
Completion Rules for Uncertainty Reasoning with
the Description Logic

Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

Department of Computer Science and Software Engineering, Concordia
University, Montreal, Quebec, Canada

Abstract. Description Logics (DLs) are gaining more popularity as the
foundation of ontology languages for the Semantic Web. On the other
hand, uncertainty is a form of deficiency or imperfection commonly found
in the real-world information/data. In recent years, there has been an in-
creasing interest in extending the expressive power of DLs to support un-
certainty, for which a number of frameworks have been proposed. In this
paper, we introduce an extension of DL () that unifies and/or general-
izes a number of existing approaches for DLs with uncertainty. We first
provide a classification of the components of existing frameworks for DLs
with uncertainty in a generic way. Using this as a basis, we then discuss
ways to extend these components with uncertainty, which includes the de-
scription language, the knowledge base, and the reasoning services. De-
tailed explanations and examples are included to describe the proposed
completion rules.

1 Introduction

Uncertainty is a form of deficiency or imperfection commonly found in
real-world information/data. A piece of information is uncertain if its truth
is not established definitely [10]. Modeling uncertainty and reasoning with
it have been challenging issues for over two decades in database and artifi-
cial intelligence research [2,10,12,13]. In recent years, uncertainty man-
agement has attracted the attention of researchers in Description Logics

2 Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

(DLs) [1]. To highlight the importance of the family of DLs, we describe
its connection with ontologies and Semantic Web as follows.

Ever since Tim Berners-Lee introduced the vision of the Semantic Web
[3], attempts have been made on making Web resources more machine-
interpretable by giving them a well-defined meaning through semantic
mark-ups. One way to encode such semantic mark-ups is using ontologies.
An ontology is “an explicit specification of a conceptualization” [5]. In-
formally, an ontology consists of a set of terms in a domain, the relation-
ship between the terms, and a set of constraints imposed on the way in
which those terms can be combined. Constraints such as concept conjunc-
tion, disjunction, negation, existential quantifier, and universal quantifier
can all be expressed using ontology languages. By explicitly defining the
relationships and constraints among the terms, the semantics of the terms
can be better defined and understood.

Over the last few years, a number of ontology languages have been de-
veloped, most of which have a foundation based on DLs. The family of
DLs is mostly a subset of first-order logic (FOL) that is considered to be
attractive as it keeps a good compromise between expressive power and
computational tractability.

Despite the popularity of standard DLs, it has been realized that they are
inadequate to model uncertainty. For example, in the medical domain, one
might want to express that: “It is very likely that an obese person would
have heart disease”, where “obese” is a vague concept that may vary
across regions or countries, and “likely” shows the uncertain nature of this
information. Such expressions cannot be expressed using standard DLs.

Recently, a number of frameworks have been proposed which extend
DLs with uncertainty, some of which deal with vagueness while others
deal with probabilistic knowledge. It is not our intention to discuss which
extension is better. In fact, different applications may require different as-
pects to be modeled, or in some cases, it may even be desired to model dif-
ferent aspects within the same application [14].

Following the approach of the parametric framework [11], we propose
in this paper a generic DL with uncertainty as a unifying umbrella for sev-
eral existing frameworks of DLs with uncertainty. This approach not only
provides a uniform access over theories that have been expressed using DL
with various kinds of uncertainty, but also allows one to study various re-
lated problems, such as syntax and semantics of knowledge bases, reason-
ing techniques, design and implementation of reasoners, and optimization
techniques in a framework-independent manner.

The rest of this paper is organized as follows. Sect. 2 provides an over-
view of the standard DL framework and presents a classification of exist-

Completion Rules for Uncertainty Reasoning with the Description Logic 3

ing frameworks of uncertainty in DL. In Sect. 3, we present our generic
framework for DL with uncertainty in detail along with examples. We dis-
cuss how to represent uncertainty knowledge in a general way, as well as
how to perform reasoning services. Finally, concluding remarks and future
directions are presented in Sect 4.

2 Background and related work

This section first gives an overview of the classical DL framework. Then,
a classification of existing frameworks of uncertainty in DL is presented.

2.1 Overview of classical DL framework

The classical DL framework consists of three components:
1. Description Language: All description languages have elementary

descriptions which include atomic concepts (unary predicates) and
atomic roles (binary predicates). Complex descriptions can then be
built inductively from concept constructors. In this paper, we focus
on the description language [1].

2. Knowledge Base: The knowledge base is composed of both inten-
sional knowledge and extensional knowledge. The intensional knowl-
edge includes the Terminological Box (TBox) consisting of a set of
terminological axioms, and the Role Box (RBox) consisting of a set
of role axioms. On the other hand, the extensional knowledge in-
cludes the Assertional Box (ABox) consisting of a set of asser-
tions/facts.

3. Reasoning Component: A DL framework is equipped with reasoning
services that enables one to derive implicit knowledge.

2.2 Approaches to DL with uncertainty

On the basis of their mathematical foundation and the type of uncertainty
modeled, we can classify existing proposals of DLs with uncertainty into
three approaches: fuzzy, probabilistic, and possibilistic approach.

The fuzzy approach, based on fuzzy set theory [19], deals with the
vagueness in the knowledge, where a proposition is true only to some de-
gree. For example, the statement “Jason is obese with degree 0.4” indicates
Jason is slightly obese. Here, the value 0.4 is the degree of membership
that Jason is in concept obese.

