically in the sense that presently nobody knows of a
polynomial reduction.

Link to polynomial hierarchy of theory of computation: kth
level of thinking corresponds to kth-level of hierarchy.

Quantified Boolean Formula (QBF)

a, b, c, d, . . . = vectors of Boolean variables
∀a ∃b ∀c ∃d . . . D(a, b, c, d, . . .)

Each quantifier introduces another level.
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Examples: First-Level Thinking

Theorem Proving

Deduction of theorems T from axioms of a propositional logic
formula S.

Logic Minimization

Finding best satisfying solution for a CNF system propositional
logic formula S. Accelerated theorem proving. Handling of
special satisfiability cases.
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Examples: Second-Level Thinking

Nonmonotonic Reasoning

Conclusion may become invalid when additional information is
obtained. Axioms must be modified.

Reasoning with Incomplete Axioms

Desired conclusion cannot be derived. Axioms must be modi-
fied.

Discovery of Futility

Decide if desired conclusion cannot be derived even if all as-
yet-unknown data are obtained.
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Examples: Third-Level Thinking

Selection of Second-Level Reasoning

Decide which type of nonmonotonic reasoning or which discov-
ery method of futility is to be used.

Question Selection

Questions are selected so that, as soon as possible, desired con-
clusion can be proved or shown to be futile.

Construction

Computations constructing intelligent systems that reason at
the first and second levels.
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Construction Methods

Direct Construction

Analyze problem. Formulate logic conditions and constraints.
Define and implement all system operations.

Construction via Learning

Obtain data about problem. Derive logic conditions and con-
straints from the data. Use a metamethod to construct mod-
ules for all system operations.

Construction Methods 9



An Extension of Propositional Logic

- Cost of True or False for a variable; call this Truecost and
Falsecost.

- Representation of unknown values by two values: Absent
and Unavailable.

- Likelihood of clauses being applicable.

- Predicates with finite quantifications ∃ (there exists) and ∀
(for all).

- Quantification of propositional variables. For example, for
all True/False values of a subset of the variables, there exist
True/False values for the remaining variables so that the
formula has a specified value. Can be viewed as special case
of predicate with finite quantification.

Extension of Logic 10



Examples

For variable x: Truecost = 10, Falsecost = −5

U , V finite sets

∀u ∈ U ∀v ∈ V [¬g(u, v) ∨ h(u, v)]

Equivalent:∧
u∈U
v∈V

[¬g(u, v) ∨ h(u, v)]

x = Absent : value of x unknown, but could be obtained
x = Unavailable: value of x cannot be obtained

Extension of Logic 11



Example of Quantification of Propositional Variables:

CNF formula R with vectors q and x of variables.

CNF formula S with vectors q and y of variables.

For all True/False values of the qi of vector q:
if R is satisfiable, then S is satisfiable as well.

Write as: ∀q (∃x R → ∃y S)

Extension of Logic 12



First-Level Thinking
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Problems SAT and MINSAT

We often use CNF system instead of CNF formula.

CNF system: list of variables; list of CNF clauses, each of
which uses a subset of the variables.

Problem SAT

Instance: CNF system S.

Solution: Either: A satisfying solution of S. Or: The conclusion
that S is not satisfiable.

Problem MINSAT

Instance: CNF system S. For each variable of S, two rational
cost values associated with the values True and False for that
variable.

Solution: Either: A satisfying solution of S for which the total
cost is minimum. Or: The conclusion that S is unsatisfiable.

SAT and MINSAT 14



Second-Level Thinking
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Nonmonotonicity

Deduction: Core approach of mathematics.

Most reasoning in everyday life is not deduction.

Examples

1. Operation of light bulb by switch.

2. Learning to drive by experimentation.

Mathematics: Use probability theory and induction to con-
vert such reasoning to deduction.

Here: Want to use just one tool, an extension of propositional
logic.

Nonmonotonicity (short) 16



Monotonicity

When additional facts become available, previously proved the-
orems remain theorems.

Monotonicity of first-order logic is essential for mathematics.

Nonmonotonicity

Conclusion may become invalid by additional information.

Examples

1. A conclusion by abduction turns out to be in error.

2. Use of the value Unavailable in a Question-and-Answer pro-
cess eliminates CNF clauses and thus may eliminate theo-
rems.

