
A Formal Framework for Description Logics

with Uncertainty ⋆

Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri ∗

Department of Computer Science and Software Engineering

Concordia University, Montreal, Quebec, Canada

Abstract

Description Logics (DLs) play an important role in the Semantic Web as the foun-
dation of ontology language OWL DL. On the other hand, uncertainty is a form of
deficiency or imperfection commonly found in real-world information/data. In this
paper, we present a framework for knowledge bases with uncertainty expressed in
the Description Logic ALCU , which is a propositionally complete representation lan-
guage providing conjunction, disjunction, existential and universal quantifications,
and full negation. The proposed framework is equipped with a constraint-based
reasoning procedure that derives a collection of assertions as well as a set of lin-
ear/nonlinear constraints that encode the semantics of the uncertainty knowledge
base. The interesting feature of our approach is that, by simply tuning the com-
bination functions that generate the constraints, different notions of uncertainty
can be modeled and reasoned with, using a single reasoning procedure. We estab-
lish soundness, completeness, and termination of the reasoning procedure. Detailed
explanations and examples are included to describe the proposed completion rules.

Key words: Description Logics, Uncertainty, Knowledge Base, Tableau Procedure,
Constraint Solving
PACS: 02.10.Ab, 02.50.Tt, 07.05.Mh, 89.20.Hh

⋆ This work is supported in part by Natural Sciences and Engineering Research
Council (NSERC) of Canada, and by Concordia University.
∗ Corresponding Author. Address: Computer Science & Software Engineering, Con-
cordia University. 1455 Maisonneuve West, Montreal, QC, H3G 1M8, Canada.

Email address: shiri@cse.concordia.ca (Nematollaah Shiri).

Preprint submitted to Elsevier 5 May 2009

1 Introduction

The vision of the Semantic Web [5] was first introduced by Tim Berners-Lee
as “a Web of data that can be processed directly or indirectly by machines”
[4]. The idea is to make Web resources more machine-interpretable by giving
them a well-defined meaning through semantic markups. One way to encode
such semantic mark-ups is using ontologies. An ontology is “an explicit specifi-
cation of a conceptualization” [12]. Informally, an ontology consists of a set of
terms in a domain, the relationship between the terms, and a set of constraints
imposed on the way in which those terms can be combined. Constraints such
as concept conjunction, disjunction, negation, existential quantifier, and uni-
versal quantifier can all be expressed using ontology languages. By explicitly
defining the relationships and constraints among the terms, the semantics of
the terms can be better defined and understood.

Among the Semantic Web ontology languages, the OWL Web Ontology Lan-
guage [40] is the most recent W3C Recommendation. One of its species, OWL
DL, is named because of its correspondence with Description Logics (DLs)
[1]. The family of DLs is mostly a subset of first-order logic (FOL) that is
considered to be attractive because it keeps a good compromise between the
expressive power and the computational tractability [1]. The well-defined se-
mantics as well as the availability of the powerful reasoning tools make the
family of DLs particularly interesting to the Semantic Web community [2].

The standard DLs, such as the one that is the basis of OWL DL, focus on the
classical logic, which is more suitable to describe concepts that are crisp and
well-defined in nature. However, in the real-world applications, uncertainty,
which refers to a form of deficiency or imperfection in the information for which
the truth of such information is not established definitely [23], is everywhere.
Not only because the real-world information is mostly imperfect or deficient,
but also because many realistic applications need the capability to handle
uncertainty – from classification of genes in bioinformatics, schema matching in
information integration, to matchmaking in Web services. The need to model
and reason with uncertainty has been found in many different Semantic Web
contexts. For example, in an online medical diagnosis system, one might want
to find out to what degree a person, John, would have heart disease if the
certainty that an obese person would have heart disease lies between 0.7 and
1, and John is obese with a degree between 0.8 and 1. Such knowledge cannot
be expressed nor be reasoned with the standard DLs.

In this paper, we propose a decidable constraint-based resolution approach to
reason with uncertainty expressed in the DL ALCU . This language extends
the standard DL ALC [30] with uncertainty, and is propositionally complete
with conjunction, disjunction, existential and universal quantifications, and

2

full negation. Constraint-based reasoning [10] solves reasoning problems by
stating constraints about the problem and then finding solution satisfying
all the constraints. There are several advantages in our constraint-based ap-
proach. For instance, constraints have well-defined and often intuitive seman-
tics making them suitable to express complex uncertainty constraints. Also,
constraints are declarative and hence easy to generate and use in other mod-
ules. Besides, there are many constraint solvers and algorithms to process
them [6].

The constraint-based reasoning procedure proposed in this paper derives a set
of assertions and constraints that encode the semantics of the ALCU knowledge
base. These derived constraints are then solved using the constraint solver to
perform the reasoning tasks. The interesting feature of this approach is that,
by simply tuning the combination functions that generate the constraints,
different notions of uncertainty can be modeled and reasoned with, using a
single reasoning procedure.

This paper is an extension of our previous work as follows. In [13], we presented
a basic framework for representing the uncertainty knowledge as well as an
initial attempt to study the inference rules. In [14], we presented a reasoning
procedure for dealing with acyclic uncertainty knowledge bases. In this paper,
we further extend [14] by presenting a reasoning procedure for dealing with
general (both cyclic and acyclic) uncertainty knowledge bases. In addition, we
establish soundness, completeness, and termination of the proposed reasoning
procedure.

The rest of this paper is organized as follows. Section 2 gives an overview of
the DL ALC and other related work. Section 3 presents the DL ALCU , the
proposed constraint-based tableau reasoning procedure, along with an illustra-
tive example. We also establish the soundness, completeness, and termination
of the ALCU reasoning procedure. Finally, concluding remarks and future di-
rections are presented in Section 4.

2 Background and Related Work

In this section, we first give an overview of the DL ALC, which is the basis of
the DL ALCU . We then review the related work.

3

2.1 Overview of the DL ALC

Description logics (DLs) are a family of knowledge representation languages
that can be used to represent the knowledge of an application domain using
concept descriptions and have logic-based semantics [1,3]. The DL fragment
that we focus in this paper is called ALC, which corresponds to the proposi-
tional multi-modal logic K(m) [29].

The ALC framework consists of three main components – the description
language, the knowledge base, and the reasoning procedure.

(1) ALC Description Language: Every description language has elementary
descriptions which include atomic concepts (unary predicates) and roles
(binary predicates). Complex descriptions can then be built inductively
from concept constructors. The description language ALC consists of a
set of language constructors that are of practical interest. Specifically, let
R be a role name, the syntax of a concept description (denoted C or D)
in ALC is described as follows, where the name of each rule is given in
parenthesis.

C, D → A (Atomic Concept) |
¬C (Concept Negation) |
C ⊓ D (Concept Conjunction) |
C ⊔ D (Concept Disjunction) |
∃R.C (Role Exists Restriction) |
∀R.C (Role Value Restriction)

For example, let Person be an atomic concept and hasParent be a role.
Then ∀hasParent .Person is a concept description. We use Top Concept
⊤ as a synonym for A ⊔ ¬A, and Bottom Concept ⊥ as a synonym for
A ⊓ ¬A.

The semantics of the description language is defined using the notion
of interpretation. An interpretation I is a pair I = (∆I , ·I), where ∆I

is a non-empty domain of the interpretation, and ·I is an interpretation
function that maps each atomic concept A to a set AI ⊆ ∆I , each atomic
role R to a binary relation RI ⊆ ∆I × ∆I , and each individual name a to
an element individual name a to an element aI ∈ ∆I . The interpretations
of concept descriptions are shown below:

(¬C)I = ∆I\CI

(C ⊓ D)I = CI ∩ DI

(C ⊔ D)I = CI ∪ DI

(∃R.C)I = {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ RI ∧ b ∈ CI}
(∀R.C)I = {a ∈ ∆I | ∀b ∈ ∆I : (a, b) ∈ RI → b ∈ CI}

(2) ALC Knowledge Base: The knowledge base is composed of a Termino-
logical Box (TBox) and an Assertional Box (ABox). A TBox T is a set of
statements about how concepts in an application domain are related to

4

each other. Let C and D be concept descriptions. The TBox is a finite,
possibly empty, set of terminological axioms that could be a combination
of concept inclusions of the form 〈C ⊑ D〉 (that is, C is subsumed by
D) and concept equations of the form 〈C ≡ D〉 (that is, C is equivalent
to D). For example, the axiom 〈ObesePerson ≡ Person ⊓ Obese〉 states
that the concept ObesePerson is equivalent to the conjunction of concepts
Person and Obese. An interpretation I satisfies 〈C ⊑ D〉 if CI ⊆ DI , and
it satisfies 〈C ≡ D〉 if CI = DI . An interpretation I satisfies a TBox T
iff I satisfies every axiom in T .

An ABox is a set of statements that describe a specific state of affairs
in an application domain, with respect to some individuals, in terms of
concepts and roles. Let a and b be individuals, C be a concept, R be
a role, and let “:” denote “is an instance of”. An ABox includes of a
set of assertions that could be a combination of concept assertions of
the form 〈a : C〉 and role assertions of the form 〈(a, b) : R〉. For exam-
ple, the concept assertion 〈John : ObesePerson〉 asserts that individual
John is an instance of concept ObesePerson. Similarly, the role asser-
tion 〈(John,Mary) : hasMother〉 asserts that John’s mother is Mary . An
interpretation I satisfies 〈a : C〉 if aI ∈ CI , and it satisfies 〈(a, b) : R〉
if (aI , bI) ∈ RI . An interpretation I satisfies an ABox A, iff it satisfies
every assertion in A with respect to a TBox T .

An interpretation I satisfies (or is a model of) a knowledge base
Σ = 〈T ,A〉 (denoted I |= Σ), iff it satisfies both components of Σ. The
knowledge base Σ is consistent if there exists an interpretation I that
satisfies Σ. We say that Σ is inconsistent otherwise.

(3) ALC Reasoning Procedure: Most DL systems use tableau-based reason-
ing procedure (called tableau algorithm) to provide reasoning services [1].
The main reasoning services include (i) the consistency problem which
checks if the ABox is consistent with respect to the TBox, (ii) the en-
tailment problem which checks if an assertion is entailed by a knowledge
base, (iii) the concept satisfiability problem which checks if a concept is
satisfiable with respect to a TBox, and (iv) the subsumption problem
which checks if a concept is subsumed by another concept with respect
to a TBox. All these reasoning services can be reduced to the consistency
problem [1]. The tableau algorithm can be used to check consistency of the
knowledge base Σ. It tries to construct a model by iteratively applying a
set of so-called completion rules in arbitrary order. Each completion rule
application adds one or more additional inferred assertions to the ABox
to make it explicit the knowledge that was previously present implicitly.
The algorithm terminates when no further completion rule is applica-
ble. If one could arrive a completion that contains no contradiction (also
known as clash), then the knowledge base is consistent. Otherwise, the
knowledge base is inconsistent.