4 Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

The probabilistic approach, based on the classical probability theory,
deals with the uncertainty due to lack of knowledge, where a proposition is
either true or false, but one does not know for sure which one is the case.
Hence, the certainty value refers to the probability that the proposition is
true. For example, one could state that: “The probability that Jason would
have heart disease given that he is obese lies in the range [0.8, 1].”

Finally, the possibilistic approach, based on possibility theory [20], al-
lows both certainty (necessity measure) and possibility (possibility meas-
ure) be handled in the same formalism. For example, by knowing that “Ja-
son's weight is above 80 kg”, the proposition “Jason's weight is 80 kg” is
necessarily true with certainty 1, while “Jason's weight is 90 kg” is possi-
bly true with certainty 0.5.

3 Our DL framework with uncertainty

To support uncertainty, each component of the DL framework needs to be
extended (see Fig. 1). To be more specific, the generic framework consists
of:

1. Description Language with Uncertainty: The syntax and semantics of
the description language are extended to express uncertainty.

2. Knowledge Bases with Uncertainty: A knowledge base is composed
of the intensional knowledge (TBox and RBox) and extensional
knowledge, both extended with uncertainty.

3. Reasoning with Uncertainty: The DL framework is equipped with
reasoning services that take into account the presence of uncertainties
in DL theories during the reasoning process.

Fig. 1. DL Framework with Uncertainty

Completion Rules for Uncertainty Reasoning with the Description Logic 5

In what follows, we discuss each of these three components in detail,
along with illustrating examples. Note that this paper extends our previous
work [6] by presenting uncertainty inference rules for the reasoning com-
ponent of the framework.

3.1 Description Language with Uncertainty

To provide a generic extension to a description language, one needs to de-
velop a way to represent certainty values, and assign semantics to each
element in the description language.

Representation of Certainty Values

To represent the certainty values, we take a lattice-based approach fol-
lowed in the parametric framework [11]. That is, we assume that certainty
values form a complete lattice shown as = 〈 , 〉, where is the cer-
tainty domain, and is the partial order defined on . We also use , , ,
and = with their obvious meanings. We use b to denote the bottom or least
element in , and use t to denote the top or greatest value in . The least
upper bound operator (the join operator) in is denoted by ⊕, its greatest
lower bound (the meet operator) is denoted by ⊗, and its negation operator
is denoted by ~.

The certainty lattice can be used to model both qualitative and quantita-
tive certainty values. An example for the former is the classical logic
which uses the binary values {0, 1}. For the latter, an example would be a
family of multi-valued logics such as fuzzy logic which uses [0, 1] as the
certainty domain.

Assignment of Semantics to Description Language

The generic framework treats each type of uncertainty formalism as a
special case. Hence, it would be restrictive to consider any specific func-
tion to describe the semantics of the description language constructors
(e.g., fixing min as the function to determine the certainty of concept con-
junction). An alternative is proposed in our generic framework to allow a
user to specify the functions that are appropriate to define the semantics of
the description language element at axiom or assertion level. We elaborate
more on this later in Sect. 3.2.

To ensure that the combination functions specified by a user make
sense, we assume the following properties for various certainty functions
to be reasonable. Most of these properties were recalled from [11], and are

6 Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

reasonable and justified when we verify them against existing extensions
of DL with uncertainty. To present these properties, we consider the de-
scription language constructors in . We assume that the reader has a
basic knowledge about .

Let = (,) be an interpretation, where is the domain and is
an interpretation function that maps description language elements to some
certainty value in .

Atomic Concept. The interpretation of an atomic concept A is a cer-
tainty value in the certainty domain, i.e., A (a) ∈ , for all individuals a ∈

. For example, in the fuzzy approach, the interpretation of an atomic
concept A is defined as A (a) ∈ [0,1], that is, the interpretation function
assigns to every individual a in the domain, a value in the unit interval that
indicates its membership to A.

Atomic Role. Similar to atomic concepts, the interpretation of an atomic
role R is a certainty value in the certainty domain, i.e., R (a, b) ∈ , for all
individuals a, b ∈ .

Top/Universal Concept. The interpretation of the top or universal con-
cept is the greatest value in , that is, = t. For instance, corre-
sponds to 1 (true) in the standard logic with truth values {0,1}, as well as
in any one of its extensions to certainty domain [0,1].

Bottom Concept. The interpretation of the concept bottom ⊥ is the least
value in the certainty domain , that is, ⊥ = b. This corresponds to false
in standard logic with = {0,1}, or corresponds to 0 when = [0,1].

Concept Negation. Given a concept C, the interpretation of concept ne-
gation ¬C is defined by the negation function ~: → , which satisfies the
following properties:

1. Boundary Conditions: ~b = t and ~t = b.
2. Double Negation: ~(~α) = α, for all α ∈ .
In our work, we consider the negation operator ~ in the certainty lattice

as the default negation function. Other properties, such as monotonicity
(i.e., ∀α, β ∈ , ~α ~β, whenever α β) may be imposed if desired. A
common interpretation of ¬C is 1 – C (a), for all a in C.

Before introducing the properties of combination functions which are

appropriate to describe the semantics of concept conjunction and disjunc-
tion, we first identify a set of desired properties which an allowable com-
bination function f should satisfy. These functions are used to combine a
collection of certainty values into one value. We then identify a subset of
these properties suitable for describing the semantics of logical formulas
on the basis of concept conjunction and disjunction. Note that, since f is
used to combine a collection of certainty values into one, we describe f as a

Completion Rules for Uncertainty Reasoning with the Description Logic 7

binary function from × to . This view is clearly without the loss of
generality and, at the same time, useful for implementing functions in gen-
eral.