Nonmonotonicity (short) 17



Incompleteness

This is not a case of Gödel’s Incompleteness Theorem (1931).
We simply do not have the needed clauses.

Example

CNF system S

Statement Y = ¬X → R = X ∨R should be a theorem, but is
not.

Thus, S ∧ ¬Y = S ∧ ¬X ∧ ¬R is satisfiable, but should be
unsatisfiable.

Solution: S′ = S ∧ Y

New Problem

S′′ = S′ ∧ ¬X = S ∧ Y ∧ ¬X may be unsatisfiable, but should
be satisfiable. Must modify S′ to eliminate this effect.

Incompleteness (short) 18



Problem Q-ALL SAT

Subproblem of Treating Futility of Questions in Expert
System

Expert system asks for information to prove some result. If the
result cannot be proved at all, the system should stop as soon
as this fact becomes evident.

A small example . . .

Problem Q-ALL SAT 19



Questions q1, q2, q3. Defects r, s, t.
CNF system R has relationships connecting q1, q2, q3.

q2 ∨ q3

CNF system S links questions and defects

q1 → (r ∨ t)
q2 → (¬r ∨ ¬t)
(q1 ∧ q2) → ¬r

q3 → (s ∨ ¬t)

Suppose we want to prove defect t. We are given value q1 =
False. It is easy to see that we cannot prove t with this infor-
mation.

Problem: Can t be possibly proved by some values for q2 and
q3?

If answer is “no”, then it is useless to ask for the values of q2

and q3, and we should stop. Thus, proving t is futile.

Problem Q-ALL SAT 20



Solution

CNF system R′

q2 ∨ q3

¬q1

CNF system S′; enforces ¬t for theorem proving.

¬q1 ∨ r ∨ t

¬q2 ∨ ¬r ∨ ¬t

¬q1 ∨ ¬q2 ∨ ¬r

¬q3 ∨ s ∨ ¬t

¬t

Proving t is futile if, for all True/False values of q1, q2, q3

satisfying R, the CNF system S′ is satisfiable.

Enumeration shows that proving t is indeed futile.

On the other hand, if originally q1 = True, then there are values
for q2, q3 so that t can be proved; take q2 = True.

Problem Q-ALL SAT 21



Definition: An assignment of True/False values to q1, . . . , ql

is R-acceptable if the SAT instance of R with q1, . . . , ql fixed
according to the given assignment is satisfiable.

Problem Q-ALL SAT

Instance: Satisfiable CNF systems R and S that have l ≥ 1
special variables q1, . . . , ql among their common variables.

Solution: Either: “All R-acceptable assignments of True/
False values for q1, . . . , ql are S-acceptable.” Or: An R-accep-
table assignment of True/False values for q1, . . . , ql that is S-
unacceptable.

Problem Q-ALL SAT 22



Polynomial Hierarchy

a, b, c, d, . . . = vectors of Boolean variables
∀a ∃b ∀c ∃d . . . D(a, b, c, d, . . .)

Here: CNF systems R and S

Vectors q, x, y

∀q [∃x R → ∃y S]

Transformation to standard form is trivial. However, even the
fastest present-day algorithms for the standard case do not
perform well on this particular problem, since the structure is
not exploited.

Problem Q-ALL SAT 23



Exact Algorithm for Q-ALL SAT

Ongoing work with A. Remshagen. Recursively fixes qk vari-
ables and tries out effect. Learns clauses and predicts SAT
behavior to reduce size of search tree, using an extension of
the heuristic algorithm given later. As an aside, the algorithm
proves some special cases to be in NP.

Recursive Step

QRSsat(R,S,Q)

1. Do unit-resolution in R on all variables. All Q variables
fixed in R by unit-resolution are fixed in S as well.

2. Do unit-resolution in S on the Y variables only.
3. If (Q = ∅)

if (R is satisfiable and S is unsatisfiable)
Return True;

Else
Return False;

4. Select a Q variable q;

Problem Q-ALL SAT 24



5. If (QRSsat(Q \ {q}, R(q = True), S(q = True)) = True)
Return True;

Else if (QRSsat(Q\{q}, R(q = False), S(q = False)) = True)
Return True;

Else
Return False;

Learn Clauses and Make SAT Predictions

1. Algorithm learns clauses before backtracking from a given
fixing. Main idea: Unfix Q variables while showing that
the same conclusion is still valid. The remaining fixed vari-
ables produce a clause that excludes that fixing. The learned
clauses are added to R. An enhanced version of the next
heuristic is used for the learning of the clauses.