5

2.2 Related Work

Incorporating uncertainty in DL frameworks has been the topic of numer-
ous research for more than a decade [7,9,11,17,18,20,21,24,25,27,31,32,34–39].
Based on the underlying mathematical foundation and the type of uncertainty
modeled, we can classify each proposal into one of the three approaches: fuzzy,
probabilistic, and possibilistic approach.

The fuzzy approach [7,17,31–39], based on fuzzy set theory [41], deals with the
vagueness in the knowledge, where a proposition is true only to some degree.
For example, the statement “Jason is obese with degree 0.4” indicates Jason
is slightly obese. Here, the value 0.4 is the degree of membership that Jason
is in concept obese.

The probabilistic approach [9,11,20,21,24,25], based on the classical proba-
bility theory, deals with the uncertainty due to lack of knowledge, where a
proposition is either true or false, but one does not know for sure which one is
the case. Hence, the certainty value refers to the probability that the propo-
sition is true. For example, one could state that: “The probability that Jason
would have heart disease given that he is obese lies in the range [0.8, 1].”

Finally, the possibilistic approach [18,27], based on possibility theory [42],
allows both certainty (necessity measure) and possibility (possibility measure)
be handled in the same formalism. For example, by knowing that “Jason’s
weight is above 80 kg”, the proposition “Jason’s weight is at least 80 kg” is
necessarily true with certainty 1, while “Jason’s weight is 90 kg” is possibly
true with certainty 0.5.

What sets our approach apart from the existing approaches is the way knowl-
edge bases are reasoned. There have been a number of approaches proposed
on supporting uncertainty/DL reasoning. Some extended the tableau-based
reasoning procedure used in standard DLs, some transformed the uncertainty
knowledge bases into standard DL knowledge bases, while others employed
completely different reasoning procedures such as the inference algorithm de-
veloped for Bayesian networks. A survey of these frameworks can be found in
Chapter 6 of [1] and in [16].

Although constraint-based reasoning procedures were proposed in [7,36,38,39],
there are some major differences between these works and the one we present in
this paper. While our approach is to develop one reasoning procedure for deal-
ing with uncertainty with different mathematical foundations, others mainly
considered one form. For instance, [39] supports only fuzzy logic with Zadeh se-
mantics, [7] supports only product t-norm, and [38] supports only Lukasiewicz
semantics. Although [36] supports both Zadeh and Lukasiewicz semantics, it
uses two sets of reasoning procedures instead of using one generic reason-

6

ing procedure to deal with different semantics. Another difference is that the
reasoning procedure we present in this paper supports general TBoxes (i.e.,
concept descriptions are allowed to appear on the left hand side of an axiom,
and cyclic axioms are supported), which is more complicated than the ones
considered in [36,39].

3 The ALCU Framework

In this section, we present the ALCU framework, which extends the standard
ALC framework with uncertainty. To support uncertainty, each component
of the standard ALC framework needs to be extended. For this, we first in-
troduce the DL ALCU , including the syntax and semantics of the description
language and the knowledge base. We then present the reasoning procedure
and establish its correctness. After that, we illustrate through examples the
various extended components of the ALCU framework.

3.1 The Description Language ALCU

Recall that the description language refers to the language used for building
concepts. The syntax of the ALCU description language is identical to that
of the standard ALC, while the corresponding semantics is extended with
uncertainty.

We assume that the certainty values form a complete lattice L = 〈V,�〉, where
V is the certainty domain, and � is the partial order on V. Also, ≺, �, ≻, and
= are used with their obvious meanings. We use l to denote the least element
in V, t for the greatest element in V, ⊕ for the join operator (the least upper
bound) in L, ⊗ for the meet operator (the greatest lower bound), and ∼ for the
negation operator. We also assume that there is only one underlying certainty
lattice for the entire knowledge base. An advantage of using a lattice is that it
can be used to model both qualitative and quantitative certainty values. An
example for the former is the classical logic with lattice L = 〈{0, 1},≤〉, where
≤ is the usual order on binary values {0, 1}. For the latter, an example would
be a family of multi-valued logics over the unit interval [0, 1], such as fuzzy
logic, with certainty lattice L = 〈[0, 1],≤〉.

The semantics of the description language is based on the notion of an inter-
pretation. An interpretation I is defined as a pair (∆I , ·I), where ∆I is the
domain and ·I is an interpretation function that maps each

• atomic concept A into a certainty function CFA, where CFA : ∆I → V

7

• atomic role R into a certainty function CFR, where CFR : ∆I × ∆I → V
• individual name a to an element aI ∈ ∆I

where V is the certainty domain. For example, let John be an individual name
and Obese be an atomic concept. Then, ObeseI(JohnI) gives the certainty
that John is an instance of the concept Obese. The syntax and semantics of
the description language ALCU are summarized in Table 1.

Table 1
Syntax and Semantics of the Description Language ALCU

Name Syntax Semantics (a ∈ ∆I)

Top Concept ⊤ ⊤I(a) = t

Bottom Concept ⊥ ⊥I(a) = l

Concept Negation ¬C (¬C)I(a) =∼CI(a)

Concept Conjunction C ⊓ D (C ⊓ D)I(a) = fc(C
I(a),DI(a))

Concept Disjunction C ⊔ D (C ⊔ D)I(a) = fd(C
I(a),DI(a))

Role Exists Restriction ∃R.C (∃R.C)I(a) = ⊕b∈∆I{fc(R
I(a, b), CI(b))}

Role Value Restriction ∀R.C (∀R.C)I(a) = ⊗b∈∆I{fd(∼RI(a, b), CI(b))}

As shown in Table 1, the certainty of the Top Concept ⊤ is the greatest element
in the certainty lattice, t. Similarly, the certainty of the Bottom Concept ⊥ is
the least element in the certainty lattice, l.

The operator ∼ in Table 1 denotes the negation function, where ∼: V → V
must satisfy the following properties:

• Boundary Conditions: ∼ l = t and ∼t = l.

• Double Negation: ∼(∼α) = α, for all α ∈ V.

The negation operator ∼ in the certainty lattice is used as the default negation
function. That is, (¬C)I(a) =∼CI(a), for all a ∈ ∆I . A common interpreta-
tion of ¬C is 1−CI(a). For example, if the certainty domain is V = [0, 1], and
if the certainty that individual John is Obese is 0.8. Then, the certainty that
John is not Obese is 1 − 0.8 = 0.2.

In addition, fc and fd in Table 1 denote the conjunction and disjunction
functions, respectively, both of which we refer as the combination functions.
They are used to specify how one should interpret a given description language.
A combination function f is a binary function from V × V to V. This function
combines a pair of certainty values into one. A combination function must
satisfy some properties as listed in Table 2 [22].

A conjunction function fc is a combination function that satisfies proper-
ties P1, P2, P5, P6, P7, and P8 as described in Table 2. The monotonicity

8

Table 2
Combination Function Properties

ID Property Name Property Definition

P1 Monotonicity f(α1, α2) � f(β1, β2) if αi �βi, for i = 1, 2

P2 Bounded Above f(α1, α2) � αi, for i = 1, 2

P3 Bounded Below f(α1, α2) � αi, for i = 1, 2

P4 Boundary Condition (Above) ∀α ∈ V, f(α, l) = α and f(α, t) = t

P5 Boundary Condition (Below) ∀α ∈ V, f(α, t) = α and f(α, l) = l

P6 Continuity f is continuous w.r.t. each of its arguments

P7 Commutativity ∀α, β ∈ V , f(α, β) = f(β, α)

P8 Associativity ∀α, β, δ ∈ V, f(α,f(β, δ))= f(f(α, β), δ)

property asserts that increasing the certainties of the arguments in f im-
proves the certainty that f returns. The bounded value and boundary condi-
tion properties are included so that the interpretation of the certainty values
makes sense. The commutativity property allows reordering of the arguments
of f , say for optimization purposes. Finally, the associativity of f ensures
that different evaluation orders of concept conjunctions will not yield differ-
ent results. Some common conjunction functions are the well-known minimum
function, the algebraic product (prod(x, y) = x · y) and the bounded difference
(bDiff (x, y) = max (0, x + y − 1)).

A disjunction function fd is a combination function that satisfies properties
P1, P3, P4, P6, P7, and P8 as described in Table 2. These properties are en-
forced for similar reasons as in the conjunction case. Some common disjunction
functions are the maximum function, the probability independent function
(ind(x, y) = x + y − x · y) and the bounded sum function (bSum(x, y) = min
(1, x + y)).

In Table 1, the semantics of the Role Exists Restriction ∃R.C is defined as
(∃R.C)I(a) = ⊕b∈∆I{fc(R

I(a, b), CI(b))}, for all a ∈ ∆I . The intuition here is
that ∃R.C is viewed as the open first order formula ∃b. R(a, b) ∧ C(b), where ∃
is viewed as a disjunction over certainty values associated with R(a, b) ∧ C(b).
Specifically, the semantics of R(a, b) ∧ C(b) is captured using the conjunction
function fc(R

I(a, b), CI(b)), and ∃b is captured using the join operator in the
certainty lattice ⊕b∈∆I .

Similarly, the semantics of the Role Value Restriction ∀R.C is defined as
(∀R.C)I(a) = ⊗b∈∆I{fd(∼RI(a, b), CI(b))}, for all a ∈ ∆I . The intuition is
that ∀R.C is viewed as the open first order formula ∀b. R(a, b) → C(b), where
R(a, b) → C(b) is equivalent to ¬R(a, b) ∨ C(b), and ∀ is viewed as a conjunc-
tion over certainty values associated with the implication R(a, b) → C(b). To

9

be more precise, the semantics of R(a, b) → C(b) is captured using the disjunc-
tion and the negation functions as fd(∼RI(a, b), CI(b)), and ∀b is captured
using the meet operator in the certainty lattice ⊗b∈∆I .

We say a concept is in negation normal form (NNF) if the negation operator
appears only in front of concept names. The following two inter-constructor
properties allow the transformation of concept descriptions into NNFs.

• De Morgan’s Rule: ¬(C ⊔ D) ≡ ¬C ⊓ ¬D and ¬(C ⊓ D) ≡ ¬C ⊔ ¬D.
• Negating Quantifiers Rule: ¬∃R.C ≡ ∀R.¬C and ¬∀R.C ≡ ∃R.¬C.