1. Monotonicity: f (α1, α2) f (β1, β2), whenever αi βi, for i = 1, 2.
2. Bounded Above: f (α1, α2) αi, for i = 1, 2.
3. Bounded Below: f (α1, α2) αi, for i = 1, 2.
4. Boundary Condition (Above): ∀α ∈ , f (α, b) = α and f (α, t) = t.
5. Boundary Condition (Below): ∀α ∈ , f (α, t) = α and f (α, b) = b.
6. Commutativity: ∀α, β ∈ , f (α, β) = f (β, α).
7. Associativity: ∀α, β, δ ∈ , f (α, f (β, δ)) = f (f (α, β), δ).

Concept Conjunction. Given concepts C and D, the interpretation of

concept conjunction C D is defined by the conjunction function fc that
should satisfy properties 1, 2, 5, 6, and 7. The monotonicity property is re-
quired so that the reasoning is monotone, i.e., whatever that has been
proven so far will remain true for the rest of the reasoning process. The
bounded value property is included so that the interpretation of the cer-
tainty values makes sense. Note that this property also implies the bound-
ary condition (property 5). The commutativity property supports reorder-
ing of the arguments of the conjunction operator, and associativity ensures
that a different evaluation order of a conjunction of concepts does not
change the result. These properties are useful during the runtime evalua-
tion used by the reasoning procedure. Examples of conjunctions include
the usual product × and min functions, and bounded difference defined as
bDiff (α, β) = max (0, α + β – 1).

Concept Disjunction. Given concepts C and D, the interpretation of
concept disjunction C D is defined by the disjunction function fd that
should satisfy properties 1, 3, 4, 6, and 7. The monotonicity, boundedness,
boundary condition, commutativity, and associativity properties are re-
quired for similar reasons described in the conjunction case. Some com-
mon disjunction functions are: the standard max function, the probability
independent function defined as ind (α, β) = α + β – αβ, and the bounded
sum function defined as bSum (α, β) = min (1, α + β).

Role Value Restriction. Given a role R and a role filler C, the interpre-
tation of the “role value” restriction ∀R.C is defined as follows:

∀a ∈ , ∀R.C (a) = ⊗b∈ {fd (~R (a, b), C (b))}
The intuition behind this definition is to view ∀R.C as the open first or-

der formula ∀b. R(a, b) → C(b), where R(a, b) → C(b) is equivalent to
¬R(a, b) ∨ C(b), and ∀ is viewed as a conjunction over certainty values as-
sociated with R(a, b) → C(b). To be more specific, the semantics of ¬R(a,
b) is captured using the negation function ~ as ~R (a, b), the semantics of

8 Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

¬R(a, b) ∨ C(b) is captured using the disjunction function as fd (~R (a, b),
C (b)), and ∀b is captured using the meet operator in the lattice ⊗b∈ .

Role Exists Restriction. Given a role R and a role filler C, the interpre-
tation of the “role exists” restriction ∃R.C is defined as follows:
∀a ∈ , ∃R.C (a) = ⊕b∈ {fc (R (a, b), C (b))}
The intuition here is that we view ∃R.C as the open first order formula

∃b. R(a, b) ∧ C(b), where ∃ is viewed as a disjunction over the elements of
the domain. To be more specific, the semantics of R(a, b) ∧ C(b) is cap-
tured using the conjunction function as fc (R (a, b), C (b)), and ∃b is cap-
tured using the join operator in the lattice ⊕b∈ .

Additional Inter-Constructor Properties. In addition to the aforemen-

tioned properties, we further assume that the following inter-constructor
properties hold:

1. De Morgan's Rule: ¬(C D) ≡ ¬C ¬D and ¬(C D) ≡ ¬C ¬D.
2. Negating Quantifiers Rule: ¬∃R.C ≡ ∀R.¬C and ¬∀R.C ≡ ∃R.¬C
The above two rules are needed to convert a concept description into

negation normal form (NNF), i.e., the negation operator appears only in
front of a concept name. Note that these properties restrict the type of ne-
gation, conjunction, and disjunction functions allowed in existing frame-
works, and hence in our work.

3.2 Knowledge Bases with Uncertainty

As in the classical counterpart, a knowledge base Σ in the generic frame-
work is a triple 〈 , , 〉, where is a TBox, is an RBox, and is an
ABox.

An interpretation satisfies a knowledge base Σ, denoted Σ, iff it
satisfies each component of Σ. We say that Σ is satisfiable, denoted Σ ⊥,
iff there exists an interpretation such that Σ. Similarly, Σ is unsatis-
fiable, denoted Σ ⊥), iff Σ, for all interpretations .

To provide a generic extension to the knowledge base, there is a need to
give a syntactical and semantical extension to both the intensional (TBox
and RBox) and extensional knowledge (ABox).

TBox with Uncertainty

A TBox consists of a set of terminological axioms expressed in the form
〈C D, α〉〈fc, fd〉 or 〈C ≡ D, α〉〈fc, fd〉, where C and D are concepts, α ∈ is
the certainty that the axiom holds, fc is the conjunction function used as the

Completion Rules for Uncertainty Reasoning with the Description Logic 9

semantics of concept conjunction and part of the role exists restriction, and
fd is the disjunction function used as the semantics of concept disjunction
and part of the role value restriction. As usual, the concept definition 〈C ≡
D, α〉〈fc, fd〉 is defined as 〈C D, α〉〈fc, fd〉 and 〈D C, α〉〈fc, fd〉.

