
1

Practical Reasoning with Qualified Number
Restrictions: A Hybrid Abox Calculus for the
Description Logic SHQ

Nasim Farsiniamarj a and Volker Haarslev a,∗

a Department of Computer Science and Software
Engineering, Concordia University, Montreal

This article presents a hybrid Abox tableau calculus
for SHQ which extends the basic description logic
ALC with role hierarchies, transitive roles, and quali-
fied number restrictions. The prominent feature of our
hybrid calculus is that it reduces reasoning about qual-
ified number restrictions to integer linear program-
ming. The calculus decides SHQ Abox consistency
w.r.t. a Tbox containing general axioms. The presented
approach ensures a more informed calculus which ade-
quately handles the interaction between numerical and
logical restrictions in SHQ concept and individual de-
scriptions. A prototype reasoner for deciding ALCHQ
concept satisfiability has been implemented. An em-
pirical evaluation of our hybrid reasoner and its in-
tegrated optimization techniques for a set of synthe-
sized benchmarks featuring qualified number restric-
tions clearly demonstrates the effectiveness of our hy-
brid calculus.

Keywords: description logics, qualified number restric-
tions, integer linear programming

1. Introduction

Description Logics (DLs) [1] are formal lan-
guages to represent the knowledge about concepts,
individuals, and their relationships (called roles).
In the domain of the semantic web, the Web On-
tology Language (OWL) [35] is based on descrip-
tion logics. The DL subset of OWL, called OWL-
DL, is based on the DL SHOIN which is a sub-

*Corresponding author: Volker Haarslev, Department of
Computer Science and Software Engineering, Concordia

University, 1455 de Maisonneuve Blvd. W., Montreal, Que-
bec H3G 1M8, Canada, Email: haarslev@cse.concordia.ca

set of SHOIQ [21]. Developing techniques for op-
timized reasoning with qualified number restric-
tions has become an important goal because qual-
ified number restrictions have been added to the
forthcoming OWL 2 [31] which is based on the DL
SROIQ [20]. In this investigation we focus our at-
tention on the DL SHQ, which is a subset of OWL
2 and complete enough to cover the characteristics
of qualified number restrictions.

Using SHQ one can express number restrictions
on the role fillers1 of individuals. For instance,
the expression ∀hasCredit .(SciencetEngineeringt
Business) about engineering undergraduate stu-
dents states that credits must be taken only from
science, engineering, or business. Moreover, (≥
140 hasCredit) states that every student must have
at least 140 credits, (≥ 120 hasCredit .(Science t
Engineering)) states that at least 120 credits must
be from science or engineering, (≤ 32 hasCredit .
(Science t Business)) allows at most 32 credits
from science or business, and (≤ 91 hasCredit .
Engineering) restricts the credits from engineering
to at most 91. A typical question for a DL reasoner
would be whether the conjunction of the concept
expressions given above is satisfiable.

For example, deciding the satisfiability of such
a SHQ concept consists of finding a model for a
student with a set of at least 140 hasCredit-fillers
that are only instances of the concept (Science t
Engineering t Business), at least 120 hasCredit-
fillers are instances of (Science t Engineering), at
most 32 hasCredit-fillers are instances of (Sciencet
Business), and at most 91 hasCredit-fillers are in-
stances of Engineering . Most DL tableau algo-
rithms [16,3,22] test the satisfiability of such a
concept by first satisfying all at-least restrictions,

1Informally speaking, if an individual a is related to an
individual b via a role R, b is called a R role filler (or R-

filler) of a (see Section 2 for more details).

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

2 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

e.g., by creating 260 hasCredit-fillers, of which 120
are instances of (Science t Engineering). Even-
tually, a nondeterministic choose-rule assigns to
each of these 260 individuals (Science tBusiness)
or ¬(Science t Business), and Engineering or
¬Engineering . In case an at-most restriction is vi-
olated, e.g., a student has more than 91 hasCredit-
fillers of Engineering , a nondeterministic merge-
rule tries to reduce the number of these individu-
als by merging a pair of individuals until the up-
per bound specified in this at-most restriction is
satisfied. Searching for a model in such an arith-
metically uninformed or blind way is usually very
inefficient.

An obvious question might be raised whether
bigger numbers will be used in qualified number
restrictions occurring in OWL 2 ontologies. First,
this seems to be a chicken-and-egg problem be-
cause in the presence of inefficient reasoning tech-
niques for cases with bigger numbers in qualified
number restrictions ontology designers will most
likely avoid the use of these constructs. So, an em-
pirical analysis of existing ontologies might be mis-
leading about the necessity of efficient reasoning
techniques for these cases. Second, we argue that
the use of bigger numbers in qualified number re-
strictions is very natural in many domains (e.g.,
in the example above) and conceptual restrictions
for role fillers are essential. This is also motivated
by examples from medical domains, for instance
the human anatomy distinguishes hundreds of dif-
ferent kinds of bones as part of the human skele-
ton [28]. Our third argument is about the diffi-
culty of conjunctions of interdependent qualified
number restrictions, where the calculus proposed
in this article is better informed and far superior
due to the use of linear integer programming be-
cause such a conjunction is represented as a sys-
tem of linear inequations capturing all numerical
interdependencies (see below for more details).

Our hybrid calculus (see also [11]) is based on
a standard tableau algorithm for SH [3] modi-
fied and extended to deal with qualified number
restrictions and works with an inequation solver
based on integer linear programming. The algo-
rithm encodes number restrictions into a set of in-
equations using the so-called atomic decomposi-
tion technique [30]. The set of inequations is pro-
cessed by the inequation solver which finds, if pos-
sible, a minimal non-negative integer solution (dis-
tribution of role fillers constrained by number re-

strictions) satisfying the inequations. The algo-
rithm ensures that such a distribution of role fillers
also satisfies the logical restrictions.

Since this hybrid algorithm collects all the in-
formation about arithmetic expressions before cre-
ating any role filler, it will not satisfy any at-
least restriction by violating an at-most restriction
and there is no need for a mechanism of merg-
ing role fillers. Moreover, it reasons about num-
ber restrictions by means of an inequation solver,
thus its performance is not affected by the val-
ues of numbers occurring in number restrictions.
Since the solution from the inequation solver sat-
isfies all numerical restrictions imposed by at-least
and at-most restrictions, our calculus needs to cre-
ate only one so-called proxy individual (inspired
by [13]) representing a set of role fillers. Consid-
ering all these features the proposed hybrid algo-
rithm is well suited to improve average case per-
formance. Furthermore, in [7, Chapter 6] it has
been shown that a tableau procedure extended by
global caching and an algebraic method similar to
the one presented in [30,15] and in this article is
worst-case optimal for SHIQ. Although the cal-
culus presented in our article is different from the
one in [7] we conjecture that the result presented
in [7] can be transferred to our work (if extended
by global caching) because the use of integer linear
programming was essential to proving worst-case
optimality.

This calculus extends our work presented in [8]
by (i) covering Abox consistency for SHQ with
general Tboxes, and (ii) introducing the use of
proxy individuals representing sets of role fillers.
It complements the work in [9,10] (which extends
the work in [8] to ALCOQ) by additionally deal-
ing with role hierarchies and transitive roles and
also giving evidence that (i) the absence of nomi-
nals can lead to a more efficient calculus because
the atomic decomposition can be applied locally
on the fly, which significantly reduces the number
of partitions to be considered, and (ii) restricted
forms of nominals can be viewed as Abox individ-
uals allowing a more efficient treatment. This arti-
cle also discusses practical aspects of using the hy-
brid method and presents evaluation results based
on an implemented prototype. It also significantly
differs from the work presented in [29,30] where
no formal calculus was proposed and the covered
logic did not support Abox consistency for SHQ
with general Tboxes. Our early work presented in

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 3

[15] did not deal with Aboxes and was based on
a recursive calculus without using proxy individu-
als and did not provide any proof for soundness,
completeness, or termination. This article also ex-
tends the work on the signature calculus presented
in [13] because the signature calculus, although us-
ing proxy individuals to represent sets of identical
individuals, first satisfies all relevant at-least re-
strictions and then tries to satisfy violated at-most
restrictions by merging affected signatures.

The remainder of this article is structured as fol-
lows. After briefly introducing the DL SHQ and
some preprocessing steps in the next section, we
present the hybrid Abox calculus in Section 3, il-
lustrate the rules with two examples, and conclude
this section with formal proofs. Section 4 starts
the second major part of this article, practical rea-
soning. We analyze the complexity of the standard
and hybrid algorithm for dealing with number re-
strictions and present optimization techniques for
the hybrid algorithm. In Section 5 the architec-
ture of the implemented prototype reasoner is de-
scribed. A detailed evaluation of the prototype is
presented in Section 6. We conclude this article
with a discussion and outline future work.

2. Description Logic SHQ

In the following, three disjoint sets are defined;
NC is the set of concepts names; NR = NRT ∪NRS

is the set of all role names which consists of transi-
tive (NRT) and non-transitive (NRS) roles; I is the
set of all individuals, while IA ⊆ I is the set of indi-
viduals occurring in an Abox A. We use a standard
Tarski-style semantics based on an interpretation
I = (∆I , ·I), where ∆I is the non-empty domain
and ·I the interpretation function. The interpre-
tation I gives meaning to the atomic constructs
of SHQ and is extended to complex constructs
as shown in Table 1, where we assume that C,D
are arbitrary concept descriptions, R,S ∈ NR,
a, b ∈ IA, n,m ∈ N, and R#(x,C) denotes the
cardinality of {x | (x, y) ∈ RI∧y ∈ CI}. A concept
description C is said to be satisfiable by an inter-
pretation I iff CI 6= ∅. We use > (⊥) as abbrevi-
ations for A t ¬A (A u ¬A) for some A ∈ NC .

A role hierarchy R is a set of axioms of the form
R v S where R,S ∈ NR. In the following, let v∗
be the transitive, reflexive closure of v over NR.
For R v∗ S, R is called a sub-role of S and S a

Table 1

Syntax and semantics of SHQ.

Syntax Semantics

Concepts

A AI ⊆ ∆I , A is a concept name

¬C ∆I\CI
C uD CI ∩DI
C tD CI ∪DI
∀R.C

˘
x | ∀y : (x, y) ∈ RI ⇒ y ∈ CI

¯
≥nR.C

˘
x |#RI(x,C) ≥ n

¯
≤mR.C

˘
x |#RI(x,C) ≤ m

¯
Roles

R ∈ NR RI ⊆ ∆I ×∆I

R ∈ NRT RI = (RI)+

Axioms

R v S RI ⊆ SI
C v D CI ⊆ DI

Assertions

a : C aI ∈ CI
(a, b) : R (aI , bI) ∈ RI
a 6 .= b aI 6= bI

super-role of R. A role is called simple if it is nei-
ther transitive nor has any transitive sub-role. In
order to remain decidable qualified number restric-
tions are only allowed for simple roles with the ex-
ception of ≥1R.C. However, recent investigations
in [26] show that this condition could be relaxed
in the absence of inverse roles. Moreover, ≤0R.C
is obviously equivalent to ∀R.¬C.

Definition 1 (Tbox) A SHQ Tbox T w.r.t. a role
hierarchy R is a finite set of axioms of the form
C v D or C ≡ D where C, D are concept
expressions and C ≡ D is the placeholder for
{C v D, D v C}. A Tbox T is satisfiable by an
interpretation I iff I satisfies all axioms in T and
R.

Definition 2 (Abox) A SHQ AboxA w.r.t. a Tbox
T and a role hierarchyR is a finite set of assertions
of the form a : C, (a, b) : R, and a 6 .= b. An Abox A
is satisfiable by an interpretation I (or consistent)
iff I satisfies T and R and all assertions in A.

Let a, b ∈ I be (possibly unnamed) individuals,
given an assertion (a, b) :R, a is called a predeces-
sor of b and b a successor or role filler of a. The R-
fillers of a are defined as Fil(a,R) = {b | (aI , bI) ∈
RI}.