3.2 ALCU Knowledge Base

The knowledge base Σ in the ALCU framework is a pair 〈T ,A〉, where T is
a TBox and A is an ABox. An interpretation I satisfies (or is a model of)
Σ (denoted I |= Σ), if and only if it satisfies both T and A. The knowledge
base Σ is consistent if there exists an interpretation I that satisfies Σ, and is
inconsistent otherwise.

3.2.1 ALCU TBox

An ALCU TBox T consists of a set of terminological axioms defining how con-
cepts are related to each other. Each axiom is associated with a certainty value
as well as a conjunction function and a disjunction function which are used to
interpret the concept descriptions in the axiom. Specifically, an ALCU TBox
consists of axioms that could be a combination of concept inclusions of the
form 〈C ⊑ D | α, fc, fd〉 and concept equations of the form 〈C ≡ D | α, fc, fd〉,
where C and D are concept descriptions, α ∈ V is the certainty that the ax-
iom holds, and fc and fd are the combination functions used to interpret the
concepts that appear in the axiom. In particular, fc is the conjunction func-
tion used as the semantics of concept conjunction and part of the role exists
restriction, and fd is the disjunction function used as the semantics of con-
cept disjunction and part of the role value restriction. The concept equation
〈C ≡ D | α, fc, fd〉 is equivalent to 〈(C ⊑ D) ⊓ (D ⊑ C) | α, fc, fd〉.

For example, the axiom 〈Rich ⊑ ((∃owns.ExpensiveCar ⊔ ∃owns.Airplane)
⊓Golfer) | [0.8, 1], min, max〉 states that the concept Rich is subsumed by
owning expensive car or owning an airplane, and being a golfer. The certainty
of this axiom is at least 0.8, with all the concept conjunctions interpreted
using min function, and all the concept disjunctions interpreted using max.

All axioms can be transformed into their normal forms, that is, axioms of the
form 〈⊤ ⊑ . . . | α, fc, fd〉. For example, a concept inclusion 〈C ⊑ D | α, fc, fd〉

10

has the normal form 〈⊤ ⊑ ¬C ⊔ D | α, fc, fd〉. For such transformation to
make sense, the semantics of the concept inclusion is restricted to fd(∼CI(a),
DI(a)), for all a ∈ ∆I , where ∼CI(a) captures the semantics of ¬C , and fd

captures the semantics of ⊔ in ¬C ⊔ D. Hence, an interpretation I satisfies
〈C ⊑ D | α, fc, fd〉 if fd(∼CI(a), DI(a)) = α, for all a ∈ ∆I .

Note 1 Currently, the description language constructors used in ALCU TBoxes
are kept the same as the standard ALC counterpart, and the only difference be-
tween an ALCU axiom and an ALC axiom is that each axiom is extended with
the uncertainty parameters (i.e., a certainty value and a pair of combination
functions). However, existing probabilistic DL frameworks such as [11] divide
the TBoxes into two parts: the standard axioms (which contains no probabilis-
tic knowledge) and the conditional constraints. Since supporting conditional
constraints in DL requires syntactical extension by introducing new language
constructor, (C | D), our framework currently does not support conditional
constraints. Note that although one may set combination functions to simu-
late probabilistic reasoning, the interpretation of concept inclusion as material
implication may yield unintuitive results.

3.2.2 ALCU ABox

An ALCU ABox A consists of a set of assertions, each of which is associated
with a certainty value and a pair of combination functions used to interpret
the concept description(s) in the assertion. Specifically, these assertions could
include concept assertions of the form 〈a : C | α, fc, fd〉 and role assertions of
the form 〈(a, b) : R | α,−,−〉, where a and b are individuals, C is a concept, R

is a role, α ∈ V, fc is the conjunction function, fd is the disjunction function,
and − denotes that the corresponding combination function is not applicable.

For instance, the assertion “Mary is tall and thin with degree between 0.6 and
0.8” can be expressed as 〈Mary : Tall ⊓ Thin | [0.6, 0.8], min,−〉. Here, the
concept conjunction is interpreted using the min function, and the disjunction
function is not applicable since there is no concept disjunction in this assertion.
Hence, “−” is used as a place holder.

In terms of the semantics of the assertions, an interpretation I satisfies 〈a : C |
α, fc, fd〉 (resp. 〈(a, b) : R | α,−,−〉) if CI(aI) = α (resp. RI(aI , bI) = α).

There are two types of individuals that could be in an ABox - defined indi-
viduals and generated individuals, defined as follows. We also introduce the
notion of predecessor and ancestor in Definition 2.

Definition 1 (Defined/Generated Individual) Let I be the set of all individu-
als in an ABox. We call individuals whose names explicitly appear in the input
ABox “defined individuals” (ID), and those generated by the reasoning proce-

11

dure “generated individuals” (IG). Note that ID ∩ IG = ∅, and ID ∪ IG = I.

Definition 2 (Predecessor/Ancestor) An individual a is a “predecessor” of an
individual b (or b is a R-successor of a) if the ABox A contains the assertion
〈(a, b) : R | α,−,−〉. An individual a is an “ancestor” of b if it is either a
predecessor of b or there exists a chain of assertions 〈(a, b1) : R1 | α1,−,−〉,
〈(b1, b2) : R2 | α2,−,−〉,..., 〈(bk, b) : Rk+1 | αk+1,−,−〉 in A.

3.3 ALCU Reasoning Procedure

Let Σ = 〈T ,A〉 be an ALCU knowledge base. Fig. 1 gives an overview of
our constraint-based tableau reasoning procedure for ALCU . The rectangles
represent data or knowledge bases, the arrows show the data flow, and the
gray rounded boxes show where data processing is performed.

Fig. 1. Reasoning Procedure for ALCU

In what follows, we present the ALCU tableau algorithm in detail. We first
introduce the reasoning services offered, and then present the pre-processing
phase and the completion rules. We also establish correctness of our ALCU

tableau algorithm.

3.3.1 ALCU Reasoning Services

The ALCU reasoning services include the consistency, the entailment, and the
subsumption problems as described below.

Consistency Problem: To check if an ALCU knowledge base Σ = 〈T ,A〉 is
consistent, we first apply the pre-processing steps (see Section 3.3.2) to obtain

12

the initial extended ABox, AE
0 . In addition, the constraints set C0 is initialized

to the empty set {}. We then apply the completion rules (see Section 3.3.3)
to derive implicit knowledge from explicit ones. Through the application of
each rule, we add any assertions that are derived to the extended ABox AE

i . In
addition, constraints which denote the semantics of the assertions are added
to the constraints set Cj , in the form of linear or nonlinear inequations. The
completion rules are applied in arbitrary order as long possible, until either
AE

i contains a clash or no further rule could be applied to AE
i . If AE

i contains a
clash, the knowledge base is inconsistent. Otherwise, the system of inequations
in Cj is fed into the constraint solver to check its solvability. If the system of
inequations is unsolvable, the knowledge base is inconsistent. Otherwise, the
knowledge base is consistent.

Entailment Problem: Given an ALCU knowledge base Σ, the entailment
problem determines the degree to which an assertion X is true. Like in stan-
dard DLs, the entailment problem can be reduced to the consistency problem.
That is, let X be an assertion of the form 〈a : C | xa:C , fc, fd〉. The degree
that Σ entails X is the degree of xa:C such that Σ ∪ {〈a : ¬C, xa:¬C〉〈fc, fd〉}
is consistent.

Subsumption Problem: Let Σ = 〈T ,A〉 be an ALCU knowledge base, and
〈C ⊑ D | xC⊑D, fc, fd〉 be the subsumption relationship to be checked. The
subsumption problem determines the degree to which C is subsumed by D

with respect to the TBox T . Like in standard DLs, this problem can be re-
duced to the consistency problem by finding the degree of xa:¬C⊔D such that
Σ ∪ {〈a : C ⊓ ¬D | xa:C⊓¬D, fc, fd〉} is consistent, where a is a new, generated
individual name.

As in standard DLs, the model being constructed by the ALCU tableau algo-
rithm can be thought of as a forest. In what follows, we define a few related
terms.

Definition 3 (Forest, Node Label, Node Constraint, Edge Label) A “forest” is
a collection of trees, with nodes corresponding to individuals, edges correspond-
ing to relationships/roles between individuals, and root nodes corresponding to
individuals present in the initial extended ABox. Each node is associated with
a “node label”, L(individual), to show the concept assertions associated with
a particular individual, as well as a “node constraint”, C(individual), for the
corresponding constraints. Unlike in the standard DL where each element in
the node label is a concept, each element in our node label is a quadruple,
〈Concept, Certainty, fc, fd〉. Finally, unlike in the standard DL where each
edge is labeled with a role name, each edge in our case is associated with an
“edge label”, L(〈individual1, individual2〉) which consists of a pair of elements
〈Role, Certainty〉. In case the certainty is a variable, “−” is used as a place
holder.

13

To present the ALCU tableau algorithm in detail, we need to introduce a few
concepts as follows.

Note 2 In standard DLs, a TBox is unfoldable if one could eliminate all
the defined names from the right hand side of all the axioms by substitut-
ing all the concept names with their equivalent definitions [1]. For example,
consider the axioms 〈A ≡ B ⊓ ∃R.C〉 and 〈D ≡ A ⊔ E〉. Through the process
of unfolding, we can replace the definition of D by 〈D ≡ (B ⊓ ∃R.C) ⊔ E〉.
However, the idea of unfolding no longer works when uncertainty is present,
since each axiom is associated with a certainty value and a pair of combi-
nation functions. For example, consider these two axioms in ALCU which
extended the ALC axioms with certainty values and combination functions:
〈A ≡ B ⊓ ∃R.C | 0.6, min, max〉 and 〈D ≡ A ⊔ E | 0.7,×, ind〉. We can not
simply replace A on the right hand side of the concept definition D with the
definition of A, since there is a certainty value (0.6) and two combination
functions 〈min, max〉 associated with the concept definition A. This example
shows that unfolding may not be applicable in ALCU .

Definition 4 (Evaluation) Let Var(C) be the set of certainty variables occur-
ring in the constraints set C, and V be the certainty domain. If the system of
inequations in C is solvable, the solution to the constraints set π : Var(C) → V
is called an “evaluation”.

Definition 5 (Complete) An extended ABox AE
c is complete if no more com-

pletion rule can be applied to AE
c and the set of constraints C obtained during

the rule application is solvable.