In order to transform the axiom of the form 〈C D, α〉〈fc, fd〉 into its
normal form, 〈 ¬C D, α〉〈fc, fd〉, we restrict the semantics of the con-
cept subsumption to be fd (~C (a), D (a)), where ~C (a) captures the se-
mantics of ¬C, and fd captures the semantics of in ¬C D. An interpre-
tation satisfies 〈C D, α〉〈fc, fd〉 iff for all individuals a ∈ , (fd (~C (a),
D (a))) ∈ α. By defining the semantics for concept subsumption this way,
it also allows us to guarantee that some basic properties hold, such as the
Negating Quantifiers Rule described in the previous subsection.

RBox with Uncertainty

The RBox is similar to the TBox except that we have role axioms in-
stead of terminological axioms. In addition, no conjunction or disjunction
functions are specified. Since existing DL frameworks with uncertainty do
not allow role conjunction or role disjunction, we do not consider them in
the generic framework either. We also remark that since this generic
framework supports only , no role hierarchy is allowed. However, we
include the definition of a RBox here for completeness.

ABox with Uncertainty

An ABox consists of a set of assertions of the form 〈a:C, α〉〈fc, fd〉 or 〈(a,
b):R, α〉〈–, –〉, where a and b are individuals, C is a concept, R is a role, α
∈ , fc is the conjunction function, fd is the disjunction function, and – de-
notes that the corresponding combination function is not applicable.

An interpretation satisfies 〈a:C, α〉〈fc, fd〉 (resp. 〈(a, b):R, α〉〈–, –〉) iff
C (a) ∈ α (resp. R (a, b) ∈ α).

3.3 Reasoning with Uncertainty

In this section, we describe the reasoning procedure for the generic frame-
work proposed here. Let Σ = 〈 , 〉 be a knowledge base, where is an
acyclic TBox and is an ABox.

10 Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

Satisfiability Problem

To check if a knowledge base Σ is satisfiable, first apply the pre-
processing steps (described below) to remove the TBox, . Then, initialize
the extended ABox, , with the resulting ABox (i.e., the one after pre-
processing steps are performed), and initialize the constraint set, 0, to the
empty set {}. After that, apply the completion rules (described below) to
transform the ABox into a simpler and satisfiability preserving one. The
completion rules are applied in arbitrary order as long as possible, until ei-
ther contains a clash or no further rule could be applied to . If
contains a clash, the knowledge base is unsatisfiable. Otherwise, an opti-
mization method is applied to solve the system of inequations in j. If the
system of inequations is unsolvable, the knowledge base is unsatisfiable.
Otherwise, the knowledge base is satisfiable.

Entailment Problem

To determine to what degree is an assertion X true, given a knowledge
base Σ = 〈 , 〉, we are interested in finding the tightest bound for which
X is true. As an example, if the certainty values are expressed in a range [l,
u], then we would like to find the largest l and the smallest u such that the
knowledge base entails X. To do so, we follow the same procedure as the
one for checking satisfiability. However, instead of checking whether the
system of inequations is solvable, we apply the optimization method to
find the tightest bound for which X is true.

Pre-processing Steps

Before performing any inference procedure on the knowledge base, we do
the following pre-processing steps.

1. Replace each axiom of the form 〈C ≡ D, α〉〈fc, fd〉 with the following
two equivalent axioms: 〈C D, α〉〈fc, fd〉 and 〈D C, α〉〈fc, fd〉.

2. Transform every axiom in the TBox into normal form. That is, re-
place each axiom of the form 〈C D, α〉〈fc, fd〉 with 〈 ¬C D, α〉〈fc,
fd〉.

3. Transform every concept (including the ones in TBox and ABox) into
negation normal form.

4. For each individual a in the ABox and each axiom 〈 ¬C D,
α〉〈fc, fd〉 in the TBox , add 〈a : ¬C D, α〉〈fc, fd〉 to .

5. Apply the clash trigger (described below) to check if the initial know-
ledge base is inconsistent.

Completion Rules for Uncertainty Reasoning with the Description Logic 11

Completion Rules

As in the classical DL, completion rules are a set of satisfiability preserv-
ing transformation rules that allows us to infer implicit knowledge from
the explicit one (i.e., the one specified in the original set of assertions in
the ABox). In our generic framework, we have specified the following
completion rules: clash triggers, concept assertion rule, role assertion rule,
negation rule, conjunction rule, disjunction rule, role exists restriction rule,
and role value restriction rule. In what follows, we describe each of these
rules in detail.

Let α, β be certainty values in the certainty domain. Also let xX be the
variable denoting the certainty of assertion X, and Γ be either a certainty
value in the certainty domain or an expression over certainty variables and
values. The completion rules are defined as follows.

Clash Triggers:
〈a : ⊥, t〉〈–, –〉 ∈
〈a : , b〉〈–, –〉 ∈
{〈a : A, α〉〈–, –〉, 〈a : A, β〉〈–, –〉} ⊆ , with ⊗(α, β) = ∅

The purpose of these clash triggers is to detect any possible contradic-

tions in the knowledge base. Note that we use ⊥ as a synonym for A ¬A,
and as a synonym for A ¬A.