4 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

Inspired by [30] we transform given qualified
number restrictions to unqualified number restric-
tions with (≥nR)I = (≥nR.>)I , (≤nR)I = (≤
nR.>)I , and add a new role-set difference opera-
tor ∀(R\R′).C such that (∀(R\R′).C)I = {x | ∀y :
(x, y) ∈ (RI \R′I) ⇒ y ∈ CI}. The resulting lan-
guage is called SHN \. Let ¬̇C denote the standard
negation normal form (NNF)2 of ¬C. We define a
recursive function unQ which rewrites SHQ asser-
tions or concept descriptions into SHN \. It is im-
portant to note that this rewriting process always
introduces for each transformed qualified number
restriction a unique new role.

Definition 3 (unQ) This function transforms the
input description into its NNF and replaces qual-
ified number restrictions (if C 6= >). In the fol-
lowing each R′ is a new role in NR with R :=
R∪ {R′ v R}:
unQ(C) := C if C ∈ NC

unQ(¬C) := ¬C if C ∈ NC , unQ(¬̇C) otherwise
unQ(∀R.C) := ∀R.unQ(C)
unQ(C uD) := unQ(C) u unQ(D)
unQ(C tD) := unQ(C) t unQ(D)
unQ(≥ nR.C) := (≥ nR′) u ∀R′.unQ(C) (1)
unQ(≤ nR.C) := (≤ nR′)u∀(R\R′).unQ(¬̇C) (2)
unQ(a :C) := a :unQ(C)
unQ((a, b) :R) := (a, b) :R
unQ(a 6 .= b) := a 6 .= b

Remark According to [30] one can replace a
qualified number restriction of the form (≥nR.C)
by (∃R′ : (R′ v R) ∈ R∧ ≥ nR′ u ∀R′.C) and
≤nR.C by ∃R′ such that (R′ vR)∈R, ≤nR′ u
∀R′.Cu∀R\R′.(¬C) ((1) and (2)). Therefore, ¬(≥
nR.C) (which is equal to ≤(n−1)R.C) is equiv-
alent to (∀R′ v R : ≤(n−1)R′ t ∃R′.¬C) which
is not a formula expressible in SHQ. Hence, in
order to avoid negating converted forms of quali-
fied number restrictions, unQ must be applied ini-
tially to the negation normal form of the input
Tbox/Abox.

Since (2) introduces a negation itself, the negated
description needs to be converted to NNF before
further applying unQ. Our language is not closed
under negation w.r.t. the concept descriptions cre-
ated by rule (1) or (2). However, our calculus en-
sures that these concept descriptions will never be
negated.

2The negation normal form of ¬(≥nR.C) (¬(≤nR.C))
is defined as ≤(n−1)R.C (≥(n+1)R.C) respectively.

Since (2) is slightly different from what is pro-
posed in [30], we prove this equivalence based on
the semantics of the interpretation function I.

Proposition 4 (≤nR.C) is equisatisfiable with the
expression (∀(R\R′).¬C u≤nR′) with ∃R′ : R′v
R.

Proof. The hypothesis can be translated to:
(≤ nR.C)I = {a |#{y| 〈a, y〉 ∈ RI ∧ y ∈ CI} ≤
n} ⇔
∃I ′ : {a | ∃R′ : R′I

′ ⊆ RI
′ ∧ #{y | 〈a, y〉 ∈ R′I′} ≤

n ∧ ∀b : 〈a, b〉 ∈ RI
′ ∧ 〈a, b〉 /∈ R′I

′ ⇒ b ∈
∆I

′\CI′}.
(⇐): If a ∈ ∆I

′
, 〈a, y〉 ∈ RI′

, y ∈ CI′
, we can con-

clude that 〈a, y〉 ∈ R′I
′

(because if 〈a, y〉 /∈ R′I
′

then y ∈ ∆I
′\CI′

). Since we have #{y | 〈a, y〉 ∈
R′I

′} ≤ n we can define I such that it satisfies
(≤ nR.C)I .
(⇒): We can simply define RI

′
= R′I

′
∪R′′I

′
such

that for all 〈a, b〉 ∈ RI if b ∈ CI then 〈a, b〉 ∈ R′I′

and if b ∈ ∆I\CI then 〈a, b〉 ∈ R′′I′
. �

3. A Hybrid Abox Tableau Calculus for SHQ

Extending ALC with qualified number restric-
tions provides the ability to express arithmetic re-
strictions on role fillers. This expressiveness can
increase the practical complexity of the reasoning
when employing arithmetically uninformed algo-
rithms (e.g., see [16,3,22]). Therefore, a tableau
calculus which benefits from arithmetic methods
can improve the average case performance of rea-
soning about qualified cardinality restrictions. In
this section we propose a hybrid tableau algorithm
which benefits from integer linear programming
to properly handle numerical features of the lan-
guage. We present a tableau algorithm that ac-
cepts a general Abox A w.r.t. a general Tbox T
and a role hierarchy R as input and either returns
“inconsistent” if A is not consistent or otherwise
“consistent” with a complete and clash-free com-
pletion forest.

For reasons of simplicity we assume in this arti-
cle that standard Tbox inference services w.r.t. a
Tbox T and a role hierarchy R, e.g., concept sat-
isfiability and subsumption testing, are reduced to
Abox satisfiability in the usual way. For instance, a
concept C is satisfiable iff the Abox {a : C} is sat-
isfiable and a concept C is subsumed by a concept
D iff the Abox {a : ¬D u C} is unsatisfiable.

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 5

3.1. Preprocessing

As a preprocessing step, the input Abox and
Tbox are transformed into SHN \ as defined in
Section 2. Similar to [24], in order to propagate
Tbox axioms to all individuals we define the con-
cept CT :=

d
CvD∈T unQ(¬̇CtD) and U as a new

transitive role in the role hierarchy R extended
by {RvU |R ∈ NR}. In order to examine the con-
sistency of A, the algorithm first extends A by
{x0: (CT u ∀U.CT)} ∪ {(x0, x) :U | x occurs in A},
where x0 is new in A. By this transformation, we
impose the axioms in the Tbox on all individuals
in A. Furthermore, we rewrite the role assertions
in A as follows.

Definition 5 If x, y ∈ IA then there exists a unique
role name Rxy ∈ NR only used to represent that
y is an R-filler of x with Rxy v R ∈ R. In other
words whenever (x, z) : Rxy we have yI = zI .

We replace role assertions of the form (b, c) :R
by b : (≥1Rbc u ≤1Rbc). The reason for translat-
ing Abox role assertions into number restrictions is
due to the fact that they actually impose a numer-
ical restriction on an individual. For example, an
assertion (b, c) :R implies there exists one and only
one Rbc-filler for b which is c. Since the hybrid al-
gorithm needs to consider all number restrictions
before creating an arithmetic solution and gener-
ating successors, it is necessary to consider these
restrictions as well.

3.2. Atomic Decomposition of Role Fillers

Atomic decomposition is a technique first pro-
posed in [30] for reasoning about sets. Later it
was applied for concept languages such as in de-
scription logics for reasoning about role fillers. The
idea behind the atomic decomposition is to con-
sider all possible disjoint subsets of a role filler
such that we have |A ∪ B| = |A| + |B| for two
subsets (partitions) A and B (| · | denotes set car-
dinality). For example, assume we want to trans-
late the following number restrictions occurring in
an Abox A into arithmetic inequations: A = {a :
(≤3hasDaughter u≤4hasSon u≥5hasChild)}
(adapted from [30]).

Different partitions for this set of restrictions are
defined as:

c = children, not sons, not daughters.
s = sons, not children, not daughters.
d = daughters, not children, not sons.
cs = children, sons, not daughters.
cd = children, daughters, not sons.
sd = sons, daughters, not children.
csd = children, sons, daughters.

Since it is an atomic decomposition and subsets
are mutually disjoint, we can translate the three
number restrictions for the individual a into the
following inequations:

|d|+ |sd|+ |cd|+ |csd| ≤ 3
|s|+ |sd|+ |cs|+ |csd| ≤ 4
|c|+ |cd|+ |cs|+ |csd| ≥ 5

Finding an integer solution for this system of in-
equations will result in a first solution for the ini-
tial set of number restrictions. As there may exist
more than one solution for this system, there may
be a nondeterministic approach needed to handle
it.

Due to the nature of SHN \, a quasi tree-model
property for concepts3 [36] ensures that different
individuals in a model do not share common role
fillers and role fillers (as part of a concept model)
cannot affect their predecessors due to the absence
of inverse roles. The only exception are individu-
als from IA occurring in an Abox A. Thus, in the
following we introduce the necessary notation to
define the atomic decomposition of role fillers lo-
cally4 for individuals, i.e., it is based for each in-
dividual on the roles of its role fillers.

3.3. Completion Forest

In the following we introduce the notion of a
completion forest and some other notation to spec-
ify the completion rules that form the major part
of our tableau algorithm.

3The tree model states that a concept C has a model
(an interpretation I with CI 6= ∅) iff C has a tree-shaped

model, i.e., one in which the interpretation of role filler rela-

tions defines a tree shaped directed graph. Transitive roles
compromise the tree model property to some extent because

they can cause “short-cuts” down the branches of a tree.

This relaxed version is called quasi tree-model property.
4For instance, the DL ALCOQ, which supports so-called

nominals, requires a global decomposition (see [9,10] for

more details).

6 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

Definition 6 (Closure) The closure clos(E) of a
concept expression E is the smallest set of con-
cepts such that: E ∈ clos(E), (¬D) ∈ clos(E) ⇒
D ∈ clos(E), (C t D) ∈ clos(E) or (C u D) ∈
clos(E)⇒ C∈clos(E) and D∈clos(E), (∀R.C)∈
clos(E) ⇒ C ∈ clos(E), (≥ nR.C) ∈ clos(E) or
(≤mR.C)∈clos(E)⇒ C∈clos(E).

For a Tbox T we define clos(T) such that if
(C v D) ∈ T or (C ≡ D) ∈ T then clos(C) ⊆
clos(T) and clos(D) ⊆ T . Similarly for an Abox
A we define clos(A) such that if (a :C) ∈ A then
clos(C) ⊆ clos(A).

Definition 7 (Completion Forest) A completion for-
est F = (V,E,L,LE) for a SHQ Abox A is com-
posed of a set of arbitrarily connected nodes as the
roots5 of completion trees (if one ignores the con-
nections between root nodes). Every node x ∈ V
is labeled by L(x) ⊆ clos(A) and LE(x) as a set
of inequations of the form (

∑
i∈1..k vi) ./ n with

./∈ {≤, ≥}, n ∈ N, and vi ∈ V where V is a set
of variables (see Definition 10 below); each edge
〈x, y〉 ∈ E is labeled by the set L(〈x, y〉) ⊆ NR,
and x (y) is called a predecessor (successor) of y
(x), and the transitively closed set of successors
(predecessors) is called descendants (ancestors) re-
spectively. We maintain the distinction between
nodes of a forest by the relation 6 .=. In the follow-
ing we also refer to elements of L and LE as con-
straints of a node. Notice that our version of com-
pletion forests is slightly different from standard
completion graphs (e.g., see [24]).

Definition 8 (Node-related Partitions) The setRx

of related roles for a node x is defined as Rx =
{S | {≤nS, ≥mS} ∩ L(x) 6= ∅}. We define a par-
titioning RSx = (

⋃
RS⊆Rx

{RS}) \ {∅} and for
RSx ∈ RSx we define RSIx = (

⋂
S∈RSx

FilI(x, S))\
(
⋃

S∈Rx\RSx
FilI(x, S)) with FilI(x, S) = {yI | y ∈

Fil(x, S)}. RSIx represents the interpretation of
fillers of x that are fillers for the roles in RS but
not fillers for the roles in Rx \ RS . Therefore, by
definition the fillers of x associated with the par-
titions in RSx are mutually disjoint w.r.t. the in-
terpretation I.