Definition 6 (Model) Let Σ = 〈T ,A〉 be an ALCU knowledge base, and AE
c

be the extended ABox obtained by applications of the completion rules to the
extended ABox AE

i . Also, let I be an interpretation, π be an evaluation, α be
a certainty value in the certainty domain, and xX be the variable representing
the certainty of assertion X. The pair 〈I, π〉 is a model of the extended ABox
AE

c if all the following hold:

• for each assertion 〈a : C | α, fc, fd〉 ∈ AE
c , CI(a) = α.

• for each assertion 〈a : C | xa:C , fc, fd〉 ∈ AE
c , CI(a) = π(xa:C).

• for each assertion 〈(a, b) : R | α,−,−〉 ∈ AE
c , RI(a, b) = α.

• for each assertion 〈(a, b) : R | x(a,b):R,−,−〉 ∈ AE
c , RI(a, b) = π(x(a,b):R).

The knowledge base Σ is consistent if there exists a model for the extended
ABox AE

c .

14

3.3.2 Pre-processing Phase

The ALCU tableau algorithm starts by applying the following pre-processing
steps, which maintains the equivalence of the result with the original knowl-
edge base.

(1) Replace each axiom of the form 〈C ≡ D | α, fc, fd〉 with 〈(C ⊑ D) ⊓ (D
⊑ C) | α, fc, fd〉. Note that, like in standard DLs, (C ⊑ D) ⊓ (D ⊑ C) is
not considered to be cyclic since it is equivalent to (C ≡ D).

(2) Transform every axiom in the TBox into its normal form. That is, axioms
of the form 〈⊤ ⊑ . . . | α, fc, fd〉.

(3) Transform every concept (the TBox and the ABox) into its NNF. Let
C and D be concepts, and R be a role. The NNF can be obtained by
applying the following rules:
• ¬¬(C) ≡ C

• ¬(C ⊔ D) ≡ ¬C ⊓ ¬D

• ¬(C ⊓ D) ≡ ¬C ⊔ ¬D

• ¬∃R.C ≡ ∀R.¬C

• ¬∀R.C ≡ ∃R.¬C

(4) Augment the ABox A with respect to the TBox T . That is, for each
individual a in A and each axiom of the form 〈⊤ ⊑ C | α, fc, fd〉 in T ,
add 〈a : C | α, fc, fd〉 to A.

We call the resulting ABox after the pre-processing phase the initial extended
ABox, denoted by AE

0 .

3.3.3 ALCU Completion Rules

In the standard ALC, if T is an unfoldable TBox, one can always reduce a
reasoning problem with respect to T to a reasoning problem with respect to the
empty TBox [1]. More specifically, the TBox could be discarded after the pre-
processing phase. However, as explained earlier in Note 2, the idea of unfolding
is not applicable for ALCU . Hence, we need to keep the TBox during the
completion rule application phase, and make use of the TBox whenever a new
individual is added to the extended ABox. This may lead to nontermination of
completion-rule applications. To ensure termination, we introduce the notion
of blocking.

Definition 7 (Blocking) Let a, b ∈ IG be generated individuals in the extended
ABox AE

i , A
E
i (a) and AE

i (b) be all the concept assertions for a and b in AE
i .

An individual b is blocked by some ancestor a (or a is the blocking individual
for b) if AE

i (b) ⊆ AE
i (a).

Let T be the TBox obtained after the pre-processing phase, AE
0 be the initial

extended ABox, and C0 be the initial constraints set. Also, let α and β be

15

certainty values, and Γ be either a certainty value in the certainty domain or
the variable xX denoting the certainty of assertion X. The ALCU completion
rules are defined as follows.

Clash Triggers:

〈a : ⊥ | α,−,−〉 ∈ AE
i , with α ≻ l

〈a : ⊤ | α,−,−〉 ∈ AE
i , with α ≺ t

{〈a : A | α,−,−〉, 〈a : A | β,−,−〉} ⊆ AE
i , with ⊗(α, β) = l

{〈(a, b) : R | α,−,−〉, 〈(a, b) : R | β,−,−〉} ⊆ AE
i , with ⊗(α, β) = l

The purpose of the clash triggers is to detect possible inconsistencies in the
knowledge base. Note that the last two clash triggers detect the contradic-
tion in terms of the certainty values specified for the same assertion. For
example, suppose the certainty domain is V = C[0, 1], i.e., the set of closed
subintervals [α, β] in [0, 1] where α � β. If a knowledge base contains both as-
sertions 〈John : Tall | [0, 0.2],−,−〉 and 〈John : Tall | [0.7, 1],−,−〉, then the
third clash trigger will detect this as an inconsistency. Note that this clash trig-
gers detects inconsistencies for atomic concepts. The contradictions in complex
concepts are left to be detected by the constraint solver.

Concept Assertion Rule:

Condition:
〈a : A | Γ,−,−〉 ∈ AE

i

Action:
if Γ is not the variable xa:A

then Cj+1 = Cj ∪ {(xa:A = Γ)}
Cj+1 = Cj ∪ {(xa:¬A =∼Γ)}

This rule simply adds the certainty value of each atomic concept assertion and
its negation to the constraints set Cj . For example, suppose we have the asser-
tion 〈John : Tall | [0.6, 1],−,−〉 in the extended ABox. If the certainty domain
is V = C[0, 1] and if the negation function is ∼(x) = t − x, where t is the top
certainty in the lattice, then we add the constraints (xJohn:Tall = [0.6, 1]) and
(xJohn:¬Tall = [0, 0.4]) to the constraints set Cj . On the other hand, if we have
the assertion 〈John : Tall | xJohn: Tall,−,−〉 in the extended ABox, we add the
constraint (xJohn:¬Tall = t− xJohn:Tall) to Cj .

Role Assertion Rule:

Condition:
〈(a, b) : R | Γ,−,−〉 ∈ AE

i

Action:
if Γ is not the variable x(a,b):R

then Cj+1 = Cj ∪ {(x(a,b):R = Γ)}

16

Cj+1 = Cj ∪ {(x¬(a,b):R =∼Γ)}

Similar to the Concept Assertion Rule, this rule simply adds the certainty
value of each atomic role assertion and its negation to the constraints set Cj .
For example, suppose we have the assertion 〈(John, Diabetes) : hasDisease |
0.9,−,−〉 in the extended ABox. If the certainty domain is V = [0, 1] and if the
negation function is ∼(x) = t − x where t is the top certainty in the lattice,
then we add the constraints (x(John,Diabetes):hasDisease = 0.9) and (x(John,Diabetes):

¬hasDisease = 0.1) to Cj . On the other hand, if the assertion 〈(John, Diabetes) :
hasDisease | x(John,Diabetes):hasDisease,−,−〉 is in the ABox, then the constraint
(x(John,Diabetes):¬hasDisease = t − x(John,Diabetes):hasDisease) is added to Cj .

Negation Rule:

Condition:
〈a : ¬A | Γ,−,−〉 ∈ AE

i

Action:
AE

i+1 = AE
i ∪ {〈a : A |∼Γ,−,−〉}

The intuition behind the Negation Rule is that, if we know an assertion has
certainty value Γ, then the certainty of its negation can be obtained by ap-
plying the negation operator in the lattice to Γ. For example, suppose the
certainty domain is V = [0, 1], and the negation operator is defined as ∼(x)
= 1 − x. Then, if the assertion 〈John : ¬Tall | 0.8,−,−〉 is in the ABox, we
could infer 〈John : Tall | 0.2,−,−〉, which is added to the extended ABox.

Conjunction Rule:

Condition:
〈a : C ⊓ D | Γ, fc, fd〉 ∈ AE

i

Action:
for each Ψ ∈ {C, D}
if Ψ is atomic
then AE

i+1 = AE
i ∪ {〈a : Ψ | xa:Ψ,−,−〉}

else AE
i+1 = AE

i ∪ {〈a : Ψ | xa:Ψ, fc, fd〉}
Cj+1 = Cj ∪ {(fc(xa:C , xa:D) = Γ)}

The intuition behind this rule is that, if we know an individual is in C ⊓ D,
then we know it is in both C and D. In addition, according to the semantics of
the description language, we know that the semantics of a : C ⊓ D is defined
by applying the conjunction function to the interpretation of a : C and the
interpretation of a : D.

For example, if the extended ABox includes the assertion 〈Mary : Tall ⊓ Thin
| 0.8,min,max〉, then we could infer that 〈Mary : Tall | xMary :Tall ,−,−〉 and
〈Mary : Thin | xMary :Thin ,−,−〉. Also, the constraint min(xMary :Tall , xMary :Thin)

17

= 0.8 must be satisfied.

Disjunction Rule:

Condition:
〈a : C ⊔ D | Γ, fc, fd〉 ∈ AE

i

Action:
for each Ψ ∈ {C, D}
if Ψ is atomic
then AE

i+1 = AE
i ∪ {〈a : Ψ | xa:Ψ,−,−〉}

else AE
i+1 = AE

i ∪ {〈a : Ψ | xa:Ψ, fc, fd〉}
Cj+1 = Cj ∪ {(fd(xa:C , xa:D) = Γ)}

The intuition behind this rule is that, if we know an individual is in C ⊔ D,
then we know it is in either C, D, or in both. In addition, according to the
semantics of the description language, we know that the semantics of a : C ⊔ D

is defined by applying the disjunction function to the interpretation of a : C

and that of a : D.

It is interesting to note is that the disjunction rule in the standard DL is non-
deterministic, since it can be applied in different ways to the same ABox. How-
ever, note that the disjunction rule in ALCU is deterministic. This is because
the semantics of the concept disjunction is now encoded in the disjunction
function in the form of a constraint. For example, suppose the extended ABox
includes the assertion 〈Mary : Tall ⊔ Thin | 0.8,min,max〉, then we know that
Mary is Tall to some degree (〈Mary : Tall | xMary :Tall ,−,−〉) and Mary is Thin
to some degree (〈Mary : Thin | xMary :Thin ,−,−〉), possibly zero. Moreover,
the constraint max(xMary :Tall , xMary :Thin) = 0.8 must be satisfied, which means
that either xMary :Tall = 0.8, or xMary :Thin = 0.8, or xMary :Tall = xMary :Thin = 0.8.