The last clash trigger detects the contradiction in terms of the certainty
values specified for the same assertion. To be more specific, in case there
is no intersection in the certainty values specified for the same assertion,
we have conflicting assertions, hence a contradiction is detected. For ex-
ample, suppose the certainty domain is defined as = [0,1], meaning the
set of closed subintervals [α, β] in [0, 1] such that α β. If a knowledge
base contains both assertions 〈John:Tall, [0.8, 0.9]〉 and 〈John:Tall, [0.2,
0.4] 〉, then the last clash trigger will detect such conflicting information in
the knowledge base.

Concept Assertion Rule:
if 1. 〈a : A, Γ〉〈–, –〉 ∈ , and
 2. (xa:A = Γ) ∉ j, and
 3. Γ is not the variable xa:A
then j+1 = j ∪ {(xa:A = Γ)}

This rule simply adds the certainty value of each atomic concept asser-

tion to the constraint set j. For example, if we have the assertion

12 Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

〈John:Tall, [0.6, 0.9]〉〈–, –〉 in the ABox, then we add the constraint
(xJohn:Tall = [0.6, 0.9]) to the constraint set j.

Role Assertion Rule:
if 1. 〈(a, b):R, Γ〉〈–, –〉 ∈ , and
 2. (x(a, b):R = Γ) ∉ j, and
 3. Γ is not the variable x(a, b):R
then j+1 = j ∪ {(x(a, b):R = Γ)}

Similar to the Concept Assertion Rule, this rule simply adds the cer-

tainty value of each atomic role assertion to the constraint set j. For ex-
ample, if we have the assertion 〈(John, Diabetes):hasDisease, [0.8, 0.9]〉〈–,
–〉 in the ABox, then we add the constraint (x(John, Diabetes):hasDisease = [0.8, 0.9])
to the constraint set j.

Negation Rule:
if 1. 〈a : ¬A, Γ〉〈–, –〉 ∈ , and
 2. 〈a : A, ~Γ〉〈–, –〉 ∉
then = ∪ {〈a : A, ~Γ〉〈–, –〉}

The intuition behind the negation rule is that, if we know an assertion

has certainty value Γ, then the certainty of its negation can be obtained by
applying the negation operator in the lattice to Γ. For example, if the cer-
tainty domain is = [0,1], and the negation operator is defined as ~([α, β]
= [1 – β, 1 – α]. Then, if we have the assertion 〈John : ¬Tall, [0.4, 0.8]〉〈–,
–〉 in the ABox, we could also infer that 〈John : Tall, [0.2, 0.6]〉〈–, –〉.

Conjunction Rule:
if 〈a : C D, Γ〉〈fc, fd〉 ∈
then for each Ψ ∈ {C, D}
 if 1. Ψ is atomic, and
 2. 〈a : Ψ, xa:Ψ〉〈–, –〉 ∉
 then = ∪ {〈a : Ψ, xa:Ψ〉〈–, –〉}
 else if 1. Ψ is not atomic, and
 2. 〈a : Ψ, xa:Ψ〉〈fc, fd〉 ∉
 then = ∪ {〈a : Ψ, xa:Ψ〉〈fc, fd〉}
 if (fc (xa:C, xa:D) = Γ) ∉ j,
 then j+1 = j ∪ {(fc (xa:C, xa:D) = Γ)}
 if (fc (xa:C, xa:D) xa:Ψ) ∉ j,

Completion Rules for Uncertainty Reasoning with the Description Logic 13

 then j+1 = j ∪ {(fc (xa:C, xa:D) xa:Ψ)}

The intuition behind this rule is that, if we know an individual is in

C D, we know it is in both C and D. In addition, according the semantics
of the description language, we know that the semantics of C D is de-
fined by applying the conjunction function to the interpretation of a:C and
the interpretation of a:D. Finally, the last part of the rule re-enforces the
“bounded above” property of the conjunction function.

For example, if we have the assertion 〈John:Tall Thin, [0.6, 0.8]〉〈min,
ma〉 in the ABox, then we could infer that 〈John:Tall, xJohn:Tall〉〈–, –〉 and
〈John:Thin, xJohn:Thin〉〈–, –〉, with the constraint (min (xJohn:Tall, xJohn:Thin) = [0.6,
0.8]) satisfied. In addition, based on the property of the conjunction func-
tion, we also know that min (xJohn:Tall, xJohn:Thin) both xJohn:Tall and xJohn:Thin.

Disjunction Rule:
if 〈a : C D, Γ〉〈fc, fd〉 ∈
then for each Ψ ∈ {C, D}
 if 1. Ψ is atomic, and
 2. 〈a : Ψ, xa:Ψ〉〈–, –〉 ∉
 then = ∪ {〈a : Ψ, xa:Ψ〉〈–, –〉}
 else if 1. Ψ is not atomic, and
 2. 〈a : Ψ, xa:Ψ〉〈fc, fd〉 ∉
 then = ∪ {〈a : Ψ, xa:Ψ〉〈fc, fd〉}
 if (fd (xa:C, xa:D) = Γ) ∉ j,
 then j+1 = j ∪ {(fd (xa:C, xa:D) = Γ)}
 if (fd (xa:C, xa:D) xa:Ψ) ∉ j,
 then j+1 = j ∪ {(fd (xa:C, xa:D) xa:Ψ)}

The intuition behind this rule is that, if we know an individual is in

C D, we know it is in either C, D, or in both. In addition, according the
semantics of the description language, we know that the semantics of
C D is defined by applying the disjunction function to the interpretation
of a:C and the interpretation of a:D. Finally, the last part of the rule re-
enforces the “bounded below” property of the disjunction function.