Definition 9 (Partition Variables) We assume a set
V of variables and by using a mapping α : V ↔
RSx we associate a unique variable v ∈ V with
each partition RSx in RSx such that α(v) = RSx.

5In contrast to the standard notion of root nodes of a
tree we allow for root nodes incoming edges from other root

nodes.

Definition 10 (Inequations) Let VR be defined as
the set of all variables related to a role R such that
VR = {v ∈ V |R ∈ α(v)}. A function ξ is used to
map number restrictions to inequations of the form
ξ(R, ./, n) := (

∑
vi∈VR vi) ./ n where ./∈ {≤,≥}

and n ∈ N.

Since all concept restrictions for node successors
that are not root nodes are propagated through
universal restrictions for roles and a new role is
created for each role filler occurring in a role asser-
tion, we can conclude that all nodes in a certain
node partition share the same restrictions and can
be dealt with as a unit. We call this unit proxy
node which is a representative of possibly more
than one node.

Definition 11 (Node Cardinality) The cardinality
associated with proxy nodes is defined by the map-
ping card : V → N.

Definition 12 (Blocked Node) A node x in a forest
F is blocked by a node y iff x, y are not root nodes
and y is a ancestor of x such that L(x) ⊆ L(y).

Definition 13 (Clash Triggers) A node x contains
a clash iff there exists a concept name A ∈ NC such
that {A,¬A} ⊆ L(x) (logical clash) or LE(x) does
not have a non-negative integer solution (arith-
metic clash).

Definition 14 (Arithmetic Solution) An arithmetic
solution is represented using the function σ :
V → N which assigns a non-negative integer
value to each variable in V. Let Vx be the set
of variables assigned to a node x, Vx = {v ∈
V | v occurs in LE(x)}. We define a set of solutions
Ω for x as Ω(x) := {σ(v)=n | n ∈ N, v ∈ Vx}.
Notice that the goal (or objective) function of the
inequation solver is to minimize the sum of the
variables occurring in the input inequations.

The algorithm starts with the forest FA with
the individuals mentioned in A as root nodes. For
each a ∈ IA a root node xa will be created with
L(xa) = {C | (a : C) ∈A}. Additionally, for every
root node x we set card(x) = 1.

We illustrate these definitions with a simple ex-
ample shown in Figure 1. Assume for a node x
that we have L(x) = {≥ 3R, ≤2T , ≥ 1S,≤ 1S}.
Therefore, we have Rx = {R, T, S} and RSx con-
sists of 7 different partitions named p1, . . . , p7 (see
Figure 1).

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 7

p1 = {R}, p2 = {T}, p4 = {S},
p3 = {R, T}, p5 = {R,S}, p6 = {S, T},
p7 = {R,S, T}

p1 p4

p2

p3

p5

p6
p7

R S

T

RT

RS

ST

RST

Fig. 1. Atomic Decomposition Example.

Assuming a binary coding of the indices of vari-
ables, where the first digit from the right repre-
sents R, the second T , and the last S, we define the
variables such that each vi is associated with its
corresponding partition (see α(v) below and Fig-
ure 1).

α(v001)= p1, α(v010)= p2, α(v100)= p4,
α(v011)= p3, α(v101)= p5, α(v110)= p6,
α(v111)= p7

Hence, the number restrictions in L(x) can be
translated to the following set of inequations in
LE(x):

v001 + v011 + v101 + v111 ≥ 3
v010 + v011 + v110 + v111 ≤ 2
v100 + v101 + v110 + v111 ≤ 1
v100 + v101 + v110 + v111 ≥ 1

3.4. Partitioning for Root Nodes

In arbitrary Aboxes, similar to the effect of in-
verse roles, a root node in a corresponding com-
pletion forest can be influenced by its successors
if they are also root nodes. When a new number
restriction for a root node x is added to L(x), the
algorithm needs to refine the partitioning assigned
to x. However, the current state of the forest is a
result of existing solutions based on the previous
partitioning. In fact, the newly added number re-
striction has been added to L(x) after the applica-
tion of a completion rule (in fact, by the fil -Rule

which is explained in the next section). Therefore,
we can conclude that the newly added number re-
striction is a consequence of the solution for the
previous set of inequations. Hence, if the algorithm
does not maintain the existing solutions, in fact, it
may remove the cause of the current partitioning
which would result in unsoundness.

We considered two approaches to handle cy-
cles between Abox individuals (represented as root
nodes).

Global partitioning: One can treat an individual
in an Abox similarly to a nominal. Because of the
global effect of nominals, one has to consider a
global partitioning for all roles occurring in the
Abox (see [9,10] for more details). Hence, all possi-
ble partitions and therefore variables will be com-
puted before starting the application of the rules.
Consequently, whenever a number restriction is
added to the label of a node, there is no need
to recompute the partitioning to construct new
inequations. Although global partitioning enables
the algorithm to deal with cycles, according to
the possibly large number of partitions/variables,
it might impose a high nondeterminism on the
tableau algorithm. Moreover, the number of added
roles (and partitions) could become enormously
large for Aboxes containing many role assertions
because our algorithm introduces a new sub-role
for each Abox assertion of the form (a, b) :R.

Incremental local partitioning: In contrast to
nominals, which increase the expressiveness of the
language and can have a global effect on other
nodes, individuals in Aboxes have a local effect
and can be handled locally. Moreover, one can usu-
ally assume that Aboxes contain a large number
of individuals but only a relatively small number
of nominals. Therefore, in the context of SHQ we
decided to adopt incremental partitioning and deal
with cycles between Abox individuals locally. This
means that whenever a previously unknown num-
ber restriction for a new role is added to a root
node, a new extended partitioning is computed
and the corresponding arithmetic constraints are
updated. Please note that this is only necessary
for root nodes.

3.5. Completion Rules

The completion rules are shown in Figure 2. The
completion rules are always applied with the fol-

8 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

reset-Rule if x is a root node, {(≤ nR), (≥ nR)} ∩ L(x) 6= ∅, and ∀v ∈ Vx : R /∈ α(v)
then set LE(x) := ∅ and for every successor y of x set L(〈x, y〉) := ∅

merge-Rule if there exists root nodes zx, za, zb for x, a, b ∈ IA such that R′ v∗ Rxa, R
′ ∈

L(〈zx, zb〉)
then merge the nodes za, zb and their labels and replace every occurrence of za in the
completion graph by zb

u-Rule if (C1 u C2) ∈ L(x) and {C1, C2} 6⊆ L(x)
then set L(x) = L(x) ∪ {C1, C2}

t-Rule if (C1 t C2) ∈ L(x) and {C1, C2} ∩ L(x) = ∅
then set L(x) = L(x) ∪ {X} with X ∈ {C1, C2}

∀-Rule if ∀R.C ∈ L(x) and there exists a y and R′ with R′ ∈ L(〈x, y〉), C /∈ L(y), R′ v∗R
then set L(y) = L(y) ∪ {C}

∀\-Rule if ∀R\S.C ∈ L(x) and there exists a y and R′ with R′ ∈ L(〈x, y〉), R′ v∗R, C /∈ L(y),
and there exists no S′ such that S′ v∗S and S′ ∈ L(〈x, y〉)
then set L(y) = L(y) ∪ {C}

∀+-Rule if ∀R.C ∈ L(x) and there exists a y and R′, S with R′∈L(〈x, y〉), R′ v∗ S, S v∗R,
S ∈ NRT , and ∀S.C /∈ L(y)
then set L(y) = L(y) ∪ {∀S.C}

ch-Rule If there occurs v in LE(x) with {v ≥ 1, v ≤ 0} ∩ LE(x) = ∅
then set LE(x) = LE(x) ∪ {X} with X ∈ {v ≥ 1, v ≤ 0}

disjoint-Rule if there occurs v in LE(zx) with {R′, S′} ⊆ α(v), R′ v∗Rxa, S′ v∗Rxb, x, a, b ∈ IA,
a 6 .= b ∈ A, v ≤ 0 /∈ LE(zx)
then set LE(zx) := LE(zx) ∪ {v ≤ 0}

equal-Rule if there occurs v in LE(zx) with R′ ∈ α(v), S′ /∈ α(v), R′ v∗ Rxa, S′ v∗ Sxa,
x, a, b ∈ IA, v ≤ 0 /∈ LE(zx)
then set LE(zx) := LE(zx) ∪ {v ≤ 0}

hierarchy-Rule if there occurs v in LE(x) with R ∈ α(v), S /∈ α(v), R v∗S, v ≤ 0 /∈ LE(x)
then set LE(x) := LE(x) ∪ {v ≤ 0}

≥-Rule If (≥ nR) ∈ L(x) and ξ(R,≥, n) /∈ LE(x)
then set LE(x) = LE(x) ∪ {ξ(R,≥, n)}

≤-Rule If (≤ nR) ∈ L(x) and ξ(R,≤, n) /∈ LE(x)
then set LE(x) = LE(x) ∪ {ξ(R,≤, n)}

fil-Rule If there exists v occurring in LE(zx) such that σ(v) = n with n > 0:
(a) if n = 1, zx, zb root nodes, and Rxb ∈ α(v) with x, b ∈ IA

then if L(〈zx, zb〉) = ∅ then set L(〈zx, zb〉) := α(v) end if
else

(b) if zx is not blocked and ¬∃y : L(〈zx, y〉) = α(v)
then create a new node y and set L(〈zx, y〉) := α(v) and card(y) = n

Fig. 2. Completion rules for SHQ Abox consistency (listed in decreasing priority).

lowing priorities (given in decreasing priority). A
rule of lower priority can never be applied if an-
other one with a higher priority is applicable.

1. reset-Rule and merge-Rule
2. u-Rule, t-Rule, ∀-Rule, ∀\-Rule, ∀+-Rule,

ch-Rule, disjoint-Rule, equal -Rule, and hier-
archy-Rule

3. ≤-Rule and ≥-Rule
4. fil -Rule

There are two limitations on the application of
the rules:

– priority of the rules, and
– rules are only applicable to nodes that are not

blocked.

All rules which have the two highest priorities
among the completion rules, extend L(x) with new
logical expressions or further constrain LE(x). Af-
ter the application of these rules the logical label

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 9

of the node x cannot be expanded anymore. This
is a consequence of the characteristics of SHQ be-
cause the labels of a non-root node can never be
affected by its successors in the graph.

Definition 15 (Complete/Clash-free Forest) A com-
pletion forest F is called complete if no comple-
tion rule is applicable to any node of F . A com-
pletion forest F is called clash-free if none of the
clash triggers defined in Definition 13 is applicable
to any node of F .

The u-Rule, t-Rule, ∀-Rule, and the ∀+-Rule
are similar to the ones in standard tableau al-
gorithms. The ∀+-Rule preserves the semantics
of transitive roles. The ∀\-Rule handles the new
universal restriction expression introduced by the
transformation function unQ.

The t-Rule and ch-Rule are nondeterministic
while all other rules are deterministic.