2. Predict SAT behavior of S using values of fixed Q and Y,
plus a greedy heuristic. Use predictions for backtracking and
for selection process of next Q variable to be fixed.

Problem Q-ALL SAT 25



Heuristic Algorithm for Q-ALL SAT

Key ideas

1. If deletion of all free qk reduces S to a satisfiable S′: Fixing
of any qk cannot produce unsatisfiability. Hence, the Q-ALL
SAT instance has been solved.

2. (S′ is unsatisfiable) Compute a minimal unsatisfiable subset
of clauses of S′. Let S be corresponding subsystem of S.

Check if qk values exist that satisfy R while causing all lit-
erals of the qk in S to evaluate to False.

If such qk exist, then the Q-ALL SAT instance has been
solved.

Problem Q-ALL SAT 26



Problem Q-ALL SAT: QRSsat3 Test Results

Test Sets

1. Robot navigation through grid with obstacles.
Question: Can obstacles be so placed that they block the
robot?
18 instances.

2. Game tree where first player tries to prevent opponent from
reaching goal.
Question: Can first player achieve goal?
12 sets of 12 instances each.

|Q| |X| |Y |
Robot 64-100 64-100 128-200
Game 15-25 0 275-405

#R clauses #S clauses
Robot 925-1683 596-1125
Game 1 781-841

Problem Q-ALL SAT Results 27



Computational Results

Solution Times (sec)(1)

QRSsat3 yQuaffle QuBERel1.3 Semprop
Robot 15 2,342(2) 3,231 54,090(3)

Game 12 5,197(4) 6,292(5) 6,135(6)

(1) Robot case: Each figure is total time (sec) for 18 instances.
Game case: Each figure is average time per set of 12 in-
stances.

(2) Error termination in 4 instances.
(3) 1 hr time limit exceeded in 15 out of 18 instances. Used

3,600 sec for these cases in the statistic.
(4) 1 hr limit exceeded for 14 instances.
(5) 1 hr limit exceeded for 4 instances. Error termination for 10

instances.
(6) 1 hr limit exceeded for 10 instances.

Conclusion

Robot instances: QRSsat3 at least 200 times faster.
Game instances: QRSsat3 at least 400 times faster.
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Optimization Versions of Q-ALL SAT
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Problem Q-MINFIX UNSAT

Subproblem of Learning to Ask Relevant Questions

Problem Q-MINFIX UNSAT

Instance: Satisfiable CNF system S containing l ≥ 1 special
variables q1, . . . , ql. An S-unacceptable assignment. For each
qj, a cost of obtaining the given True/False value of qj.

Solution: An S-unacceptable partial assignment with minimum
total cost.

Variation

Must carry out tests with given costs to get sets of values.

Problem Q-MIN UNSAT (short) 30



Application

In medical diagnostic system, have obtained symptom values
q1, q2, . . . , ql by some tests, and have proved some disease t to
be present.

Want to find out in hindsight which tests should have been
done to get values for some of the variables q1, . . . , ql so that
the disease could have been proved at least total cost.

Problem Q-MIN UNSAT (short) 31



Problem Q-MINFIX SAT

Subproblem of Learning to Ask Relevant Questions

Problem Q-MINFIX SAT

Instance: Satisfiable CNF systems R and S having l ≥ 1 vari-
ables q1, . . . , ql among their common variables. An assignment
for q1, . . . , ql that is both R-acceptable and S-acceptable. For
each qj, a cost of obtaining the given True/False value for qj.

Solution: A partial assignment such that each R-acceptable ex-
tension assignment is S-acceptable. Subject to that condition,
the total cost of the partial assignment must be minimum.

Variation

Must carry out tests with given costs to get sets of values.

Problem Q-MINFIX SAT (short) 32



Application

In medical diagnostic system, have obtained symptom values
q1, q2, . . . , ql by some tests, and have determined that some
disease t cannot be proved.