For example, if we have 〈John:Rich CarFanatic, [0.6, 0.8]〉〈min, max〉
in the ABox, then we could infer 〈John:Rich, xJohn:Rich〉〈–, –〉 and 〈John:
CarFanatic, xJohn:CarFanatic〉〈–, –〉, with the constraint (max (xJohn:Rich,
xJohn:CarFanatic) = [0.6, 0.8]) satisfied. In addition, based on the property of the
disjunction function, we also know that max (xJohn:Rich, xJohn:CarFanatic) both
xJohn:Rich and xJohn:CarFanatic.

14 Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

Role Exists Restriction Rule:
if 〈a : ∃R.C, Γ〉〈fc, fd〉 ∈
then if there exists no individual b such that (fc (x(a, b):R, xb:C) = xa:∃R.C)∈ j
 then = ∪ {〈(a, b):R, x(a,b):R〉〈–, –〉}
 if C is atomic
 then = ∪ {〈b:C, xb:C〉〈–, –〉}
 else = ∪ {〈b:C, xb:C〉〈fc, fd〉}
 where b is a new individual
 j+1 = j ∪ {(fc (x(a,b):R, xb:C) = xa:∃R.C)}
 if Γ is not the variable xa:∃R.C
 then if (xa:∃R.C = Γ’) ∈ j
 then if 1. Γ ≠ Γ’, and
 2. Γ is not an element in Γ’
 then (xa:∃R.C = Γ’) ← (xa:∃R.C = ⊕(Γ, Γ’))
 where ⊕ is the join operator of the lattice and
 ← means whatever is on the LHS is
 replaced by the RHS
 else j+1 = j ∪ {(xa:∃R.C = Γ)}

The intuition behind this rule is that we view ∃R.C as the open first or-

der formula ∃b. R(a, b) ∧ C(b), where ∃ is viewed as a disjunction over the
elements of the domain. That is, the semantics of R(a, b) ∧ C(b) is cap-
tured using the conjunction function as fc (R (a, b), C (b)), and ∃b is cap-
tured using the join operator in the lattice ⊕b∈ .

For example, if the join operator is sup (supremum), and we have the
assertion 〈John:∃hasDisease.Diabetes, [0.4, 0.6]〉〈min, max〉 in the ABox.
Then, we could infer that 〈(John, d1):hasDisease, x(John, d1):hasDisease〉〈–, –〉 and
〈d1:Diabetes, xd1:Diabetes〉〈–, –〉, where d1 is a new individual. In addition, the
constraints (min (x(John, d1):hasDisease, xd1:Diabetes) = xJohn:∃hasDisease.Diabetes) and
(xJohn:∃hasDisease.Diabetes = [0.4, 0.6]) must be satisfied. Now, suppose we have
yet another assertion 〈John:∃hasDisease.Diabetes, [0.5, 0.9]〉〈min, max〉 in
the ABox. Then, when we apply Role Exists Restriction Rule, we will not
generate a new individual. Instead, we simply replace the constraint
(xJohn:∃hasDisease.Diabetes = [0.4, 0.6]) in j with the constraint (xJohn:∃hasDisease.Diabetes
= sup ([0.5, 0.9], [0.4, 0.6])), where sup is the join operator in the lattice.
This new constraint takes into account the certainty value of the current as-
sertion as well as that of the previous assertion.

Completion Rules for Uncertainty Reasoning with the Description Logic 15

Role Value Restriction Rule:
if {〈a : ∀R.C, Γ〉〈fc, fd〉, 〈(a, b):R, Γ’〉〈–, –〉} ⊆
then if 1. C is atomic, and
 2. 〈b : C, xb:C〉〈–, –〉 ∉
 then = ∪ {〈b : C, xb:C〉〈–, –〉}
 else if 1. C is not atomic, and
 2. 〈b : C, xb:C〉〈fc, fd〉 ∉
 then = ∪ {〈b : C, xb:C〉〈fc, fd〉}
 if (fd (~x(a,b):R, xb:C) = xa:∀R.C) ∉ j
 then j+1 = j ∪ {(fd (~x(a,b):R, xb:C) = xa:∀R.C)}
 if Γ is not the variable xa:∀R.C
 then if (xa:∀R.C = Γ”) ∈ j
 then if 1. Γ ≠ Γ”, and
 2. Γ is not an element in Γ”
 then (xa:∀R.C = Γ”) ← (xa:∀R.C = ⊗(Γ, Γ”))
 where ⊗ is the meet operator of the lattice and
 ← means whatever is on the LHS is
 replaced by the RHS
 else j+1 = j ∪ {(xa:∀R.C = Γ)}

The intuition behind this rule is to view ∀R.C as the open first order

formula ∀b. R(a, b) → C(b), where R(a, b) → C(b) is equivalent to ¬R(a,
b) ∨ C(b), and ∀ is viewed as a conjunction over certainty values associ-
ated with R(a, b) → C(b). That is, the semantics of ¬R(a, b) is captured us-
ing the negation function ~ as ~R (a, b), the semantics of ¬R(a, b) ∨ C(b)
is captured using the disjunction function as fd (~R (a, b), and ∀b is cap-
tured using the meet operator in the lattice ⊗b∈ .