≤-Rule, ≥-Rule: Since all logical constraints of a
node are collected by the rules with the two highest
priorities, after their application the algorithm has
collected all number restrictions for a node. There-
fore, it is possible to compute the final partition-
ing with respect to these restrictions. The ≤-Rule
and the ≥-Rule translate the number restrictions,
based on the atomic decomposition technique, into
inequations. Consequently, they will add these in-
equations to LE(x) for a node x. In case x is a root
node with incoming edges from other root nodes,
the partitioning might be revised later due to the
interaction of the reset-Rule and fil -Rule.

ch-Rule: The intuition behind the ch-Rule is due
to partitioning consequences. When we partition
all successors for a node, we actually consider all
possible cases for the role successors. If a parti-
tion px for a node x is logically unsatisfiable, the
corresponding variable v with α(v) = px should
be zero. But if it is logically satisfiable, nothing
but the current set of inequations can restrict the
number of nodes being fillers for the roles in the
partition px. On the other hand, the arithmetic
reasoner is unaware of the satisfiability of a con-
cept representing a partition. Therefore, in order
to organize the search space with respect to this
semantic branching and ensure completeness, the
algorithm needs to distinguish between these two
cases: v ≥ 1 or v ≤ 0.

disjoint-Rule: In order to preserve Abox asser-
tions of the form a 6 .= b, if there exists a node zx

where a variable v occurs in LE(zx) such that
{R′, S′} ⊆ α(v) and R′ v∗ Rxa and S′ v∗ Rxb,
then this variable needs to be equal to zero be-
cause otherwise a solution might exist where a and
b need to be merged.

equal-Rule: Since fillers of Rxy and Sxy have to
be equivalent, if there exists a node zx where a
variable v occurs in LE(zx) such that R′ ∈ α(v)
but S′ /∈ α(v) with R′ v∗ Rxy and S′ v∗ Sxy,
then this variable needs to be equal to zero because
otherwise a solution might exist where the fillers
of Rxy and Sxy would not be equivalent.

hierarchy-Rule: In order to preserve role hierar-
chies, if there exists a node x where a variable v
occurs in LE(x) such that R ∈ α(v) and S /∈ α(v)
but R v∗S, i.e., the partition α(v) violates the role
hierarchy, then this variable needs to be equal to
zero in order to “disable” this partition.

reset-Rule: In case a number restriction with a
new role R has been added to a root node x, the
label LE and the edge label of all successors of x
are reset to ∅.
merge-Rule: This rule merges the successors (and
root nodes) za, zb of zx into one node by replacing
every occurrence of za in the completion graph by
zb. The labels L and LE of zb are unified with the
corresponding labels of za. All incoming (outgoing)
edges of za become now incoming (outgoing) edges
of zb. We deliberately do not specify the details of
such a node merger but appeal to the intuition of
the reader and refer to the following two section
describing merging examples.

fil-Rule: The fil -Rule is the rule with the lowest
priority and it is the only generating rule. It possi-
bly creates one successor (proxy node) for a node
zx that is not blocked and sets the cardinality of
the proxy node to σ(v). If zx is a root node and has
an already existing successor xb, which is a also a
root node, and the role set for 〈zx, zb〉 is empty, i.e.,
it has not yet been initialized or has been reset by
the reset-rule, the role set is set to α(v). This rule
only creates successors based on the non-negative
integer solution provided by the arithmetic rea-
soner. Hence, it will never create successors for a
node that might violate number restrictions of this
node. Therefore, there is no need for a mechanism
of merging nodes created by this rule.

10 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

Due to possible cycles between root nodes, one
has to consider incremental partitioning for root
nodes because a previously unknown number re-
striction could be propagated to a root node.
Whenever a concept expression of the form (≤nR)
or (≥ mR) is added to L(x) (which means it did
not already exist in L(x)), the following three tasks
take place:

1. The reset-Rule becomes applicable for x,
which sets LE(x) := ∅ and clears the arith-
metic label constraining the outgoing edges
of x.

2. Now that LE(x) is empty, the ≤-Rule and ≥-
Rule will be invoked again to recompute the
partitions and variables. Afterwards, the set
of inequations based on the new partitioning
is added.

3. If (σ(vi) = n) ∈ Ω(x), where vi ∈ Vx corre-
sponds to the previous partitioning, then set

LE(x) := LE(x)∪{
∑

v′
j∈Vx,i

v′j ≥ n,
∑

v′
j∈Vx,i

v′j ≤ n}

where Vx,i := {v′j ∈ V ′x | α(vi) ⊆ α(v′j)} and
v′j ∈ V ′x are based on the new partitioning.

The third task in fact maintains the previous so-
lutions in x and records it by means of inequali-
ties in LE(x). Therefore, the solution based on the
new partitioning will be recreated by the arith-
metic reasoner. To observe the functioning of these
tasks in more detail, we refer the reader to Section
3.7.

Remark When the algorithm records the solu-
tion σ(vi) = n by means of inequations, we can
consider two cases for the successors that had been
generated by the fil -Rule, based on the previous
solution:

1. The successor is a root node y. Therefore,
the corresponding solution must be of the
form σ(vi) = 1 where Rxy ∈ α(vi). This
solution will be translated to

∑
v′j = 1 for

all j such that that α(vi) ⊆ α(v′j). The so-
lution for this equality will be also of the
form σ(v′s) = 1 for some vs ∈ Vx,i. Since
Rxy ∈ α(vi) and α(vi) ⊆ α(v′s), we can con-
clude that Rxy ∈ α(v′s). Hence, the new solu-
tion will enhance the edge between x and y
and possibly extend6 its label.

6Since α(vi) ⊆ α(v′s), the new solution will not remove
any role name from the label of this edge.

2. The successor is not a root node and rep-
resents an anonymous individual xi and
card(xi) = n. In this case n in the corre-
sponding solution can be greater or equal to 1
and later the algorithm can create a solution
for which p new nodes will be created, where
1 ≤ p ≤ n. In other words, the node xi will
be removed from the forest and will be re-
placed by p new nodes. Since there exists no
edge from the new nodes to root nodes, the
new nodes never propagate back any infor-
mation in the forest to root nodes. Therefore,
removing xi from the forest does not violate
restrictions on the root nodes.

3.6. Simple merging example

Let us assume an Abox A = {x :≤1R, (x, y) :R,
(x, z) :R}. The preprocessing converts the role as-
sertions and we get a newA′ = {x :≤1R, x :≥1Rxy,
x : ≤1Rxy, x :≥1Rxz, x :≤1Rxz}. From this we
derive a forest F and the root nodes x, y, z with
the following labels: R ∈ L(〈x, z〉), R ∈ L(〈x, y〉),
L(x) = {≤1R,≤1Rxy, ≥1Rxy,≤1Rxz, ≥1Rxz}
where {Rxy v R, Rxz v R} ⊆ R. Consider the
variables such that α(v001) = {R}, α(v010) = {Rxy},
α(v100) = {Rxz}, . . . , α(v111) = {R,Rxy, Rxz}.

After applying the hierarchy-Rule, we will have
v010 ≤ 0, v100 ≤ 0, and v110 ≤ 0. Hence, after
removing all variables that must be zero, the fol-
lowing system of inequations in LE(x) needs to be
solved:

v001 + v011 + v101 + v111 ≤ 1,
v011 + v111 = 1
v101 + v111 = 1

 (∗)

The only non-negative solution for (∗) is achieved
when it is decided by the ch-Rule that v111 ≥ 1
and all other variables are equal zero. This so-
lution, which is σ(v111) = 1, will invoke the fil -
Rule in Figure 2 which makes y and z the succes-
sors of x such that L(〈x, y〉) = {R,Rxy, Rxz} and
L(〈x, z〉) = {R,Rxy, Rxz}. Consequently, since
Rxy ∈ L(〈x, z〉), the merge-Rule in Figure 2 be-
comes applicable for the nodes y, z and merges
them.

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 11

a

b

L(a) =

{≤1Rab,≥1Rab}∪

{≤1Rac,≥1Rac,≤1R}
c

d

{R, Rab, Rac}

{R, Rab, Rac}

1

Fig. 3. Initial completion graph. Dashed edges do not exist

yet.

3.7. Complex merging example

Consider the Abox A with an empty Tbox
and role hierarchy: A = {b : ∀S.(∀R.(≥ 3S.C)),
a : ≤1R, (a, b) : R, (a, c) : R, (b, d) : R, (c, d) : S,
(d, c) : R}. Assume the algorithm generates a for-
est with root nodes a, b, c, and d.

Preprocessing:

1. Applying the function unQ: R = R ∪ {S′ v
S} and (≥3S.C)→ ≥3S′ u ∀S′.C

2. Converting role assertions:R = R∪{Rab v R,
Rac v R, Rbd v R, Scd v S, Rdc v R} and
L(a) = L(a) ∪ {≤ 1Rab, ≥ 1Rab, ≤ 1Rac,
≥ 1Rac}, L(b) = L(b) ∪ {≤ 1Rbd, ≥ 1Rbd},
L(c) = L(c) ∪ {≤ 1Scd, ≥ 1Scd}, L(d) =
L(d) ∪ {≤1Rdc, ≥1Rdc}

Applying the rules: The ≤-Rule and ≥-Rule are
applicable for all of the nodes and translate the
number restrictions into inequations (Figure 3).
Node a is similar to node x in the example in the
previous section and invokes the merge-Rule for c
and b.

Assume the merge-Rule replaces every occur-
rence of c by b, we will have L(b) = {≤ 1Rbd, ≥
1Rbd, ≤ 1Sbd, ≥ 1Sbd, ∀S.(∀R.(≥ 3S′ u ∀S′.C))}
and for d we will have L(d) = {≤ 1Rdb, ≥ 1Rdb}
(Figure 4). We have four unqualified number re-
strictions in L(b) (equivalent to two equality re-
strictions) which will be transformed into inequa-
tions by the ≤-Rule and the ≥-Rule. Assuming
α(v01) = {Rbd} and α(v10) = {Sbd}, we will have
v01 + v11 = 1 and v10 + v11 = 1. After applying
the hierarchy-Rule, we get v01 ≤ 0 and v10 ≤ 0.
Thus, there is only one solution for LE(b) which
is σ(v11) = 1 and the fil -Rule sets L(〈b, d〉) =
{Sbd, Rbd}.

Afterwards, the ∀-Rule becomes applicable for
the node b and adds ∀R.(≥3S′ u ∀S′.C) to L(d).
There is only one equation for d which results in

a b(c)

L(b) =

{≤1Rbd,≥1Rbd ≤1Sbd,≥1Sbd}∪

{∀S.(∀R.(≥ 3S′ % ∀S′.C))}

d

L(d) = {≤1Rdb,≥1Rdb}

∪{∀R.(≥ 3S′ % ∀S′.C)}

{R, Rab} {Rbd, Sbd}

1

Fig. 4. Completion graph after merging b and c.

a b(c)

b′

L(b′) = {C}
card(b′) = 2

L(b) =

{≤1Rbd,≥1Rbd ≤1Sbd,≥1Sbd}∪
{∀S.(∀R.(≥ 2S ′ % ∀S ′.C))}∪

{≥ 3S ′ % ∀S ′.C}

d

L(d) = {≤1Rdb,≥1Rdb}
∪{∀R.(≥ 3S ′ % ∀S ′.C)}

∪{C}

{R, Rab}

{Rdb}

{Rbd, Sbd, S
′}

{S ′}

1

Fig. 5. Final completion graph.

setting L(〈d, b〉) = {Rdb}. After this change, as
Rdb v R the ∀-Rule adds (≥ 3S′ u ∀S′.C) to
L(b). Since ≥ 3S′ did not exist in L(b), the al-
gorithm performs reset(b). The ≤-Rule and the
≥-Rule will be fired again to recompute the par-
titions, considering the new number restriction
≥3S′. Let α(v′001) = {Rbd}, α(v′010) = {Sbd}, and
α(v′100) = {S′}, the solution σ(v11) = 1 for b must
be expanded according to the new partitioning.
Considering α(v11) = {Rbd, Sbd} which is a subset
of α(v′011) and α(v′111), the equation v′011+v′111 = 1
will be added to LE(b) as a placeholder of σ(v11) =
1 and we will have:

v′001 + v′011 + v′101 + v′111 = 1
v′010 + v′011 + v′110 + v′111 = 1
v′100 + v′101 + v′110 + v′111 ≥ 3

v′011 + v′111 = 1

 (∗∗)

After applying the hierarchy-Rule, the variables
v′001, v′010, v′101, and v′110 (underlined in (∗∗)) must
be less than or equal to zero. One of the solu-
tions for (∗∗) can be achieved, after the ch-Rule
decided v′111 ≥ 1, v′011 ≤ 0, and v′100 ≥ 1, which
is σ(v′111) = 1 and σ(v′100) = 2. Subsequently, the
fil -Rule will be fired for these solutions which adds
S′ to L(〈b, d〉) and creates a new non-root node b′

for which L(〈b, b′〉) := {S′} and card(b′) = 2. Fi-
nally, the ∀-Rule becomes applicable for ∀S′.C in
b and adds C to L(d) and L(b′) (see Figure 5).