Role Exists Restriction Rule:

Condition:
〈a : ∃R.C | Γ, fc, fd〉 ∈ AE

i and a is not blocked
Action:

if ∄ individual b such that (fc(x(a,b):R, xb:C) = xa:∃R.C) ∈ Cj

then let b be a new individual
AE

i+1 = AE
i ∪ {〈(a, b) : R | x(a,b):R,−,−〉}

if C is atomic
then AE

i+1 = AE
i ∪ {〈b : C | xb:C ,−,−〉}

else AE
i+1 = AE

i ∪ {〈b : C | xb:C , fc, fd〉}
Cj+1 = Cj ∪ {(fc(x(a,b):R, xb:C) = xa:∃R.C)}
for each axiom 〈⊤ ⊑ D | α, fc, fd〉 in the TBox T

AE
i+1 = AE

i ∪ {〈b : D | α, fc, fd〉}
if Γ is not the variable xa:∃R.C

then if (xa:∃R.C = Γ′) ∈ Cj

18

then if Γ 6= Γ′
and Γ is not an element in Γ′

then Cj+1 = Cj \ {(xa:∃R.C = Γ′)} ∪ {(xa:∃R.C = ⊕(Γ, Γ′))}
else Cj+1 = Cj ∪ {(xa:∃R.C = Γ)}

The intuition behind this rule is that, if we know that an individual a is in
∃R.C , there must exist at least an individual, say b, such that a is related to b

through the relationship R, and b is in the concept C. If no such individual b

exists in the extended ABox, then we create such a new individual. In addition,
this new individual must satisfy all the axioms in the TBox. For example, sup-
pose the assertion 〈Tom : ∃hasDisease.Diabetes | [0.4, 0.6],min,max〉 is in the
extended ABox and the axiom 〈⊤ ⊑ ¬Obese ⊔ ∃hasDisease.Diabetes | [0.7, 1],
×, ind〉 is in the TBox. Assume that the ABox originally does not contain any
individual b such that Tom is related to b through the role hasDisease, and b is
in the concept Diabetes. Then, we could infer 〈(Tom, d1) : hasDisease | x(Tom ,

d1):hasDisease ,−,−〉 and 〈d1 : Diabetes | xd1:Diabetes,−,−〉, where d1 is a new in-
dividual. In addition, since d1 must satisfy the axioms in the TBox, the as-
sertion 〈d1 : ¬Obese ⊔ ∃hasDisease. Diabetes | [0.7, 1],×, ind〉 is added to the
extended ABox. Finally, the constraints (min(x(Tom,d1):hasDisease , xd1:Diabetes) =
xTom:∃hasDisease.Diabetes) as well as (xTom:∃hasDisease.Diabetes = [0.4, 0.6]) must be
satisfied. Now, suppose there is another assertion 〈Tom : ∃hasDisease.Diabetes
| [0.5, 0.9],min, max 〉 in the extended ABox. Then, when we apply the Role
Exists Restriction Rule, we do not generate a new individual. Instead, we
simply replace the constraint (xTom:∃hasDisease.Diabetes = [0.4, 0.6]) in Cj with the
constraint (xTom:∃hasDisease.Diabetes = sup([0.5, 0.9], [0.4, 0.6])), where sup is the
join operator in the lattice ⊕. This new constraint takes into account the cer-
tainty value of the current assertion as well as that of the previous assertion.

Role Value Restriction Rule:

Condition:
{〈a : ∀R.C | Γ, fc, fd〉, 〈(a, b) : R | Γ′,−,−〉} ⊆ AE

i

Action:
if C is atomic
then AE

i+1 = AE
i ∪ {〈b : C | xb:C ,−,−〉}

else AE
i+1 = AE

i ∪ {〈b : C | xb:C , fc, fd〉}
Cj+1 = Cj ∪ {(fd(x¬(a,b):R, xb:c) = xa:∀R.C)}
if Γ is not the variable xa:∀R.C

then if (xa:∀R.C = Γ′′) ∈ Cj

then if Γ 6= Γ′′
and Γ is not an element in Γ′′

then Cj+1 = Cj \ {(xa:∀R.C = Γ′′)} ∪ {(xa:∀R.C = ⊗(Γ, Γ′′))}
else Cj+1 = Cj ∪ {(xa:∀R.C = Γ)}

The intuition behind the Role Value Restriction rule is that, if we know that
an individual a is in ∀R.C , and if there is an individual b such that a is related
to b through the relationship R, then b must be in the concept C. For exam-

19

ple, assume we have assertions 〈Jim : ∀hasPet .Dog | [0.4, 0.6],min,max〉 and
〈(Jim, d1) : hasPet | [0.5, 0.8],−,−〉 in the extended ABox. Then, we could in-
fer 〈d1 : Dog | xd1 :Dog ,−,−〉. In addition, the constraints (max (x(Jim,d1):¬hasPet ,

xd1 :Dog) = xJim:∀hasPet .Dog) as well as (xJim :∀hasPet .Dog = [0.4, 0.6]) must be sat-
isfied. Now, suppose we have another assertion 〈Jim : ∀hasPet .Dog | [0.5, 0.9],
min,max〉 in the extended ABox. Then, when we apply the Role Value Re-
striction rule, we simply replace the constraint (xJim:∀hasPet .Dog = [0.4, 0.6]) in
Cj with the constraint (xJim:∀hasPet .Dog = inf ([0.5, 0.9], [0.4, 0.6])), where inf is
the meet operator in the lattice ⊗. Note that the new constraint takes into
account the certainty value of the current assertion as well as that of the
previous assertion.

3.3.4 Correctness of the ALCU Tableau Algorithm

We establish the correctness of the ALCU tableau algorithm by showing that
it is sound, complete, and terminates, as follows.

Lemma 8 (Soundness) Let AE ′

be an extended ABox obtained from the ex-
tended ABox AE after applying the completion rule. Let I be an interpretation
and π be an evaluation. Then, 〈I, π〉 is a model of AE iff 〈I, π〉 is a model of
AE ′

.

Proof. The “if” direction: Let C be the constraints set associated with the
extended ABox AE , and C′ be the constraints set associated with the extended
ABox AE ′

. Since AE ⊆ AE ′

and C ⊆ C′, if 〈I, π〉 is a model of AE ′

, it is also a
model of AE .

The “only if” direction: We prove the claim by considering each completion
rule. Since the cases of Concept Assertion, Role Assertion, and Negation rules
are straightforward, we skip them here.

Let C and D be concepts, a and b be individuals in the domain, and R be a role.
Also, let 〈I, π〉 be a model of AE , and assume that the following completion
rule is triggered.

Conjunction Rule: By applying the conjunction rule to 〈a : C ⊓ D | Γ, fc,

fd〉 in AE , we obtain the extended ABox AE ′

= AE ∪ {〈a : C | xa:C , fc, fd〉, 〈a :
D | xa:D, fc, fd〉} and the constraints set C′ = C ∪ {(fc(xa:C , xa:D) = Γ)}. Since
〈I, π〉 is a model of AE , I satisfies 〈a : C ⊓ D | Γ, fc, fd〉, and we know that, by
definition, (C ⊓ D)I(a) = fc(C

I(a), DI(a)) = Γ. Therefore, the pair (CI(a),
DI(a)) is in {(x, y) | fc(x, y) = Γ}. Hence, there exists some α1, α2 ∈ V such
that CI(a) = α1 and DI(a) = α2. That is, I satisfies both 〈a : C | α1, fc, fd〉
and 〈a : D | α2, fc, fd〉.

20

Disjunction Rule: The application of the disjunction rule to 〈a : C ⊔ D | Γ,

fc, fd〉 in AE yields the extended ABox AE ′

= AE ∪ {〈a : C | xa:C , fc, fd〉, 〈a : D

| xa:D, fc, fd〉} and the constraints set C′ = C ∪ {(fd(xa:C , xa:D) = Γ)}. Since
〈I, π〉 is a model of AE , I satisfies 〈a : C ⊔ D | Γ, fc, fd〉, and we know that, by
definition, (C ⊔ D)I(a) = fd(C

I(a), DI(a)) = Γ. Therefore, the pair (CI(a),
DI(a)) is in {(x, y) | fd(x, y) = Γ}. Hence, there exists some α1, α2 ∈ V such
that CI(a) = α1 and DI(a) = α2. That is, I satisfies both 〈a : C | α1, fc, fd〉
and 〈a : D | α2, fc, fd〉.

Role Exists Restriction Rule: When the role exists restriction rule is ap-
plied to 〈a : ∃R.C | Γ, fc, fd〉 in AE , there are two possible augmentations to the
extended ABox/constraints set: (i) There is already an individual b such that
{〈(a, b) : R | x(a,b):R,−,−〉, 〈b : C | xb:C , fc, fd〉} ⊆ Ac and {(fc(x(a,b):R, xb:C) =
xa:∃R.C), (xa:∃R.C = Γ′)} ⊆ C. In this case, we replace the constraint (xa:∃R.C

= Γ′) with (xa:∃R.C = ⊕(Γ, Γ′)). (ii) A new individual b is generated, and
we have AE ′

= AE ∪ {〈(a, b) : R | x(a,b):R,−,−〉, 〈b : C | xb:C , fc, fd〉} as well as
C′ = C ∪ {(fc(x(a,b):R, xb:C) = xa:∃R.C), (xa:∃R.C = Γ)}. Since 〈I, π〉 is a model of
AE , we know that I satisfies 〈a : ∃R.C | Γ, fc, fd〉, the evaluation π gives the
certainty that a is in ∃R.C (denoted π(xa:∃R.C)), and by definition, we know
that (∃R.C)I(a) = ⊕b∈∆I{fc(R

I(a, b), CI(b))} = π(xa:∃R.C). Hence, there are
certainty values α1, α2 ∈ V such that RI(a, b) = α1 and CI(b) = α2. That is,
I satisfies both 〈(a, b) : R | α1,−,−〉 and 〈b : C | α2, fc, fd〉.

Role Value Restriction Rule: Assume that the role value restriction rule is
applied to 〈a : ∀R.C | Γ, fc, fd〉 in AE . Then, for every individual b that is a R-
successor of individual a, we either obtain the extended ABox AE ′

= AE ∪ {〈b :
C | xb:C , fc, fd〉} and the constraints set C′ = C ∪ {(fd(x¬(a,b):R, xb:c) = xa:∀R.C),
(xa:∀R.C = Γ)}, or in case the constraint (xa:∀R.C = Γ′′) is already in C, we
replace it with (xa:∀R.C = ⊗(Γ, Γ′′)). Since 〈I, π〉 is a model of AE , I sat-
isfies 〈a : ∀R.C | Γ, fc, fd〉 and, for every individual b that is a R-successor
of a, I satisfies 〈(a, b) : R | Γ′,−,−〉. In addition, the evaluation π gives
the certainty that a is in ∀R.C (denoted π(xa:∀R.C)) and the certainty that
b is a R-successor of a (denoted π(x(a,b):R)). We know by definition that
(∀R.C)I(a) = ⊗b∈∆I{fd(∼RI(a, b), CI(b))} = π(xa:∀R.C). Hence, for every b

that is a R-successor of a, there exists some α ∈ V such that RI(a, b) =
π(x(a,b):R) and CI(b) = α. That is, I satisfies 〈b : C | α, fc, fd〉.