For example, if the meet operator is inf (infimum), and we have asser-
tions 〈John:∀hasPet.Dog, [0.4, 0.6]〉〈min, max〉 and 〈(John, d1):hasPet,
[0.5, 0.8]〉〈–, –〉 in the ABox. Then, we could infer that 〈d1:Dog, xd1:Dog〉〈–,
–〉. In addition, the constraints (max (~x(John,d1):hasPet, xd1:Dog) = xJohn:∀hasPet.Dog)
and (xJohn:∀hasPet.Dog = [0.4, 0.6]) must be satisfied. Now, suppose we have
yet another assertion 〈John:∀hasPet.Dog, [0.5, 0.9]〉〈min, max〉 in the
ABox. Then, when we apply Role Value Restriction Rule, we simply re-
place the constraint (xJohn:∀hasPet.Dog = [0.4, 0.6]) in j with the new con-
straint (xJohn:∀hasPet.Dog = inf ([0.5, 0.9], [0.4, 0.6])), where inf is the meet op-
erator in the lattice. Note that the new constraint takes into account the
certainty value of the current assertion as well as that of the previous asser-
tion.

16 Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

3.4 Illustrative Example

Most of the proposed fuzzy DLs (“most” because our framework supports
only) can be represented in the generic framework by setting the cer-
tainty lattice as = 〈 , 〉, where = [0,1] is the set of closed subinter-
vals [α, β] in [0, 1] such that α β. The negation operator in this case is
defined as ~([α, β]) = [1 – β, 1 – α]}. In [7,15,17,18], the meet operator is
inf (infimum) and the join operator is sup (supremum). On the other hand,
in [16], min is used as the meet operator, and max is used as the join opera-
tor. The conjunction function used in all these proposals is min, whereas
the disjunction function used is max. As an example, suppose we have the
following fuzzy knowledge base:

= {〈∃owns.Porsche (Rich CarFanatic), [0.8, 1]〉〈min, max〉,
 〈Rich Golfer, [0.7, 1]〉〈–, max〉}

 = {〈Tom : ∃owns.Porsche, [0.9, 1]〉〈min, –〉,
 〈Tom : ¬CarFanatic, [0.6, 1]〉〈–, –〉}

Then, we first transform all the axioms into normal form:
= {〈 ((∀owns.¬Porsche) (Rich CarFanatic)), [0.8,1]〉〈min,

 max〉,
 〈 (¬Rich Golfer), [0.7, 1] 〉〈–, max〉}

After that, we could remove the axioms in the TBox by adding the cor-
responding assertions to the ABox . To be more specific, for each indi-
vidual a in the ABox (in this case, we have only one individual, Tom, in
the ABox) and for each axiom of the form 〈 ¬C D, α〉〈fc, fd〉 in the
TBox, we add an assertion 〈a:¬C D, α〉〈fc, fd〉 to the ABox. Hence, in this
step, we add the following two assertions to the ABox:

{〈Tom : ((∀owns.¬Porsche) (Rich CarFanatic)), [0.8,1]〉〈min,
 max〉,
 〈Tom : (¬Rich Golfer), [0.7, 1] 〉〈–, max〉}

Now, we can initialize the extended ABox to be:
 = 〈Tom : ∃owns.Porsche, [0.9, 1]〉〈min, –〉,

 〈Tom : ¬CarFanatic, [0.6, 1]〉〈–, –〉,
 〈Tom : ((∀owns.¬Porsche) (Rich CarFanatic)), [0.8,1]〉〈min,
 max〉,
 〈Tom : (¬Rich Golfer), [0.7, 1] 〉〈–, max〉}
and the constraint set to be 0 = {}.
Note that, according to the clash triggers, there is no trivial contradiction

in the knowledge base. So, once the pre-processing steps are over, we are
ready to apply the completion rules to construct the model. For sake of

Completion Rules for Uncertainty Reasoning with the Description Logic 17

brevity, we show only how to apply the Role Exists Restriction Rule to the
first assertion.

According to the first assertion, 〈Tom : ∃owns.Porsche, [0.9, 1]〉〈min, –〉,
Tom must own at least one Porsche, with certainty more than 0.9. Indeed,
when we apply the Role Exists Restriction Rule to this assertion, we get:

 = ∪ {〈(Tom, p1) : owns, x(Tom, p1):owns〉〈–, –〉,
 〈p1 : Porsche, xp1:Porsche〉〈–, –〉}
 where p1 is a new individual

1 = 0 ∪ {(min (x(Tom, p1):owns, xp1:Porsche) = xTom:∃owns.Porsche)}
2 = 1 ∪ {(xTom:∃owns.Porsche = [0.9, 1])}

After applying the Role Exists Restriction Rule to the first assertion, we
can continue applying other completion rules to the rest of assertions in the
extended ABox until either we get a clash or no further rule could be ap-
plied. If a clash is obtained, the knowledge base is inconsistent. Otherwise,
a linear programming technique is applied to check if the system of ine-
quations is solvable, or to find the tightest bound for which an assertion is
true.

Now, suppose we want to reason about the same knowledge base using
basic probability instead of fuzzy logic. Then, we may replace the conjunc-
tion function in the knowledge base with the algebraic product (×(α, β) =
αβ), and the disjunction function with the independent function (ind (α, β)
= α + β – αβ) if desired. For example, the first terminological axiom in the
above knowledge base can be interpreted using simple probability as:
〈∃owns.Porsche (Rich CarFanatic), [0.8, 1]〉〈×, ind〉, which asserts that
the probability that someone owns a Porsche is Rich or CarFanatic is at
least 0.8. Once the knowledge base is defined and the pre-processing steps
are followed, the appropriate completion rules can be applied to perform
the desired inference. Note that, since reasoning with probability requires
extra information/knowledge about the events and facts in the world (Σ),
we are investigating ways to model knowledge bases with more general
probability theory, such as positive/negative correlation [9], ignorance [9],
and conditional probability [4,8].