12 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

3.8. Proof of Termination, Soundness, and
Completeness

In this section we prove the termination, sound-
ness, and completeness of the proposed hybrid cal-
culus for the Abox consistency test. Weaker prob-
lems such as the Tbox satisfiability or concept sat-
isfiability test can be reduced to the Abox satisfi-
ability test with respect to a given Tbox and role
hierarchy (see also at the beginning of Section 3).

3.8.1. Tableau
In order to prove the soundness and complete-

ness of our calculus, a tableau is defined as an ab-
straction of a model to facilitate relating the re-
sult of the calculus with a model. In fact, it is
proven that a model can be constructed based on
the information in a tableau and for every model
there exists a tableau [21]. The similarity between
tableau and completion graphs, which are the re-
sult of the completion rules, makes it easier to
prove the soundness and completeness of the cal-
culus.

Due to the fact that after preprocessing the in-
put of the hybrid tableau calculus is in SHN \, we
define a tableau for SHN \ Aboxes with respect
to a role hierarchy R. The following definition is
similar to the one in [24].

Definition 16 (Tableau for SHN \) Let RA be the
set of role names and IA the set of individuals in
an Abox A, T = (S,LT , E ,J) is a tableau for A
with respect to role hierarchy R, where:

– S is a non-empty set of elements (representing
individuals),

– LT : S→ 2clos(A) maps elements of S to a set
of concepts,

– E : RA → 2S×S maps each role to a set of
pairs of elements in S,

– J : IA → S maps individuals occurring in A
to elements of S.

Moreover, for every s, t ∈ S,A ∈ NC , C1, C2, C ∈
clos(A), R,S ∈ NR the following properties hold
for T , where RT (s) := {t ∈ S | 〈s, t〉 ∈ E(R)}.

P1 If A ∈ LT (s), then ¬A /∈ LT (s).
P2 If C1uC2 ∈ LT (s), then C1 ∈ LT (s) and C2 ∈
LT (s).

P3 If C1 t C2 ∈ LT (s), then C1 ∈ LT (s) or C2 ∈
LT (s).

P4 If ∀R.C ∈ LT (s) and 〈s, t〉 ∈ E(R), then C ∈
LT (t).

P5 If ∀R.C ∈ LT (s), for some S v R we have S
is transitive, and 〈s, t〉 ∈ E(S), then ∀S.C ∈
LT (t).

P6 If ∀R\S.C ∈ LT (s), 〈s, t〉 ∈ E(R), but 〈s, t〉 /∈
E(S), then C ∈ LT (t).

P7 If 〈s, t〉 ∈ E(R), and R v S, then 〈s, t〉 ∈ E(S).
P8 If ≥ nR ∈ LT (s), then #RT (s) ≥ n
P9 If ≤ mR ∈ LT (s), then #RT (s) ≤ m
P10 If (a : C) ∈ A then C ∈ LT (J (a))
P11 If (a, b) : R ∈ A, then 〈J (a),J (b)〉 ∈ E(R)
P12 If a 6 .= b ∈ A, then J (a) 6= J (b)

Lemma 17 A SHQ Abox A has a tableau iff
unQ(A) has a SHN \ tableau, where unQ(A) de-
notes A after applying unQ to every assertion in
A.

Lemma 17 is a straightforward consequence of
the equisatisfiability of C and unQ(C) for every
concept expression C in SHQ (see Section 2 and
[30]).

3.8.2. Termination
In order to prove termination of the hybrid al-

gorithm, we prove that it constructs a finite for-
est. Since the given Abox has always a finite num-
ber of individuals (i.e., root nodes), it is sufficient
to prove that the hybrid algorithm creates finite
trees in which the root nodes represent Abox in-
dividuals. On the other hand, due to the fact that
we include nondeterministic rules, the t-Rule and
the ch-Rule, we must also prove that the algorithm
creates finitely many forests due to nondetermin-
ism.

Lemma 18 (Termination) The hybrid algorithm ter-
minates for a given Abox A with respect to a role
hierarchy R7.

Proof. Let m = |clos(A)| and k be the number
of different number restrictions after the prepro-
cessing step. Therefore, m is an upper bound on
the length of a concept expression in the label of a
node and k is the maximum number of roles par-
ticipating in the atomic decomposition of a node.
The algorithm creates a forest that consists of ar-
bitrarily connected root nodes and their non-root
node successors which appear in trees. The ter-
mination of the algorithm is a consequence of the
following facts:

7Since Tbox axioms are propagated through the univer-
sal transitive role, we do not mention the Tbox as an input

of the algorithm (see Section 2).

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 13

1. There are only two nondeterministic rules:
the t-Rule and the ch-Rule. The t-Rule can
be fired at most m times for a node x, which
is the maximum length of L(x). On the other
hand, the ch-Rule can be fired at most 2Vx

times and Vx is bounded by 2k. Accordingly,
we can conclude that the nondeterministic
rules can only be fired finitely often for a node
and therefore the algorithm creates finitely
many forests.

2. The only rule that removes a node from the
forest is the merge-Rule which removes a
root node each time. Since there are |IA| root
nodes in the forest, this rule can be fired at
most |IA| times for a node. Moreover, accord-
ing to the fact that the algorithm never cre-
ates a root node, it cannot fall in a loop of
removing and creating the same node.

3. The only generating node is the fil -Rule
which can create at most |Vx| successors for
a node x. Therefore, the out degree of the
forest is bounded by |Vx| ≤ 2k.

4. According to the blocking condition, there
exist no two nodes with the same logical label
in a path in the forest, starting from a root
node. In other words, the length of a path
starting from a root node is bounded by the
number of different logical labels (i.e., m).

5. The arithmetic reasoner always terminates
for a finite set of inequations as the input.

According to (3) the out-degree of the forests is
finite and due to (4) the depth of the trees is finite.
Therefore the size of each forest created by the
hybrid algorithm is bounded. On the other hand,
according to (1), the algorithm can create only
finitely many forests. Considering (2) and (5), we
can conclude the termination of the hybrid algo-
rithm. �

3.8.3. Soundness
To prove the soundness, we must prove that the

constructed model, based on a complete and clash-
free completion forest, does not violate the seman-
tics of the input language. According to Lemma
17 and the fact that a model can be obtained from
a SHQ tableau (proven in [24]), it is sufficient to
prove that a SHN \ tableau can be obtained from
a complete and clash-free forest.

Lemma 19 (Abox semantics) The hybrid algorithm
preserves the semantics of Abox assertions; i.e., as-
sertions of the form (a, b) :R and a 6 .= b.

Proof. The algorithm replaces assertions of the
form (a, b) : R with a : (≤1Rab u ≥1Rab). Con-
sider xa is the node corresponding to the individ-
ual a ∈ IA in the forest F and likewise xb for
b ∈ IA. According to the definition of Rab, the car-
dinality restrictions, and assuming the fact that
the algorithm correctly handles unqualified num-
ber restrictions, one can conclude that for some
v ∈ Vxa

that σ(v) = 1 with Rab ∈ α(v). Therefore,
according to the condition (a) of the fil -Rule in
Figure 2, Rab will be added to L(〈xa, xb〉). Since
the preprocessing and the hierarchy-Rule preserve
the role hierarchy and Rab v R holds, the assertion
(a, b) :R is satisfied.

On the other hand, due to the restriction ≤
1Rab, for every v′ 6= v if Rab ∈ α(v′) then
σ(v′) = 0. Hence, a set of solutions L(〈xa, xb〉)
cannot be modified more than once by the fil -Rule
for more than one variable and consequently, the
label of 〈xa, xb〉 does not depend on the order of
variables for which the fil -Rule applies.

Let us assume an assertion of the form a 6 .= b
is violated, i.e., aI = bI . This could only hap-
pen if the merge-Rule became applicable to the
corresponding nodes xa, xb, xy ∈ V such that
w.l.o.g. {Rya, Ryb} ⊆ L(〈xy, xb〉) and A con-
tains {(y, a) : R, (y, b) : R}. Then, the disjoint-
Rule would have fired for a v ∈ Vxy

and added
v ≤ 0 to LE(xy) such that {Rxa, Rxb} ⊆ α(v)
because due to our preprocessing and its result-
ing role hierarchy and {Rxa, Rxb} ⊆ L(〈xy, xb〉),
LE(xy) must contain in at least one of its inequa-
tions a variable v representing the possibility that
a and b need to be merged. Due to v ≤ 0 ∈ LE(xy),
it is impossible for the arithmetic reasoner to cre-
ate a solution which would require the algorithm
to merge a and b. �

Lemma 20 (Soundness) If the completion rules can
be applied to a SHQ-Abox A and a role hierarchy
R such that they yield a complete and clash-free
completion forest, then A has a tableau w.r.t. R.

Proof. A SHN \ tableau T can be obtained
from a complete and clash-free completion for-
est F = (V,E,L,LE) by mapping nodes in F to
elements in T which can be defined from F by
T := (S,LT , E ,J) as shown in Figure 6.

In the following we prove the properties of a
SHN \ tableau for T .

– Since F is clash-free, P1 holds for T .

14 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

S := {x1, . . . , xm |x ∈ F , card(x) = m}
LT (xi) := L(x) for 1 ≤ i ≤ m if card(x) = m
E(R) := {〈xi, yj〉 |R′ ∈ L(〈x, y〉)∧R′ v∗ R}
J (a) := xa if xa is a root node in F repre-

senting individual a ∈ IA. If xb ∈
V is merged into xa such that ev-
ery occurrence of xb is replaced by
xa, then J (b) = xa.

Fig. 6. Converting forest F to tableau T .

– If C1uC2 ∈ LT (xi), it means that (C1uC2) ∈
L(x) in the forest F . Therefore the u-Rule
is applicable to the node x which adds C1

and C2 to L(x). Hence C1 and C2 must be
in LT (xi) and we can conclude P2 and like-
wise P3 for T . Similarly, properties P4 and P5
are respectively guaranteed by the ∀-Rule and
∀+-Rule.

– If ∀R\S.C ∈ LT (xi) it means that ∀R\S.C ∈
L(x). Also, 〈xi, yi〉 ∈ E(R) means that there
exists a R′ v∗ R where R′ ∈ L〈x, y〉. Simi-
larly, 〈xi, yi〉 /∈ E(S) means that there exists
no S′ v∗ S such that S′ ∈ L〈x, y〉. Therefore,
the ∀\-Rule becomes applicable for x and adds
C to L(y) which is equivalent with C ∈ LT (yi)
and P6 holds for T .

– Assume R v S, if 〈xi, yj〉 ∈ E(R), we can con-
clude that R ∈ L(〈x, y〉) in F . The hierarchy-
Rule maintains the role hierarchy by setting
v ≤ 0 if R ∈ α(v) but S /∈ α(v). Moreover,
since every R-successor is an S-successor, the
role hierarchy is considered and properly han-
dled by the ∀-Rule, ∀+-Rule, and ∀\-Rule.
Therefore, we will have S ∈ L(〈x, y〉) and ac-
cordingly 〈xi, yj〉 ∈ E(S). Hence, the property
P7 holds for T .