2

Lemma 9 (Completeness) Any complete extended ABox AE
c has a model.

Proof. Let AE
c be a complete extended ABox, and C be the constraints

set associated with AE
c . Since AE

c is complete, there exists an evaluation
π : Var(C) → V that is a solution to the constraints set C, where Var(C) is

21

the set of variables occurring in C, and V is the certainty domain.

We now define a canonical interpretation IA of AE
c as follows:

• The domain ∆IA of IA consists of all the individual names occurring in AE
c .

• For every atomic concept A in AE
c , we define

AIA(a) =



























π(xa:A) if 〈a : A | xa:A,−,−〉 ∈ AE
c

α if 〈a : A | α,−,−〉 ∈ AE
c

b otherwise, where b is the least value in V

• For all roles R, we define

RIA(a1, a2) =



























π(x(a1,a2):R) if 〈(a1, a2) : R | x(a1,a2):R,−,−〉 ∈ AE
c

α if 〈(a1, a2) : R | α,−,−〉 ∈ AE
c

b otherwise

Next, we show that the pair 〈IA, π〉 is a model of AE
c . That is, IA satisfies all

the assertions in AE
c , and π is a solution to the constraints set C.

By definition, IA satisfies all the role assertions in AE
c . We now show that

IA also satisfies all the concept assertions of the form 〈a : C | Γ, fc, fd〉 in AE
c .

For this, we use the induction technique on the structure of the concept C,
where Γ is either a certainty value in the certainty domain or the variable xa:C

denoting the certainty of the assertion.

Base Case:

If C is an atomic concept, then IA satisfies the concept assertion by definition.

Induction Step:

If C = C1 ⊓ C2, we have 〈a : C1 ⊓ C2 | Γ, fc, fd〉 ∈ AE
c . Since AE

c is complete, no
more rule is applicable, and we have {〈a : C1 | xa:C1

, fc, fd〉, 〈a : C2 | xa:C2
, fc,

fd〉} ⊆ AE
c and (fc(xa:C1

, xa:C2
) = Γ) ∈ C. By the induction hypothesis, we

know that IA satisfies 〈a : C1 | xa:C1
, fc, fd〉 and IA satisfies 〈a : C2 | xa:C2

, fc,

fd〉. Also, since π is a solution to the constraints set C, we have fc(π(xa:C1
),

π(xa:C2
)) = Γ, where the evaluation π gives the certainties to variables xa:C1

and xa:C2
. Hence, fc(C

IA
1 (a), C

IA
2 (a)) = Γ. Since, according to Table 1, we have

that fc(C
I
1 (a), CI

2 (a)) = (C1⊓ C2)
I(a), and since an interpretation I satisfies

〈a : C1 ⊓ C2 | Γ, fc, fd〉 if (C1 ⊓ C2)
I(a) = Γ, the canonical interpretation IA

satisfies concept assertions of the form 〈a : C1 ⊓ C2 | Γ, fc, fd〉.

22

If C = C1 ⊔ C2, we have 〈a : C1 ⊔ C2 | Γ, fc, fd〉 ∈ AE
c . Since AE

c is complete, no
more rule is applicable, and we have {〈a : C1 | xa:C1

, fc, fd〉, 〈a : C2 | xa:C2
, fc,

fd〉} ⊆ AE
c and (fd(xa:C1

, xa:C2
) = Γ) ∈ C. By the induction hypothesis, we

know that IA satisfies 〈a : C1 | xa:C1
, fc, fd〉 and IA satisfies 〈a : C2 | xa:C2

, fc,

fd〉. Also, since π is a solution to the constraints set C, we have fd(π(xa:C1
),

π(xa:C2
)) = Γ. Hence, fd(C

IA
1 (a), CIA

2 (a)) = Γ. Since, according to Table 1,
fd(C

I
1 (a), CI

2 (a)) = (C1⊔ C2)
I(a), and since an interpretation I satisfies 〈a :

C1 ⊔ C2 | Γ, fc, fd〉 if (C1 ⊔ C2)
I(a) = Γ, the canonical interpretation IA satis-

fies concept assertions of the form 〈a : C1 ⊔ C2 | Γ, fc, fd〉. Note that the proof
presented here is much simpler than that of standard ALC. This is due to the
fact that the disjunction rule in ALC is nondeterministic, while the disjunction
rule in ALCU is deterministic, as we explained in Section 3.3.3.

If C = ¬A, we have 〈a : ¬A | Γ,−,−〉 ∈ AE
c . Since AE

c is complete, no more
rule is applicable, and we have 〈a : A |∼Γ,−,−〉 ∈ AE

c and {(xa:A = ∼Γ),
(xa:¬A = Γ)} ⊆ C. Since π is a solution to the constraints set C, we have
π(xa:¬A) = Γ, where π gives the evaluation to the variable xa:¬A. Hence,
∼AIA(a) = Γ. Since ∼AI(a) = (¬A)I(a) according to Table 1, and since an
interpretation I satisfies 〈a : ¬A | Γ,−,−〉 if (¬A)I(a) = Γ, the canonical in-
terpretation IA satisfies concept assertions of the form 〈a : ¬A | Γ,−,−〉.

If C = ∃R.C1, we have 〈a : ∃R.C1 | Γ, fc, fd〉 ∈ AE
c . Since AE

c is complete, no
more rule is applicable. The application of the Role Exists Restriction rule ei-
ther (i) generated a new individual b, added assertions {〈(a, b) : R | x(a,b):R,−,

−〉, 〈b : C1 | xb:C1
, fc, fd〉} to the extended ABox AE

c , and added the constraint
(fc(x(a,b):R, xb:C1

) = xa:∃R.C1
) to the constraints set C, or (ii) did not gener-

ate a new individual because there already existed an individual b such that
{〈(a, b) : R | x(a,b):R,−,−〉, 〈b : C1 | xb:C1

, fc, fd〉} ⊆ AE
c , and the constraint (fc

(x(a,b):R, xb:C1
) = xa:∃R.C1

) was already in the constraints set C, or (iii) did
not generate new individual because a is blocked by some ancestor b with
AE

i (a) ⊆ AE
i (b); in such case, we could construct the model by having 〈(a, b) : R

| x(a,b):R,−,−〉 and 〈b : C1 | xb:C1
, fc, fd〉. In all the three cases, there exists at

least one individual b such that 〈(a, b) : R | x(a,b):R,−,−〉, 〈b : C1 | xb:C1
, fc, fd〉,

and fc(x(a,b):R, xb:C1
) = xa:∃R.C1

. By the induction hypothesis, we know that
for each individual b such that (a, b) is in R and b is in C1, IA satisfies
〈(a, b) : R | x(a,b):R,−,−〉 and 〈b : C1 | xb:C1

, fc, fd〉. Also, since π is a solution
to constraints set C, we have ⊕b∈∆I{fc(π(x(a,b):R), π(xb:C1

))} = π(xa:∃R.C1
).

Hence, ⊕b∈∆IA{fc(R
IA(a, b), C1

IA(b))}= (∃R.C1)
IA(a). That is, IA satisfies

concept assertions of the form 〈a : ∃R.C1 | Γ, fc, fd〉.

If C = ∀R.C1, we have 〈a : ∀R.C1 | Γ, fc, fd〉 ∈ AE
c . Since AE

c is complete, no
more rule is applicable, and for every individual b such that 〈(a, b) : R | x(a,b):R,

−,−〉 ∈ AE
c , we have 〈b : C1 | xb:C1

, fc, fd〉 ∈ AE
c and also (fd(x(a,b):¬R, xb:C1

) =
xa:∀R.C1

) ∈ C. By the induction hypothesis, we know that for each individual
b such that (a, b) is in R and b is in C1, IA satisfies 〈(a, b) : R | x(a,b):R,−,−〉

23

and IA satisfies 〈b : C1 | xb:C1
, fc, fd〉. Also, since π is a solution to the con-

straints set C, we have ⊗b∈∆I{fd(π(x(a,b):¬R), π(xb:C1
))} = π(xa:∀R.C1

). Hence,
⊗b∈∆IA{fd(∼RIA(a, b), C1

IA(b))} = (∀R. C1)
IA(a). That is, IA satisfies con-

cept assertions of the form 〈a : ∀R.C1 | Γ, fc, fd〉.

2

Lemma 10 If an extended ABox AE
c contains a clash, or if the constraints

set C associated with AE
c is unsolvable, then AE

c does not have a model.

Proof. If an extended ABox AE
c contains a clash, then no interpretation can

satisfy AE
c . Thus, AE

c is inconsistent and has no model. Similarly, if the con-
straints set C associated with AE

c is unsolvable, there does not exist an evalua-
tion π : Var(C) → V that is a solution to the constraints set C, where Var(C)
is the set of variables occurring in the constraints set C, and V is the certainty
domain. Hence, AE

c is not satisfied and has no model.

2

Before proving the termination property, we need to introduce the term “con-
cept subsets.”

Definition 11 (Concept Subsets) Let C be a concept. The subsets of C, de-
noted subset(C), is recursively defined as follows.

subset(A) = {A}, where A is an atomic concept
subset(C1 ⊓ C2) = {C1 ⊓ C2} ∪ subset(C1) ∪ subset(C2)
subset(C1 ⊔ C2) = {C1 ⊔ C2} ∪ subset(C1) ∪ subset(C2)
subset(∃R.C1) = {∃R.C1} ∪ subset(C1)
subset(∀R.C1) = {∀R.C1} ∪ subset(C1)

Lemma 12 (Termination) Let X be any assertion in the extended ABox
AE . The application of the completion rules to X always terminates.

Proof. Let X be of the form 〈a : C | α, fc, fd〉, and s = |subset(C)|. As in the
standard DL [19], termination is a result of the following properties of the
completion rules:

(1) The completion rules are designed to avoid duplicated rule applications.
(2) The completion rules never remove any assertion from the extended ABox

nor change/remove any concept in the assertion.

24

(3) Successors are only generated by Role Exists Restriction Rule, and each
application of such rule generates at most one successor. Since there can-
not be more than s Role Exists Restrictions, the out-degree of the tree is
bounded by s.

(4) Each node label contains non-empty subsets of subset(C). Hence, if there
is a path of length at least 2s, there must be two nodes along the path
that have the same node label, and hence blocking occurs. Since the path
cannot grow longer once a blocking takes place, the length of the path is
at most 2s.