Want to find out in hindsight which tests should have been done
to get values for some of the variables q1, . . . , ql so that, at least
total costs, the same conclusion could have been obtained.

Problem Q-MINFIX SAT (short) 33
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Separations

Training Sets

Training sets A and B consist of records of length n. The kth
entry is the value for attribute k. Entries may be True, False,
or Unavailable.

The value Unavailable means that one cannot get a True/False
value.

Note: Generally, another value is possible: Absent . In that
case, one does not know value, but can obtain it. In this talk,
we will not make use of that option.

Separations (short) 35



Separation Problem

Find a logic formula that is True on A and False on B, or show
that this cannot be done. The formula separates A from B.

Populations

The sets A and B usually are taken from two populations A
and B. A separating formula for A and B may then be used
to predict whether a record is in A or B.

Finding Separating Formulas

There are effective methods to find separating formulas. In our
approach, the formulas are in disjunctive normal form (DNF),
and we construct them by a recursive process.

Example: (x ∧ ¬y ∧ z) ∨ (¬x ∧ v) ∨ (y ∧ w)

Separations (short) 36



Discretization
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Discretization

Given: Numerical data sets A and B.

Goal: Logic data sets A′ and B′ representing A and B.

Most popular method: Entropy plus Minimum Description
Length Principle (MDLP). The principle generally selects the
hypothesis that minimizes the description length of the hypoth-
esis plus the description length of the data given the hypothesis.

Here, we apply a new method of pattern analysis.

Discretization (short) 38



Processing of one Attribute

1. Sort the numerical entries of the attribute. Label each entry
of the sorted list by “A” (resp. “B”) if coming from a record
of A (resp. B). The result is a label sequence.

Example:

10.8 3.7 2.9 1.7 0.5 −1.0 −3.5 −11.9
A A A B A B B B

3. Find an interval where the sequence switches from mostly
As to mostly Bs. The more rapid the switch, the more
important the interval. Put a cutpoint c into the middle of
the interval. Details are given in a moment.

Logic attribute yc: if x ≤ c, then yc = False
if x > c, then yc = True

Discretization (short) 39



Details

1. In the label sequence, replace each A by 1 and each B by 0.

2. Smooth the sequence of 0s and 1s by Gaussian convolution.
The variance of Gaussian convolution is determined by eval-
uation of a competing random process. Goal is smoothing so
that randomly introduce differences are eliminated.

3. Select cutpoint where the smoothed data change by maxi-
mum difference.

Example

10.8 3.7 2.9 1.7 0.5 −1.0 −3.5 −11.9
A A A B A B B B

↑
cutpoint c = (1.7 + 0.5)/2 = 1.1

Discretization (short) 40



Important Factors
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Important Factors

Discussion via example of cancer data.

Cervical Cancer: FIGO I-III versus Recurrence

Goal

Derive factors explaining difference between FIGO I-III and
Recurrence, using lab data.

Sketch of Method

1. Partition the data into FIGO I-III cases and Recurrence
cases.

2. Discretize the two data sets, getting sets A for FIGO I-III
and B for Recurrence.

Important Factors (short) 42



3. Compute a separating logic formula achieving True for A
and False for B.

For each literal (= occurrence of a possibly negated variable)
of the formula, count the number of records for which the
literal is needed to achieve True for the formula. The count
is the importance value of the literal for the formula.

Repeat the above step, but exchange the roles of A and B.

4. For each literal l, normalize the two importance values using
the number of records of A or B, whichever applies. Thus,
get average importance values fX,l for X = A and B and
for all l.

5. The variables for which at least one of the two possible lit-
erals l has fX,l ≥ 0.4, are the important factors.

Important Factors (short) 43



Explanations
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Explanations

Discussion uses example of FIGO I-III versus Recurrence.

1. Delete from the data all attributes except for the important
factors determined in the previous step.

2. Discretize the sets of FIGO I-III and Recurrence records
using the important factors.

3. Compute a logic formula that is True on A and False on B,
and a second formula that is False on A and True on B.

The logic formulas, combined with the discretization infor-
mation, constitute the desired explanations.

Explanations (short) 45
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Statistical Significance

Approach

We define a statistic with 0/1 value via the explanations ob-
tained in the previous step.