– Due to the priorities of rules, if the ≤-Rule
and the ≥-Rule are invoked, the logical label,
L(x), cannot be extended anymore. In other
words, a correct partitioning based on all the
number restrictions for a node has been cre-
ated. Therefore, the solution created by the
arithmetic reasoner satisfies all inequations
in LE(x). If (≤ mR) ∈ LT (xi), we had (≤
mR) ∈ L(x) for the corresponding node in F .
According to the atomic decomposition for x,
the≤-Rule will add Σvi ≤ m to LE(x). There-
fore, the solution Ωj(x) for LE(x) will satisfy
this inequation and if R ∈ α(vj

i) ∧ σ(vj
i) ≥ 1

for 1 ≤ i ≤ k then (σ(vj
1) + σ(vj

2) + . . . +

σ(vj
k)) ≤ m. For every σ(vj

i) = mi the fil-
Rule creates an R-successor yi with cardinal-
ity mi for x. This node will be mapped to
mi elements in the tableau T which are R-
successors of xi ∈ S. Therefore, xi will have
at most m R-successors in T and we can con-
clude that P9 hold for T and P8 is satisfied
similarly.

– The hybrid algorithm sets card(xa) = 1 and
L(xa) := {C | (a : C) ∈ A} for every node xa

in F which represents an individual a ∈ IA.
Therefore, an Abox individual will be repre-
sented by one and only one node and P10 is
satisfied. P11 and P12 are due to Lemma 19.
�

3.8.4. Completeness
In order to be complete, an algorithm needs to

ensure that it explores all possible solutions. In
other words, if a tableau T exists for an input
Abox, the algorithm can apply its completion rules
in such a way that it yields a forest F from which
we can obtain T as shown in Figure 6.

Lemma 21 In a complete and clash-free forest, for
a node x ∈ V and its successors y, z ∈ V , if
L(〈x, y〉) = L(〈x, z〉) then L(y) = L(z).

Proof. The only way to extend the logical la-
bel of a node is through the t-Rule, u-Rule, ∀-
Rule, ∀+-Rule, and the ∀\-Rule. Since L(〈x, y〉) =
L(〈x, z〉), the ∀-Rule, ∀+-Rule, and the ∀\-Rule
will have the same effect and extend L(y) and L(z)
similarly. We can consider the following two cases.

(i) If y and z are non-root nodes, we have
L(y) = L(z) = ∅ before starting the application
of the completion rules. Therefore, when extended
similarly, they will remain identical after the ap-
plication of the tableau rules.

(ii) If w.l.o.g. y is a root node, then there exists
a role name R ∈ NR such that Rxy ∈ L(〈x, y〉).
Therefore, if L(〈x, y〉) = L(〈x, z〉) then Rxy ∈
L(〈x, z〉) which results in merging y and z in a
single node by the merge-Rule. Therefore, we can
still conclude that L(y) = L(z). �

Corollary 22 According to the mapping from a for-
est F to a SHN \ tableau T (Figure 6), every
LT (s) in T is equal to L(x) in F if x is mapped
to s. Moreover, every R ∈ L(〈x, y〉) is mapped to
〈s, t〉 ∈ E(R). Therefore L(〈x, y〉) = L(〈x, z〉) is
equivalent to {R ∈ NR | 〈s, t〉 ∈ E(R)} = {R ∈

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 15

NR | 〈s, t′〉 ∈ E(R)} where x is mapped to s, y to
t, and z to t′. Furthermore, L(y) = L(z) is equiva-
lent to LT (t) = LT (t′). Thus, according to Lemma
21, we can conclude: {R ∈ NR | 〈s, t〉 ∈ E(R)} =
{R ∈ NR | 〈s, t′〉 ∈ E(R)} ⇒ LT (t) = LT (t′).

Lemma 23 If for a node zx a set of non-negative
integer solutions Ω(zx) based on the set of inequa-
tions LE(zx) causes a logical clash, all other non-
negative integer solutions for LE(zx) will also trig-
ger the same logical clash.

Proof. Assume we have a solution set Ω(zx) =
{σ(v1) = m1, σ(v2) = m2, . . . , σ(vn) = mn},
which can only occur if vi ≥ 1 for 1 ≤ i ≤ n is de-
cided by the ch-Rule and all other variables in Vzx

are equal to zero. Let V≥1
zx

= {v ∈ Vzx
|σ(v) ≥ 1}

denote this subset of variables. Suppose we also
have a different solution Ω′(zx) for LE(zx) and
V≥1

zx
such that Ω′(zx) = {σ′(v1) = p1, σ

′(v2) =
p2, . . . , σ

′(vn) = pn}. Both solutions Ω(zx) and
Ω′(zx) have the same the set V≥1

zx
of non-zero vari-

ables. So, for both solutions the fil -Rule will fire
for the variables in V≥1

zx
but for some of these vari-

ables their assignment given by σ and σ′ will be
different. We have to distinguish the following two
cases for a given v ∈ V≥1

zx
: (i) condition (a) of the

fil -Rule (see Figure 2) is true, then zx and its suc-
cessor zb are root nodes representing a role asser-
tion (x, b) : Rxb (see Definition 5) and zx must
have for all possible arithmetic solutions an Rxb-
filler, so, since σ(v) = σ′(v) = 1 the possibly as-
signed value α(v) of LE(〈zx, zb〉) will only depend
on the partitioning RSzx

(see Definition 8) and
not on Ω(zx) or Ω′(zx); (ii) condition (b) is true,
then the fil -Rule will create a new node y and,
again, the assigned value α(v) of LE(〈zx, y〉) will
only depend on the partitioning RSzx and not on
Ω(zx) or Ω′(zx).

This concludes that the edge labels LE(〈zx, ·〉),
created by the fil -Rule, only depend on the com-
position of V≥1

zx
and not on the values assigned

to the variables in V≥1
zx

. Therefore, by considering
Lemma 21 the forest generated based on Ω′(x) will
contain the same nodes as Ω(x), however, with dif-
ferent associated cardinalities. Since logical clashes
do not depend on the cardinality of the nodes, we
can conclude that the selection of Ω′(x) will result
in the same clash as for Ω(x). �

Corollary 24 According to Lemma 23, all solutions
for LE(x) will end up with the same result; either
all of them yield a complete and clash-free forest
or return a clash.

Lemma 25 (Completeness) LetA be a SHQ-Abox
and R a role hierarchy. If A has a tableau w.r.t.
R, then the completion rules can be applied to
A such that they yield a complete and clash-free
completion forest.

Proof. We assume we have a SHN \ tableau T =
(S,LT , E ,J) for A and we claim that the hybrid
algorithm can create a forest F = (V,E,L,LE)
from which T can be obtained. The procedure of
obtaining T from F is shown in Figure 6. We prove
this by induction on the set of nodes in V .

Consider a node x in F and the completion rules
in Figure 2 and let s ∈ S in T be the element
that is mapped from x. We actually want to prove
that with guiding the application of the completion
rules on x we can extend F such that it can still
be mapped to T .

– The t-Rule: If (C1 t C2) ∈ L(x) then (C1 t
C2) ∈ LT (s). The t-Rule adds C1 or C2 to
L(x) which is in accordance with the property
P2 of the tableau where for some concept E ∈
{C1, C2} we have E ∈ LT (s). The u-Rule,
∀-Rule, and ∀+-Rule, which are deterministic
rules, are similar to the t-Rule. In fact these
rules are built exactly based on their relevant
tableau property.

– ∀\-Rule: If ∀R\S ∈ L(x) then ∀R\S.C ∈
LT (s) which means if 〈s, t〉 ∈ L(R) but 〈s, t〉 /∈
E(S) then C ∈ LT (t). If t is a mapping from
y it is equivalent to say if there exists R′ v R
and no S′ v S such that R′ ∈ L(〈x, y〉) and
S′ ∈ L(〈x, y〉) then C ∈ L(y). This condition
is satisfied by means of the ∀\-Rule.

– The ch-Rule: Consider in T we have t1, t2, . . . , tn
as the successors of s, i.e., ∃R ∈ NR, 〈s, ti〉 ∈
E(R). Intuitively, we cluster these successors
in groups of elements with the same label LT .
For example if tk, . . . , tl have the same la-
bel, according to Corollary 22, Nkl := {R ∈
NR | 〈s, tj〉 ∈ E(R)} will be identical for tj ,
k ≤ j ≤ l. We define a variable vkl for such a
set of role names with α(vkl) = Nkl. In order
to have T as the mapping of F , the ch-Rule
must impose vkl ≥ 1.
According to properties P8 and P9 of the
tableau, ≤nR and ≥mR are satisfied in T for

16 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

s. Therefore, the inequations based on these
variables will have a non-negative integer so-
lution. Notice that the created set of variable
constraints based on T may result in a differ-
ent solution. For example in T , the element
s may have t1 and t2 as successors with the
label LT

1 which sets v ≥ 1 and t′1, t′2, and
t′3 as successors with the label LT

2 which sets
v′ ≥ 1. However, in the solution based on
these variable constraints we may have three
successors with the label LT

1 and two succes-
sors with the label LT

2 . Nevertheless, accord-
ing to the Lemma 23 this fact does not violate
the completeness of the algorithm.

– The reset-Rule is a deterministic rule which is
only applicable to root nodes. Clearing the la-
bel of the outgoing edges and also LE(x) does
not violate properties of the tableau mapped
from F . This is due to the fact that the label
of the outgoing edges from x will later be set
by the fil -Rule which has a lower priority.

– The merge-Rule is also only applicable to root
nodes. Assume individuals a, b, c ∈ IA are
such that b and c are successors of a that must
be merged according to an at-most restriction
a : (≤nR). Since T is a tableau the restriction
≤nR ∈ LT (J (a)) imposes that J (b) = J (c).
On the other hand, if xa, xb, and xc are root
nodes representing a, b, and c, themerge-Rule
will merge xb and xc according to the solution
for LE(xa). In the mapping from F to T , xb

and xc will be mapped to the same element
that implies J (b) = J (c) which follows the
structure of T .

– The ≤-Rule, ≥-Rule, equal -Rule, disjoint-
Rule, and the hierarchy-Rule only modify
LE(x). Therefore, they will not affect the
mapping of T from F .

– The fil -Rule, with the lowest priority, gener-
ates successors for x according to the solu-
tion provided by the arithmetic reasoner for
LE(x). Since LE(x) conforms to the at-most
and at-least restrictions in the label of x and
according to the variable constraints decided
by the ch-Rule, the solution will be consis-
tent with T . Notice that every node x in F
for which card(x) = m and m > 1 will be
mapped to m elements in S.

The resulting forest F is clash-free and complete
due to the following properties:

1. F cannot contain a node x such that {A,¬A} ⊆
L(x) since L(x) = LT (s) and property P1 of
the definition of a tableau would be violated.

2. F cannot contain a node x such that LE(x) is
unsolvable. If LE(x) is unsolvable, this means
that there exists a restriction of the form
(≥ nR) or (≤ mR) in L(x) and therefore
LT (s) that cannot be satisfied which violates
property P8 and/or P9 of a tableau. �

4. Practical reasoning

There is always a conflict between the expres-
siveness of a DL language and the difficulty of
reasoning. Increasing the expressiveness of a rea-
soner with qualified number restrictions can be-
come very expensive in terms of efficiency. As
mentioned above, a standard algorithm to deal
with qualified number restrictions must extend its
tableau rules with at least two nondeterministic
rules; i.e., the choose-Rule and the ≤-Rule (see
Figure 7). In order to achieve an acceptable perfor-
mance, a tableau algorithm needs to employ effec-
tive optimization techniques. As stated in [19], the
performance of tableau algorithms even for simple
logics is a problematic issue.

In this section we briefly analyze the complex-
ity of both the standard and hybrid algorithms.
Based on the complexity analysis, we address some
sources of inefficiency in DL reasoning. More-
over, we propose some new or adapted optimiza-
tion techniques for the hybrid algorithm. In the
last part we give special attention to dependency-
directed backtracking as a major optimization
technique and compare its effect on both the stan-
dard and the hybrid algorithm.

4.1. Complexity Analysis

To analyze the complexity of the concept satis-
fiability test with respect to qualified number re-
strictions, we count the number of branches that
the algorithm creates in the search space.8

In the following we assume a node x ∈ V in
the completion forest that contains p at-least re-
strictions and q at-most restrictions in its label
(Ri, R

′
j ∈ NR and Ci, C

′
j ∈ clos(T)):

8Notice that every nondeterministic rule that can have k
outcomes opens k new branches in the search space.