It is important to note that, unlike other proposals which support only
one form of uncertainty for the entire knowledge base, our framework al-
lows the user to specify different combination functions (fc, fd) for each of
the axioms and assertions in the knowledge base. For example, for a given
knowledge base, an axiom may use 〈min, max〉 as the combination func-
tions, while another axiom may use 〈×, ind〉. This is in addition to the fact
that our generic framework can simulate the computation of many DLs
with uncertainty, each having different underlying certainty formalism.

18 Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

4 Conclusion and Future Works

We introduced a generic framework which allows us to incorporate vari-
ous forms of uncertainty within DLs in a uniform way. In particular, we
abstracted away the underlying notion of uncertainty (which could be
fuzzy, probability, possibilistic, etc.), the way in which the constructors in
the description language are interpreted (by flexibly defining the conjunc-
tion and disjunction functions), and the way in which the inference proce-
dure proceeds. An implementation of the proposed generic framework is
underway. In addition, on the basis of the finite model property and disal-
lowing terminological cycles, we can guarantee termination of the pro-
posed reasoning procedure. We are working to establish this and the com-
pleteness of this procedure. As future work, we plan to further extend the
generic framework to a more expressive fragment of DL (e.g.,),
and study optimization techniques for the extended framework.

Acknowledgements

This work is supported in part by Natural Sciences and Engineering Re-
search Council (NSERC) of Canada, Genome Québec, and by ENCS,
Concordia University, Montreal, Québec, Canada. We also thank the
anonymous reviewers for their helpful comments.

References

1. Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider
PF, eds (2003) The description logic handbook: theory, implementa-
tion, and applications, Cambridge University Press.

2. Bacchus F (1990) Representing and reasoning with probabilistic
knowledge - a logical approach to probabilities, MIT Press.

3. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Scien-
tific American 284(5).

4. Giugno R, Lukasiewicz T (2002) P-SHOQ(D): A probabilistic exten-
sion of SHOQ(D) for probabilistic ontologies in the semantic web. In:
Proceedings of the European conference on logics in artificial intelli-
gence, Cosenza, Italy, pp 86–97.

5. Gruber TR (1993) A translation approach to portable ontology speci-
fications. Knowledge acquisition 5(2):199–220.

Completion Rules for Uncertainty Reasoning with the Description Logic 19

6. Haarslev V, Pai HI, Shiri N (2005) A generic framework for descrip-
tion logics with uncertainty. In: Proceedings of uncertainty reasoning
for the semantic web, Galway, Ireland, pp 77–86.

7. Hölldobler S, Khang TD, Störr HP (2002) A fuzzy description logic
with hedges as concept modifiers. In: Proceedings of the 3rd interna-
tional conference on intelligent technologies, Science and Technics
Publishing House, Hanoi, Vietnam, pp 25–34.

8. Koller D, Levy AY, Pfeffer A (1997) P-CLASSIC: A tractable pro-
bablistic description logic. In: Proceedings of the 14th national confe-
rence on artificial intelligence, AAAI Press, Providence, Rhode Is-
land, pp 390–397.

9. Lakshmanan LVS, Sadri F (1994) Probabilistic deductive databases.
In: Proceedings of workshop on design and implementation of paral-
lel logic programming systems, MIT Press, Ithaca, NY, pp 254–268.

10. Lakshmanan LVS, Shiri N (2001a) Logic programming and deducti-
ve databases with uncertainty: A survey. Encyclopedia of computer
science and technology, vol 45, Marcel Dekker, New York, pp 153–
176.

11. Lakshmanan LVS, Shiri N (2001b) A parametric approach to deduc-
tive databases with uncertainty. IEEE transactions on knowledge and
data engineering, 13(4):554–570.

12. Motro A, Smets P, eds. (1997) Uncertainty management in informa-
tion systems - from needs to solutions, Springer-Verlag.

13. Parsons S (1996) Current approaches to handling imperfect informa-
tion in data and knowledge bases. IEEE transactions on knowledge
and data engineering, 8(3):353–372.

14. Ross TJ, Booker JM, Parkinson WJ, eds (2002) Fuzzy logic and pro-
bability applications: bridging the gap, SIAM.

15. Sánchez D, Tettamanzi, AGB (2004) Generalizing quantification in
fuzzy description logics. In: Proceedings of the 8th Fuzzy Days,
Springer-Verlag, Dortmund, Germany.

16. Straccia U (1998) A fuzzy description logic. In: Proceedings of the
15th national conference on artificial intelligence, AAAI Press, Men-
lo Park, CA, USA, pp 594–599.

17. Straccia U (2001) Reasoning within fuzzy description logics. Journal
of artificial intelligence research 14:137–166.

18. Tresp C, Molitor R (1998) A description logic for vague knowledge.
In: Proceedings of the 13th European conference on artificial intelli-
gence, John Wiley and Sons, Brighton, UK, pp 361–365.

19. Zadeh LA (1965) Fuzzy sets. Information and control, 8:338–353.

20 Volker Haarslev, Hsueh-Ieng Pai, Nematollaah Shiri

20. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility.
Fuzzy Sets and Systems 1(1):3–28.