Hypothesis H0: The explanations produce accurate predic-
tions.

Hypothesis H1: The explanations do not produce accurate pre-
dictions. Indeed, with some luck, the same accuracy can be
achieved by flipping an unbiased coin, which statistically is a
Bernoulli trial with α = 0.5.

Statistical Significance 47



Procedure: Find Explanations and Establish Signifi-
cance

1. Split the given data into a training set and a testing set.

2. Obtain explanations from the training data using the earlier
described process.

3. Apply the explanations to the testing data and determine
how often the explanations are correct/incorrect.

4. Compare the outcome of Step 3 with results of Bernoulli
trials with α = 0.5.

5. Use direct computation or approximation by normal distri-
bution to obtain probability p that Bernoulli trials obtain
the same results or better. If p is very small, then accept
H0. Otherwise, accept H1.

Statistical Significance 48
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Explanation Examples: Breast Cancer

The data sets used in this subsection were supplied by the
Frauenklinik of the Ruhr-Universität Bochum.

1. Herceptin/Xeloda Study

14 patients

Records have 38 attributes:

SURVZ (living at present)
HER2 (value of second test)
Thymidinphosphorylase:

TP TUMOR
TP TISSUE
TP OVERALL

VEGF (Vascular Endothelial Growth Factor)
COX2 (Cyclooxygenase 2)
K18 (Keratin 18)

Explanation Examples (short) 50



HAT AD MED (adjuvant hormone therapy: medication
(1 = tamoxifen,2 = GnRH-Analogon,
3 = Aromatase Inhibitor,4 = other,?))

HER2 STAT (HER2 status (2, 3, ?))
FISH STAT (FISH Status (0,1))
HISTO TYP (histological tumor type (1,2,3))
PT (tumor size (1,2,3,4,?))
PN (lymphnode status (1,2,3,?))
M (metastasis (0,1,?))
G (grading (1,2,3,?))
REZ ER (estrogen receptor expression (0,1,?))
REZ PR (progesterone receptor expression (0,1,?))
Local recurrence and distant metastasis status:

AT LOK (local)
AT ABD (abdominal)
AT HEP (liver)
AT PUL (lungs)
AT ZNS (central nervous system)
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AT PERI (heart)
AT PLEU (pleura)
AT ASCI (ascites)
AT LYM (lymphangiosis)
AT KNO (bone)

HT AD (hormone therapy)
HT PA (palliative hormone therapy)
CT AD (chemotherapy)
CT PA (palliative chemotherapy)
ST (radiation)
BT (bisphosphonates)
Age (years)
BEST RES (best response

(1 = complete response,2 = partial response,
3 = no change,4 = progressive disease))

TTP (time to progression (weeks))
SURV (survival time (weeks))
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Question

Which factors influence time to progression (TTP)?

Answer

The most important factors influencing TTP are:

Attribute Importance
Value∗

TP TISSUE 0.576
K18 0.215
HER2 0.229
COX2 0.206

∗Note: Values computed by initial method for importance fac-
tors. Threshold for that method was 0.2.
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High TTP Cases

The data contain three patients with amazingly high TTP val-
ues. Analysis of reasons produces the follow explanation:

In two situations, high TTP values are predicted:

Case 1: TP TISSUE ≥ 6 and K18 ≥ 9

Case 2: TP TISSUE ≥ 6 and COX2 ≤ 2

Explanation Examples (short) 54



2. Local Recurrence Versus Metastasis

Explain the difference between local recurrence and metastasis
using lab data.

Data

15 patients (3 local recurrence, 12 metastasis)

Records have 17 attributes.

GRADING
T
N
M
KI67
HER2NEU
ER
K18
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PLAKO
PL M
PL Z
PL K
DESMO
DESMO1
DE M
DE Z
DE K

Important Factors

Attribute Importance
Value

PL M 0.900
K18 0.733

Explanation Examples (short) 56



Explanation

The difference between local recurrence and metastasis can be
explained as follows.

If K18 ≥ 3.0 and PL M ≥ 2.0,
then local recurrence case.

If K18 ≤ 2.0 or PL M ≤ 1.0,
then metastasis case.

Explanation Examples (short) 57



Explanation Examples: Cervical Cancer

The data sets used in this subsection were supplied by the
Frauenklinik of the Charité, Berlin.