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 17

≥-
Rule

if (≥ nR.C) ∈ L(x) and there are no
R-successors y1, y2, . . . , yn for x such
that C ∈ L(yi) and yi 6 .= yj

then create n new individuals
y1, y2, . . . , yn and set L(yi) := {C},
L(〈x, yi〉) := {R}, and yi 6 .= yj for
1 ≤ i ≤ j ≤ n and i 6= j

choose-
Rule

if (≤ mR.C) ∈ L(x) and there ex-
ists an R-successor y of x such that
{C,¬C} ∩ L(y) = ∅,
then set L(y) := L(y)∪{C} or L′(y) :=
L(y) ∪ {¬C}

≤-
Rule

if (i) (≤ nR.C) ∈ L(x) and x has m
R-successors such that m > n and,
(ii) there exist R-successors y, z for x
and y 6 .= z does not hold
then replace every occurrence of y by z

Fig. 7. Standard tableau rules handling Q.

{≥n1R1.C1, . . . ,≥npRp.Cp} ⊆ L(x)

{≤m1R
′
1.C
′
1, . . . ,≤mq R

′
q.C
′
q} ⊆ L(x)

4.1.1. Standard Tableau
The rules of a standard tableau algorithm deal-

ing with qualified number restrictions as shown in
Figure 7 create n R-successors in C for each at-
least restriction of the form ≥ nR.C. Moreover,
in order to avoid that the successors are being
merged, they are asserted as mutually distinct in-
dividuals. Assuming that no Ci is subsumed by a
Cj , there will be N := n1 + · · ·+ np successors for
x which are composed of p sets of successors, such
that successors in each set are mutually distinct.

Moreover, according to every at-most restric-
tion ≤miR

′
i.C
′
i the choose-Rule will create two

branches in the search space for each successor.
Therefore, based on the q at-most restrictions in
L(x), there will be 2q cases for each successor of
x. Since x has N successors, there will be totally
(2q)N cases to be examined by the algorithm. No-
tice that the creation of these 2qN branches is in-
dependent from any clash occurrence and the al-
gorithm will always invoke the choose-Rule N× p
times.

Suppose the algorithm triggers a clash according
to the restriction ≤miR

′
i.C
′
i. If there exist M R′i-

successors in C ′i such that M > mi, the algorithm
opens f(M,mi) :=

(
M
2

)(
M−1

2

)
. . .
(
mi+1

2

)
/(M −

mi)! new branches in the search space which is

the number of possible ways to merge M indi-
viduals into mi individuals. In the worst case, if
m := mini∈1..q mi there will be f(N,m) ways
to merge all the successors of x. Therefore, in
the worst-case one must explore (2q)N ×f(N,m)
branches.

4.1.2. Hybrid Tableau
During the preprocessing step, the hybrid al-

gorithm converts all qualified number restrictions
into unqualified ones which introduces p+ q new
role names. According to the atomic decomposi-
tion presented in Section 3.2, the hybrid algorithm
defines 2p+q − 1 partitions and consequently vari-
ables for x; i.e. |Vx| = 2p+q−1. The ch-Rule opens
two branches for each variable in Vx. Therefore,
there will be totally 2|Vx| cases to be examined
by the arithmetic reasoner, which considers only
a single solution out of many possible solutions.
The ch-Rule will be invoked |Vx| = 2p+q − 1 times
and creates 22p+q

branches in the search space.
Hence, the complexity of the algorithm seems to be
characterized by a double-exponential function of
p+q. In [27] a polynomial-time algorithm for inte-
ger programming with a fixed number of variables
is given. However, our prototype implementation
employed the Simplex method which is known to
be NP in the worst case but usually behaves very
well on average.

4.1.3. Hybrid vs. Standard
Comparing the complexity of the standard algo-

rithm with the hybrid algorithm, we can conclude:

– The complexity of the standard algorithm
is a function of N and therefore the num-
bers occurring in the at-most restrictions can
affect the standard algorithm exponentially.
Whereas in the hybrid algorithm, the com-
plexity is independent from N due to its arith-
metic approach to the problem.

– Let initial complexity refer to the complexity
of the tasks that the algorithm needs to per-
form independently from the occurrence of a
clash. That is to say, the tasks that need to
be done in all cases (whether worst or best-
case). Particularly, the initial complexity of
the standard algorithm is due to the choose-
Rule ((2q)N) and the initial complexity of the
hybrid algorithm is due to the ch-Rule (22p+q

).
Therefore, whenever N × q < 2p+q, the time
spent for initializing the algorithm is greater
for the hybrid algorithm in comparison with
the standard algorithms.

18 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

– The major source of complexity in the stan-
dard algorithm is due to the merge-Rule. Be-
ing highly nondeterministic, this rule can be a
major source of inefficiency. Therefore, in the
case of hardly satisfiable concept expressions,
the standard algorithm can become very in-
efficient. In contrast, the hybrid algorithm,
based on an arithmetically correct solution for
a set of inequations, generates and merges the
successors of an individual deterministically
and.9

– Whenever a clash occurs, the algorithm needs
to explore an open choice point to choose a
new branch. The sources of nondeterminism
due to number restrictions in the standard al-
gorithm are more than one: the choose-Rule
and the merge-Rule, whereas in the hybrid al-
gorithm we have only the ch-Rule. Therefore,
in the hybrid algorithm it is easier to track
the sources of a clash.

4.2. Partition Optimization Techniques

For various DL reasoning services different opti-
mization techniques have been developed. For ex-
ample, axiom absorption [25] or lazy unfolding [2]
are optimization techniques for Tbox services such
as classification or subsumption testing. These op-
timization techniques facilitate subsumption test-
ing and by avoiding unnecessary steps in Tbox rea-
soning improve the performance of the reasoner.
The hybrid algorithm is meant to address the per-
formance issues regarding reasoning with qualified
number restrictions independently from the rea-
soning service. In other words, by means of the
hybrid reasoning, we want to improve reasoning
at the concept satisfiability level which definitely
affects Tbox and Abox reasoning.

At the concept satisfiability level, the sources
of inefficiency are due to high nondeterminism. In
fact, nondeterministic rules such as the t-Rule in
Figure 2 or the choose-Rule in Figure 7 create sev-
eral branches in the search space. In order to be
complete, an algorithm needs to explore all of these
branches in the search space. Optimization tech-
niques mainly try to reduce the size of the search
space by pruning some of these branches. More-
over, some heuristics can help the algorithm to

9Note that the hybrid algorithm never merges anony-
mous (non-root) nodes.

guess which branches to explore first. In fact, the
more knowledge the algorithm uses to guide the
exploration, the less probable it is that its decision
will fail later.

Although it seems that the hybrid algorithm is
double-exponential and the large number of vari-
ables seems to be hopelessly inefficient, there are
some effective heuristics and optimization tech-
niques which make it feasible to use. In the follow-
ing we briefly explain three heuristics which can
significantly improve the performance of the algo-
rithm in the average case.

4.2.1. Default Value for Variables
In the semantic branching based on the concept

choose-Rule, in one branch we have C and in the
other branch we have ¬C in the label of the nodes.
However, due to the ch-Rule (for variables) in one
branch we have v ≥ 1 whereas in the other branch
v ≤ 0. In contrast to concept branching based on
the choose-Rule, in variable branching we can ig-
nore the existence of variables that are less or equal
to zero. In other words, the arithmetic reasoner
only considers variables that are greater or equal
to one.

Therefore, by setting the default value to v ≤ 0
for every variable, the algorithm does not need
to invoke the ch-Rule |Vx| times before starting
to find a solution for the inequations. More pre-
cisely, the algorithm starts with the default value
of v ≤ 0 for all variables in |Vx|. Obviously,
the solution for this set of inequations, which is
∀ vi ∈ Vx : σ(vi) = 0, cannot satisfy any at-least
restriction. Therefore, the algorithm must choose
some variables in Vx to make them greater or equal
to one. Although in the worst case the algorithm
still needs to try 2|Vx| cases, by setting this de-
fault value it does not need to invoke the ch-Rule
when it is not necessary. In other words, by ben-
efiting from this heuristics, the initial complexity
(see Section 4.1.3 for a definition) of the hybrid
algorithm is no longer 2p+q.

4.2.2. Strategy of the ch-Rule
As explained in the previous section, in a more

optimized manner, the algorithm starts with the
default value of zero for all the variables. After-
wards, it must decide to set some variables greater
than zero in order to find an arithmetic solution.
The order in which the algorithm chooses these
variables can help the arithmetic reasoner find a
solution faster, if one exists.

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 19

We define don’t care variables as the set of vari-
ables that have appeared in an at-least restric-
tion but in no at-most restriction. Therefore, these
variables have no restrictions other than logical
restrictions which later on will be processed by
the algorithm. Therefore, any non-negative integer
value observing the arithmetic limitations can be
assigned to these variables and we can leave them
unchanged in all inequations unless a logical clash
is triggered.

Moreover, we define satisfying variables as the
set of variables which occur in an at-least restric-
tion and are not don’t care variables. Since these
are the variables that occur in an at-least restric-
tion, by assigning them to be greater or equal to
one, the algorithm can lead the arithmetic reasoner
to a solution. Whenever a node that is created
based on v causes a clash, by means of dependency-
directed backtracking we will set v ≤ 0 and there-
fore remove v from the satisfying variables set.
When the satisfying variables set becomes empty
the algorithm can conclude that the set of qualified
number restrictions in L(x) is unsatisfiable.

Notice that the number of variables that can be
decided to be greater than zero in an inequation is
bounded by the number occurring in their corre-
sponding number restriction. For example, in the
inequation v1 + v01 + · · ·+ v10000000 ≥ 5, although
we have 128 variables in the inequation, not more
than five of the vi can be greater or equal to one
at the same time.

4.2.3. Variable Encoding
One of the interesting characteristics of the vari-

ables is that we can encode their indices in binary
format to easily retrieve the role names related to
them. On the other hand, we do not need to as-
sign any memory space for them unless they have
a value greater than zero based on an arithmetic
solution.

4.3. Dependency-Directed Backtracking

Backjumping [12] or conflict-directed-directed
backjumping [32] are improved backtracking meth-
ods originally developed in areas such as con-
straint reasoning. These techniques were adapted
to DL reasoning as dependency-directed back-
tracking [23]. These techniques detect the sources
of an encountered clash and try to bypass dur-
ing backtracking branching points that are not re-

lated to the sources of the clash. By means of this
method, an algorithm can prune branches that will
end up with the same sort of clash. As demon-
strated in [23,18], this method improved the per-
formance of the FaCT system to deal much more
effectively with qualified number restrictions. It
is nowadays an optimization technique that is in-
evitable in any practically usable DL reasoner [1,
Chapter 9]. It is beyond the scope of this article
to prove the completeness of this well-known opti-
mization technique.

By analogy, dependency-directed backtracking
was also adapted to the hybrid algorithm. When-
ever a logical clash for a successor y of x is en-
countered, one can conclude that the correspond-
ing variable vy for the partition in which y resides
must be zero.

Assume, y is based on a solution σ(vy) = k by
the fil -Rule and the algorithm encounters a clash
in the node y. This solution can only occur when-
ever vy ≥ 1 is decided by the ch-Rule for the
node x. Any other completion forest in this branch,
where vy ≥ 1, will end up with a solution in the
form σ(vy) = k′ (k′ ≥ 1). Assume the successor
of x, created based on this solution is y′. Since
L〈x, y〉 = α(vy) and L〈x, y′〉 = α(vy) are equal
and all the concepts in L(y) and L(y′) are created
based on the roles from x, we can conclude that
L(y) = L(y′). Therefore, y′ will contain the same
clash as y. Consequently, we can conclude that all
the branches in the search space where vy ≥ 1 will
end up with the same clash.