2

3.4 Illustrative Examples

To illustrate the ALCU framework, we first present a detailed example of how
ALCU tableau algorithm can be applied step-by-step. We then present an
example demonstrating some interesting inferences that can be performed on
an ALCU knowledge base.

3.4.1 Example of Applying ALCU Tableau Algorithm

To illustrate the ALCU tableau algorithm and the need for blocking, let us
consider a cyclic fuzzy knowledge base Σ = 〈T ,A〉, where:

T = {〈ObesePerson ⊑ ∃hasParent .ObesePerson | [0.7, 1],min,max〉}

A = {〈John : ObesePerson | [0.8, 1],−,−〉}

Note that the fuzzy knowledge bases can be expressed in ALCU by setting
the certainty lattice as L = 〈V,�〉, where V = C[0, 1] is the set of closed
subintervals [α, β] in [0, 1] such that α � β. We also set the meet operator in
the lattice as inf (infimum), the join operator as sup (supremum), and the
negation function as ∼(x) = t − x, where t = [1, 1] is the greatest value in
the certainty lattice. Finally, the conjunction function is set to min, and the
disjunction function is set to max .

To find out if Σ is consistent, we first apply the pre-processing steps. For this,
we transform the axiom into its normal form:

T = {〈⊤ ⊑ (¬ObesePerson ⊔ ∃hasParent .ObesePerson | [0.7, 1],min,max〉}

We then augment the ABox with respect to the TBox. That is, for each in-
dividual a in the ABox (in this case, we have only John) and for each ax-

25

iom of the form 〈⊤ ⊑ ¬C ⊔ D | α, fc, fd〉 in the TBox, we add an assertion
〈a : ¬C ⊔ D | α, fc, fd〉 to the ABox. Hence, in this step, we add the following
assertion to the ABox:

〈John : (¬ObesePerson ⊔ ∃hasParent .ObesePerson | [0.7, 1],min,max〉}

Now, we can initialize the extended ABox to be:

AE
0 = {〈John : ObesePerson | [0.8, 1],−,−〉,

〈John : (¬ObesePerson ⊔ ∃hasParent .ObesePerson | [0.7, 1],min,

max〉}

and the constraints set to be C0 = {}.

Once the pre-processing phase is over, we are ready to apply the comple-
tion rules. The first assertion is 〈John : ObesePerson | [0.8, 1],−,−〉. Since
ObesePerson is an atomic concept, we apply the Concept Assertion Rule,
which yields:

C1 = C0 ∪ {(xJohn:ObesePerson = [0.8, 1])}
C2 = C1 ∪ {(xJohn :¬ObesePerson = t − xJohn:ObesePerson)}, where t is the greatest

element in the lattice, [1, 1].

The other assertion in AE
0 is 〈John : (¬ObesePerson ⊔ ∃hasParent .ObesePer−

son | [0.7, 1],min,max〉}. Since this assertion includes a concept disjunction,
the Disjunction Rule applies. This yields:

AE
1 = AE

0 ∪ {〈John : ¬ObesePerson | xJohn :¬ObesePerson ,−,−〉}
AE

2 = AE
1 ∪ {〈John : ∃hasParent .ObesePerson | xJohn:∃hasParent .ObesePerson ,

min,max〉}
C3 = C2 ∪ {(max(xJohn :¬ObesePerson , xJohn:∃hasParent .ObesePerson) = [0.7, 1])}

The assertion 〈John : ¬ObesePerson | xJohn :¬ObesePerson ,−,−〉 in AE
1 triggers

the Negation Rule, which yields:

AE
3 = AE

2 ∪ {〈John : ObesePerson | xJohn:ObesePerson ,−,−〉}

The application of the Concept Assertion Rule to the assertion 〈John : Obese
Person | xJohn:ObesePerson ,−,−〉 in AE

3 does not derive any new assertion nor
constraint. Next, we apply the Role Exists Restriction Rule to the assertion
in AE

2 , and obtain:

AE
4 = AE

3 ∪ {〈(John, ind1) : hasParent | x(John,ind1):hasParent ,−,−〉}
AE

5 = AE
4 ∪ {〈ind1 : ObesePerson | xind1 :ObesePerson ,−,−〉}

C4 = C3 ∪ {(min(x(John,ind1):hasParent , xind1 :ObesePerson) = xJohn:∃hasParent .

ObesePerson)}
AE

6 = AE
5 ∪ {〈ind1 : (¬ObesePerson ⊔ ∃hasParent .ObesePerson | [0.7, 1],

26

min,max〉}

The application of the Role Assertion Rule to the assertion in AE
4 yields:

C5 = C4 ∪ {(x(John,ind1):¬hasParent = t − x(John,ind1):hasParent)}

After applying the Concept Assertion Rule to the assertion 〈ind1 : ObesePer−
son | xind1 :ObesePerson ,−,−〉} in AE

5 , we obtain:

C6 = C5 ∪ {(xind1 :¬ObesePerson = t − xind1 :ObesePerson)}

The assertion in AE
6 triggers the Disjunction Rule, which yields:

AE
7 = AE

6 ∪ {〈ind1 : ¬ObesePerson | xind1 :¬ObesePerson ,−,−〉}
AE

8 = AE
7 ∪ {〈ind1 : ∃hasParent .ObesePerson | xind1 :∃hasParent .ObesePerson ,

min,max〉}
C7 = C6 ∪ {(max(xind1 :¬ObesePerson , xind1 :∃hasParent .ObesePerson) = [0.7, 1])}

Next, the application of the Negation Rule to the assertion in AE
7 yields:

AE
9 = AE

8 ∪ {〈ind1 : ObesePerson | xind1 :ObesePerson ,−,−〉}

We then apply the Concept Assertion Rule to the assertion in AE
9 , and obtain:

C8 = C7 ∪ {(xind1 :¬ObesePerson = t − xind1 :ObesePerson)}

The application of the Role Exists Restriction Rule to the assertion in AE
8

yields:

AE
10 = AE

9 ∪ {〈(ind1 , ind2) : hasParent | x(ind1 ,ind2):hasParent ,−,−〉}
AE

11 = AE
10 ∪ {〈ind2 : ObesePerson | xind2 :ObesePerson ,−,−〉}

C9 = C8 ∪ {(min(x(ind1 ,ind2):hasParent , xind2 :ObesePerson) = xind1 :∃hasParent .

ObesePerson)}
AE

12 = AE
11 ∪ {〈ind2 : (¬ObesePerson ⊔ ∃hasParent .ObesePerson | [0.7, 1],

min,max〉}

Next, the Role Assertion Rule is applied to the assertion in AE
10 yields:

C10 = C9 ∪ {(x(ind1 ,ind2):¬hasParent = t − x(ind1 ,ind2):hasParent)}

After applying the Concept Assertion Rule to the assertion in AE
11, we obtain:

C11 = C10 ∪ {(xind2 :¬ObesePerson = t − xind2 :ObesePerson)}

The assertion in AE
12 triggers the Disjunction Rule, which yields:

AE
13 = AE

12 ∪ {〈ind2 : ¬ObesePerson | xind2 :¬ObesePerson ,−,−〉}
AE

14 = AE
13 ∪ {〈ind2 : ∃hasParent .ObesePerson | xind2 :∃hasParent .ObesePerson ,

27

min,max〉}
C12 = C11 ∪ {(max(xind2 :¬ObesePerson , xind2 :∃hasParent .ObesePerson) = [0.7, 1])}

Next, the application of the Negation Rule to the assertion in AE
13 yields:

AE
15 = AE

14 ∪ {〈ind2 : ObesePerson | xind2 :ObesePerson ,−,−〉}

We then apply the Concept Assertion Rule to the assertion in AE
15, and obtain:

C13 = C12 ∪ {(xind2 :¬ObesePerson = t − xind2 :ObesePerson)}

Next, consider the assertion in AE
14. Since ind1 is an ancestor of ind2 and

L(ind2) ⊆ L(ind1), individual ind2 is blocked. Therefore, we will not con-
tinue applying the Role Exists Restriction Rule to the assertion in AE

14, and
the completion rule application terminates at this point. Note that without
blocking, the tableau algorithm would never terminate since new individual
will be generated for each application of the Role Exists Restriction Rule.

Since there is no more rule applicable, the set of constraints in C13 is fed into
the constraint solver to check its solvability. Since the constraints are solvable,
the knowledge base is consistent.

3.4.2 Example of Reasoning with ALCU knowledge base

In this section, we demonstrate some practical ALCU queries by extending the
example described in the Introduction. For simplicity, we use only min as the
conjunction function, and max as the disjunction function.

The statement “The certainty that an obese person would have heart dis-
ease lies between 0.7 and 1” can be expressed in ALCU as a fuzzy axiom
〈ObesePerson ⊑ HeartPatient | [0.7, 1],min,max〉, and the statement “John
is obese with a degree between 0.8 and 1” can be captured as an assertion
〈John : ObesePerson | [0.8, 1],−,−〉. Assume that, in addition to the above in-
formation, we also know that John is a male person (〈John : MalePerson | [1,
1],−,−〉). His mother, Mary, is a diabetes patient (〈(John,Mary) : hasMother
| [1, 1],−,−〉 and 〈Mary : DiabetesPatient | [1, 1],−,−〉). We also know that
the certainty of a female person being a breast cancer patient is at least
0.65 (〈FemalePerson ⊑ BreastCancerPatient | [0.65, 1],min,max〉), and the
certainty that somebody who has a diabetes mother is a diabetes patient
is at least 0.9 (〈∃hasMother .DiabetesPatient ⊑ DiabetesPatient | [0.9, 1],min,

max〉). Finally, we also know some general information, such as a male per-
son is disjoint with a female person (〈MalePerson ⊓ FemalePerson ⊑ ⊥ | [1, 1],
min,max〉), and that the range of the role hasMother is a female person
(〈⊤ ⊑ ∀hasMother .FemalePerson | [1, 1], min,max〉).

28

With the above knowledge base (Σ), some interesting inferences can be per-
formed. For example, to determine the certainty with which John is a heart
patient, we apply the entailment checking by determining the degree that Σ
entails the assertion 〈John : HeartPatient | xJohn:HeartPatient ,min,max〉, which
yields a certainty between 0.7 and 1.

It is also interesting to find out the certainty that John is a diabetes pa-
tient or a heart patient by determining the degree that Σ entails the asser-
tion 〈John : (DiabetesPatient ⊔ HeartPatient) | xJohn:(DiabetesPatient⊔HeartPatient),

min,max〉, which yields a degree between 0.9 and 1. This is because the cer-
tainty with which John is a diabetes patient is at least 0.9, and the certainty
that John is a heart patient is at least 0.7.