1. Factors Influencing Time to Progression (TTP)

11 patients

Records have 20 attributes:

RESP (responder (0 = no, 1 = yes))
AGE (years)
PARTUS (number of born children)
MENOP (menopause (0 = no, 1 = yes))
T (Tumor size (FIGO))
N (Lymphnode metastasis (0 = no, 1 = yes))
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HISTO (Histology
(0= poorly diff. squamous cell carcinoma,
1= moderately diff. squamous cell carcinoma,
2= poorly diff. Adeno-Ca,
3= SCC))

TTP (time to progression (months))
SCC 0 (squamous cell carcinoma antigen, baseline)
SCC 4 (after 4 weeks chemotherapy)

SVEGF 0 (SVEGF-A = vascular endothelial growth
factor A in pg/ml in serum, baseline)

SVEGF 1 (after 1st cycle 4th dose)

PVEGF 0 (PVEGF-A = vascular endothelial growth
factor A in pg/ml in Plasma, baseline)

PVEGF 1 (after 1st cycle 4th dose)

SVEGF D 0 (SVEGF-D = vascular endothelial growth
factor D in pg/ml in Serum, baseline)

SVEGF D 1 (after 1st cycle 4th dose)
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EGF 0 (epidermal growth factor in pg/ml, baseline)
EGF 1 (after 1st cycle 4th dose)

IGF 0 (IGF = insulin like growth 1 factor in ng/ml, baseline)
IGF 1 (after 1st cycle 4th dose)
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Question

Which factors influence time to progression (TTP)?

Answer

Two cases: (1) Using initial data only. (2) Using initial and
subsequent data.

Both cases result in the same most-important attributes:

Attribute Importance
Value∗

SVEGF D 0 0.603
MENOP 0.400
PARTUS 0.247

∗Note: Values computed by initial method for importance fac-
tors. Threshold for that method was 0.2.
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High TTP

High TTP values (TTP ≥ 39) are predicted if

MENOP = 1 and SVEGF D 0 ≥ 357

Note: We also have PARTUS ≥ 1.

Low TTP

Low TTP values (TTP ≤ 19) are predicted if

MENOP = 0 or SVEGF D 0 < 357

Note: In the case of SVEGF D 0 < 357, we also have
PARTUS = 0.

Explanation Examples (short) 62



2. Difference Between FIGO I-III and Recurrence

Note: At present, treatments cannot utilize this information.
We include it here to demonstrate validation.

57 patients (31 for training, 26 for testing)

31 training cases: 19 FIGO I-III, 12 Recurrence
26 testing cases: 14 FIGO I-III, 12 Recurrence

Note: FIGO IV excluded since too few cases.

Records have 14 attributes:

Attribute Uncertainty Interval

VEGF PLASMA [ 74.30 , 97.30 ]
VEGFD SERUM [ 381.00 , 441.00 ]
VEGFC SERUM [ 8455.00 , 9416.00 ]
ENDOGLIN [ 4.06 , 4.63 ]
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ENDOSTATIN [ 123.00, 136.00 ]
ANGIOGENIN [ 335.00 , 364.00 ]
FGFB SERUM [ 5.10 , 8.50 ]
VEGFR1 SERUM [ 74.50 , 80.00 ]
VEGFR2 SERUM [ 10995.00 , 11114.00 ]
M2PK PLASMA [ 20.80 , 21.80 ]
SICAM1 SERUM [ 325.00 , 344.00 ]
SVCAM1 SERUM [ 624.00 , 635.00 ]
IGFI SERUM [ 113.00 , 122.00 ]
IGFBP3 SERUM [ 2552.00 , 2592.00 ]

Important Factors

Attribute Importance
Value

M2PK PLASMA 0.467
ENDOSTATIN 0.400
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Result

If ENDOSTATIN < 123.0 or M2PK PLASMA < 18.8,
then FIGO I-III case.

If ENDOSTATIN > 123.0 and M2PK PLASMA > 21.8,
then Recurrence case.

Accuracy of Prediction

22 of 26 cases are predicted correctly. Accuracy = 85%.

Significance

Significance of conclusion is p < 0.0002.

Explanation Examples (short) 65
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