Finally, to see the certainty that John has a mother who is both a breast
cancer patient and a diabetes patient, the entailment degree for the assertion
〈John : ∃hasMother .(BreastCancerPatient ⊓ DiabetesPatient) | xJohn:∃hasMother

.(BreastCancerPatient⊓DiabetesPatient),min,max〉 is determined, which yields a degree
of at least 0.65. It is interesting to note that, although we did not explicitly
assert that Mary is a female person, we can infer that Mary is a breast cancer
patient with a certainty of at least 0.65 through the fact that Mary is John’s
mother, a mother is a female person, and a female person is a breast cancer
patient with a certainty of at least 0.65.

4 Conclusion and Future Work

In this paper, we presented the ALCU framework that extends the standard
DL ALC with uncertainty. The proposed framework allows us to incorporate
various forms of uncertainty within DLs in a uniform manner. This is achieved
by abstracting away the notion of uncertainty in the description language, the
knowledge base, and the reasoning procedure. The proposed tableau reason-
ing procedure works by deriving a set of assertions as well as linear/nonlinear
constraints that encode the semantics of the uncertainty knowledge base. The
advantage of this approach is that it makes the design of the ALCU tableau
algorithm generic and uniform for computing different semantics. That is, by
simply tuning the combination functions that generate the constraints, differ-
ent notions of uncertainty can be modeled and reasoned with, using a single
reasoning procedure. To establish correctness of the ALCU tableau algorithm,
we showed that it is sound, complete, and terminates. We also demonstrated
through examples that the ALCU framework is capable of handling practical
queries.

The optimization aspect of the ALCU reasoning procedure is beyond the scope
of this paper. However, a preliminary study in this regard can be found in [15].

29

As future work, we plan to extend ALCU to support a more expressive por-
tion of DL (e.g., SHOIN , which OWL DL is based on) so that constructors
such as number restrictions and transitive properties can be supported. An-
other interesting extension to the ALCU framework would be to support other
forms of uncertainty. Currently, we keep the description language syntax the
same as the standard DL while extending only its semantics. However, since
probabilistic reasoning usually requires extra information about the events,
their relationships, and the facts in the world, it would require syntactical
extension to the description language in order to model knowledge bases with
more probability modes, such as positive/negative correlation and conditional
probability. The challenge here would be investigating whether it is feasible
to extend the syntax of the description language generically to support these
uncertainty formalisms, and how such extension can fit into the existing ALCU

framework.

References

[1] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider
(Eds.), The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, Cambridge, UK, 2003.

[2] F. Baader, I. Horrocks, U. Sattler, Description logics for the semantic web, KI
– Künstliche Intelligenz, No. 4, 2002, pp. 57-59.

[3] F. Baader, I. Horrocks, U. Sattler, Description logics, Handbook of Knowledge
Representation. Elsevier, 2007.

[4] T. Berners-Lee, M. Fischetti, Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by its Inventor, HarperCollins, New
York, 2000, p. 177.

[5] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web, Scientific American.
284(5) (2001) 34–43.

[6] P. Berry, K. Myers, T. Uribe, N. Yorke-Smith, Task management under
change and uncertainty: constraint solving experience with the CALO project,
Proceedings of CP’05 Workshop on Constraint Solving under Change and
Uncertainty, Sitges, Spain, 2005.

[7] F. Bobillo, U. Straccia, A Fuzzy Description Logic with Product T-norm,
Proceedings of the IEEE International Conference on Fuzzy Systems (2007),
pp. 652-657.

[8] T. Copeland, Generating Parsers with JavaCC, Centennial Books, Alexandria,
VA., 2007.

30

[9] M. Dürig, T. Studer, Probabilistic abox reasoning: preliminary results,
Proceedings of the International Workshop on Description Logics (DL’05), 2005,
pp. 104–111.

[10] E.C. Freuder, A.K. Mackworth (Eds.), Constraint-Based Reasoning, MIT Press,
Cambridge, MA, USA, 1994.

[11] R. Giugno, T. Lukasiewicz, P-SHOQ(D): A probabilistic extension of SHOQ(D)
for probabilistic ontologies in the semantic web, Proceedings of the European
Conference on Logics in Artificial Intelligence, Cosenza, Italy, Springer Verlag,
2002, pp. 86–97.

[12] T.R. Gruber, A translation approach to portable ontology specifications,
Knowledge Acquisition. 5(2) (1993) 199–220.

[13] V. Haarslev, H.I. Pai, N. Shiri, Uncertainty reasoning in description logics: a
generic approach, Proceedings of the 19th International FLAIRS Conference,
Melbourne Beach, Florida, AAAI Press, 2006, pp. 818–823.

[14] V. Haarslev, H.I. Pai, N. Shiri, Completion rules for uncertainty reasoning
with the description logic ALC, Proceedings of the Canadian Semantic Web
Working Symposium, Quebec City, Canada, Series: Semantic Web and Beyond:
Computing for Human Experience, Vol. 4, Springer Verlag, 2006, pp. 205–225.

[15] V. Haarslev, H.I. Pai, N. Shiri, Optimizing tableau reasoning in ALC extended
with uncertainty, Proceedings of the International Workshop on Description
Logics (DL’07), Brixen-Bressanone, Italy, 2007, pp. 307–314.

[16] V. Haarslev, H.I. Pai, N. Shiri, Semantic web uncertainty management,
Encyclopedia of Information Science and Technology, 2nd edition, Information
Science Reference, 2008.

[17] S. Hölldobler, T.D. Khang, H.P. Störr, A fuzzy description logic with hedges
as concept modifiers, Proceedings of the 3rd International Conference on
Intelligent Technologies, Hanoi, Vietnam, Science and Technics Publishing
House, 2002, pp. 25–34.

[18] B. Hollunder, An alternative proof method for possibilistic logic and its
application to terminological logics, Proceedings of the 10th Annual Conference
on Uncertainty in Artificial Intelligence, San Francisco, CA, Morgan Kaufmann,
1994, pp. 327–335.

[19] I. Horrocks, U. Sattler, S. Tobies, A description logic with transitive and
converse roles, role hierarchies and qualifying number restrictions, Tech. Report
LTCS-Report 99-08, LuFg Theoretical Computer Science, RWTH Aachen,
Germany, 1999.

[20] M. Jaeger, Probabilistic reasoning in terminological logics, Proceedings of the
4th International Conference on Principles of Knowledge Representation and
Reasoning, 1994, pp. 305–316.

31

[21] D. Koller, A.Y. Levy, A. Pfeffer, P-CLASSIC: a tractable probablistic
description logic, Proceedings of the 14th National Conference on Artificial
Intelligence, Providence, Rhode Island, AAAI Press, 1997, pp. 390–397.

[22] L.V.S. Lakshmanan, N. Shiri, A parametric approach to deductive databases
with uncertainty, IEEE Transactions on Knowledge and Data Engineering.
13(4) (2001) 554–570.

[23] L.V.S. Lakshmanan, N. Shiri, Logic programming and deductive databases with
uncertainty: a survey, Enclyclopedia of Computer Science and Technology, Vol.
45, Marcel Dekker Inc., New York, 2001, pp. 153–176.

[24] T. Lukasiewicz, Probabilistic description logic programs, International Journal
of Approximate Reasoning, 45(2) (2007) 288–307.

[25] T. Lukasiewicz, Probabilistic description logic programs under inheritance
with overriding for the Semantic Web, International Journal of Approximate
Reasoning, 49(1) (2008) 18–34.

[26] A. Motro, Ph. Smets (Eds.), Uncertainty Management in Information Systems:
From Needs to Solutions, Kluwer Academic Publishers, Boston, 1997.

[27] G. Qi, J.Z. Pan, Q. Ji, Possibilistic extension of description logics, Proceedings
of the International Workshop on Description Logics (DL’07), 2007, pp. 435–
442.

[28] D. Sánchez, A.G.B. Tettamanzi, Generalizing quantification in fuzzy description
logics, Proceedings of the 8th Fuzzy Days in Dortmund - Advances in Soft
Computing Series, Dortmund, Germany, Springer-Verlag, 2004.

[29] K. Schild, A correspondence theory for terminological logics: preliminary report,
Proceedings of IJCAI-91, 12th International Joint Conference on Artificial
Intelligence, Sidney, AU, 1991, pp. 466–471.

[30] M. Schmidt-Schaubß, G. Smolka, Attributive concept descriptions with
complements, Artificial Intelligence. 48(1) (1991), 1–26.

[31] G. Stoilos, G. Stamou, J.Z. Pan, V. Tzouvaras, I. Horrocks, Reasoning with very
expressive fuzzy description logics, Journal of Artificial Intelligence Research.
30(5) (2007) 273–320.

[32] G. Stoilos, U. Straccia, G. Stamou, J.Z. Pan, General concept inclusions in fuzzy
description logics, Proceedings of the 17th European Conference on Artificial
Intelligence, 2006.

[33] U. Straccia, A fuzzy description logic, Proceedings of the 15th National
Conference on Artificial Intelligence, Menlo Park, CA, AAAI Press, 1998, pp.
594–599.

[34] U. Straccia, Reasoning within fuzzy description logics, Journal of Artificial
Intelligence Research. 14 (2001) 137–166.

32

[35] U. Straccia, Transforming fuzzy description logics into classical description
logics, Proceedings of the 9th European Conference on Logics in Artificial
Intelligence, Lecture Notes in Computer Science, Vol. 3229, Springer-Verlag
(2004), pp. 385–399.

[36] U. Straccia, Fuzzy description logic with concrete domains, Tech. Report 2005-
TR-03, Istituto di Elaborazione dell’Informazione, January 2005.

[37] U. Straccia, Description logics over lattices, International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems. 14(1) (2006) 1–16.

[38] U. Straccia, F. Bobillo Mixed integer programming, general concept inclusions
and fuzzy description logics, Proceedings of the 5th Conference of the European
Society for Fuzzy Logic and Technology (2007), pp. 213–220.

[39] C. Tresp, R. Molitor, A description logic for vague knowledge, Proceedings of
the 13th European Conference on Artificial Intelligence, Brighton, UK, John
Wiley and Sons (1998) pp. 361–365.

[40] W3C, OWL Web Ontology Language Overview, 2004, URL:
http://www.w3.org/TR/owl-features/.

[41] L.A. Zadeh, Fuzzy sets, Information and Control. 8 (1965) 338–353.

[42] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and
Systems. 1(1) (1978) 3–28.

33