Therefore, we can prune all branches for which
vy ≥ 1 ∈ LE(x). We call this method, simple back-
tracking which can exponentially decrease the size
of the search space by pruning half of the branches
each time the algorithm detects a clash. For ex-
ample, for an arbitrary L(x), by pruning all the
branches where vy ≥ 1, we will in fact prune
2|Vx|−1 = 22p+q−1 branches w.r.t. the ch-Rule,
which amounts to half of the branches.

We can improve this by a more complex version
of dependency-directed backtracking in which we
prune all branches that have the same reason for
the clash caused by vy. We call this method com-
plex backtracking. For instance, assume the node y
that is created based on σ(vy) = k where k ≥ 1
ends up with a clash. Since we have only one type
of clash other than the arithmetic clash, assume
the clash is because of {A,¬A} ⊆ L(y) for some
A ∈ NC . Moreover, w.l.o.g. assume we know that

20 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

A is caused by a ∀Ri.A restriction in its prede-
cessor x and ¬A by ∀S\Tj .(¬A) ∈ L(x). It is
possible to conclude that all the variables v for
which Ri ∈ α(v) ∧ Tj /∈ α(v) will end up with the
same clash.10 This is due to the fact that when-
ever the arithmetic reasoner assigns to a variable
v (for which Ri ∈ α(v) ∧ Tj /∈ α(v)) occurring in
LE(x) a value k ≥ 1, the fil -Rule will eventually
fire for x and create a corresponding successor y
with Ri ∈ L(〈x, y〉) and Tj /∈ L(〈x, y〉). This would
make the ∀-Rule and ∀\-Rule applicable to x and
cause a clash for y.

Consider the binary coding for the indices of the
variables in which the ith digit represents Ri and
the jth digit represents Tj . Therefore, all the vari-
ables, where the binary coding has 1 as its ith digit
and 0 as its jth digit must be zero. Since the bi-
nary coding of the variable indices requires a total
of p+ q digits, the number of variables that must
be zero will be 2p+q−2. The 2p+q − 2p+q−2 other
variables are free to be constrained and will open
two branches in the search space. Therefore, the
number of branches will be reduced from 2|Vx| to
23/4|Vx| which is a significant improvement. In fact,
the atomic decomposition technique can be con-
sidered as a method to organize the search space
and at the same time by means of numerical rea-
soning and proxy individuals remain unaffected by
the value of numbers.

For example, consider the case when there are
7 number restrictions in L(x) and therefore 27

variables. Accordingly, the ch-Rule opens 2128

branches in the search space. If y is a succes-
sor of x which is created based on the solution
σ(v0011101) = m and y ends up with a clash, the
algorithm can conclude that v0011101 ≤ 0 must
be added to LE(x). Therefore, based on sim-
ple backtracking, 2127 branches remain to be ex-
plored. Moreover, assume the clash in y is due
to {A,¬A} ⊆ L(y) where A is created because
of ∀R3.A ∈ L(x) and ¬A is created because of
∀R\R2.¬A ∈ L(x). Hence, the algorithm can con-

10Notice that in the cases where we have a disjunc-
tion in the sources of a clash, there may exist more than

two sources for a clash. For example, assume {∀R.(A t
¬B), ∀S.(B t ¬C),∀T.(C t ¬A)} ⊆ L(x) and we have
{R,S, T} ⊆ L(〈x, y〉) and y leads to a clash. In fact, all of

these three role names in L(〈x, y〉) together are the sources
of this clash. Therefore, the algorithm concludes that all
the branches in the search space for which v ≥ 1 and

R ∈ α(v) ∧ S ∈ α(v) ∧ T ∈ α(v) will end up with the same
clash.

clude that for all the variables v where R3 ∈ α(v)
and R2 /∈ α(v), the same clash will occur. Namely,
variables of the form v�01����, where � ∈ {1, 0},
must be zero. Therefore, 2128−32 = 23×32 branches
remain to be explored.

4.3.1. Backtracking in the Arithmetic Reasoner
Normally there could be more than one solution

for a set of inequations. According to Lemma 23
in Section 3, when we have a solution with respect
to a set of restrictions of the form vi ≥ 1, different
solutions where the non-zero variables only differ
in their values do not make any logical differences.
In fact, the algorithm will create successors with
the same logical labels but different cardinalities
based on these different solutions. Since all the so-
lutions minimize the sum of variables and satisfy
all the numerical restrictions, they do not make
any arithmetic differences (as long as the set of
zero-value variables is the same).

In addition, notice that backtracking within
arithmetic reasoning is not trivial due to the fact
that the cause of an arithmetic clash cannot be
easily traced back. In other words, the whole set of
number restrictions together causes the clash. In
the same sense as in a standard tableau algorithm,
if all the possible merging arrangements end up
with a clash, one can only conclude that the cor-
responding number restrictions are not satisfiable
together.

4.3.2. Backjumping: Standard vs. Hybrid
Algorithm

By comparing the effect of dependency-directed
backtracking on the hybrid and the standard algo-
rithm, we can conclude:

1. In fact, the atomic decomposition is a mech-
anism of organizing role-fillers of an individ-
ual in partitions that are disjoint and yet
cover all possible cases. Therefore, it is more
suitable for dependency-directed backtrack-
ing. In other words, the whole tracking and
recording that are performed in order to de-
tect sources of a clash to prune the search
space, are hard-coded in the hybrid algorithm
by means of the atomic decomposition.

2. In the hybrid algorithm, the sources of non-
determinism are only the ch-Rule and the
t-Rule, whereas in standard algorithms we
have three sources of nondeterminism: the
t-Rule, the choose-Rule, and the ≤-Rule.
Therefore, in contrast to standard algorithms

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 21

Completion

Rules

Fig. 8. Overall reasoner architecture.

which have three nondeterministic rules, the
hybrid algorithm can more easily backjump
to the source of the clash. In other words, the
nondeterminism due to the concept choose-
Rule and the ≤-Rule in standard algorithms
is integrated into one rule, the variable ch-
Rule, in the hybrid algorithm.

5. Architecture of the Prototype Reasoner

As illustrated in Figure 8, the hybrid reasoner is
composed of two major modules: the logical mod-
ule and the arithmetic module. The input of the
reasoner is an ALCHQ11 concept expression. The
output of the algorithm is “satisfiable” provided
a complete and clash-free completion graph12 has
been constructed or otherwise “unsatisfiable”. The
complete and clash-free completion graph can be
considered as a pre-model based on which we
can construct a tableau (see Figure 6). The sys-
tem was implemented in Java using OWL-API

11The language ALCHQ is equivalent to SHQ without
transitive roles. Since transitive roles are assumed to have

no interaction with qualified number restrictions, they were

not implemented in the prototype reasoner.
12Notice that since the input of the reasoner is not an

Abox, the algorithm constructs a completion graph rather

than a completion forest.

Algorithm 1 main(state1)
root = state1

preprocess(state1)
if expand(state1) = TRUE then

return satisfiable
else

return unsatisfiable

Algorithm 2 expand(state)
if state contains clash then

updateVariables(Backtracking Strategy)
else

for all rule in Rule-Priority-List do
expandedList = apply(state, rule)
if expandedList = null then

close(state)
if state has no clash then

return TRUE
else

for all state ′ in expandedList do
expand(state ′)

2.1.1 which is a Java interface and implementa-
tion to parse the W3C Web Ontology Language
OWL [17]. Although choosing Java as the pro-
gramming language gave us the opportunity to uti-
lize the OWL-API, the performance of the rea-
soner was significantly affected by the overhead
due to Java features such as garbage collection, no
major (compiler-level) optimizations in numerical
functions, and inefficiencies in representing frac-
tional numbers. On the other hand, no other major
optimization techniques were implemented.

The overall structure of the control flow for the
whole system is sketched in Algorithms 1 and 2.
The hybrid algorithm, by expanding the nodes us-
ing the implemented completion rules, tries to find
a clash-free completion graph for the input con-
cept. Also, whenever it encounters a clash, the hy-
brid algorithm prunes the search space based on
the backtracking strategy it had adopted. The fol-
lowing sections describe the two major modules in
more detail.

5.1. Logical Module

The logical module can be considered as the
main module which performs the completion rules
and calls the arithmetic reasoner whenever needed.
It is composed of a preprocessing component which

22 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

Completion
Rules:

Completion
Rule

Strategy

Fig. 9. Detailed architecture of the logical module.

modifies the input ontology (.owl file) based on
the unQ function (see Definition 3). Therefore, it
replaces qualified number restrictions with equi-
satisfiable unqualified ones which are also trans-
formed to negation normal form. Notice that the
converted language is not closed under negation.
Accordingly, the reasoner never negates a concept
expression that is a direct or indirect output of
the preprocessing component. Moreover, the logi-
cal reasoner as illustrated in Figure 9 is composed
of a set of completion rules, clash strategy compo-
nent, and some other auxiliary components.

The major data structure in the logical mod-
ule is a state which records the state of the com-
pletion graph. The logical reasoner builds a tree
of states such that firing a deterministic rule cre-
ates only one child for a state. On the other hand,
the application of a nondeterministic rule (such
as t-Rule) can generate more than one child for
a state. For example, if the reasoner fires the t-
Rule for C1 t C2 t · · ·Cn for an individual x in
the current state, state1 , it will have n children
each of which contains one of the disjuncts in L(x).
In other words, each state contains a unique com-
pletion graph and if we had no nondeterministic
rule, the output would be a single path of states.
Moreover, every state contains all the information

Algorithm 3 canApply(state, individual , rule)
if state contains individual for which rule is ap-
plicable then

return true
else

return false

Algorithm 4 apply(state, rule)
newState ← Copy(state)
newState.parent ← state
for all individual in newState do

if canApply(newState, individual , rule) then
newInd ← apply rule on indvidual
replace individual with newInd in newState

return newState

about its individuals, including their label, their
cardinality, and the label of their edges.

The set of implemented completion rules is
based on the completion rules presented in Figure
2. However, since the logical module has no in-
formation regarding the variables and inequations,
the ch-Rule is implemented in the arithmetic mod-
ule. All the rules follow the general templates in
Algorithms 3 and 4. Each rule has a precondition
to be applicable to a state. Moreover, after its ap-
plication, a rule modifies a copy of the current
state to create a new state which will be a child
of the current state. Furthermore, each rule will
be fired for all individuals for which it is applica-
ble. The logical module tries to apply the comple-
tion rules in accordance to their priority to every
state that is not closed. A state is called closed
(clashed) if its corresponding completion graph is
complete (contains a clash). If no rule is applicable
to a state, it will be closed. If all of the states have
clashed and are closed, the input concept expres-
sion is unsatisfiable.

In the following, we assume that the current
state on which a rule is applied is called state1 .
There are two variations of the set of completion
rules according to the use of backtracking.

Without backtracking: There are two rules which
together function as the fil -Rule, the ch-Rule, the
≤-Rule, and the ≥-Rule:

– The Collect-And-Initiate-Rule collects all un-
qualified number restrictions in the label of
each individual in state1 and calls the arith-
metic reasoner. The arithmetic reasoner com-

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 23

putes all cases for the variables based on the
ch-Rule and returns all possible non-negative
integer solutions in a list. This rule stores the
list of solutions in state2 which is a child of
state1 .

– The Build-Arithmetic-Results-Rule which is a
nondeterministic rule, creates successors of an
individual based on the solutions provided by
the Collect-And-Initiate-Rule (similar to the
function of the fil -Rule). Therefore, it is ap-
plied to state2 and creates a new state for each
solution. For example, if there exist n differ-
ent solutions for an individual x in state2 , this
rule creates n new states as children of state2

and in each of them expands one solution.

With backtracking: In this case the reasoner does
not search for all solutions at once. In fact, it as-
sumes the first solution will end up with a clash-
free graph and if this assumption fails, it will mod-
ify its knowledge about the variables and try to
search for a new solution. There are two rules re-
sponsible for this task:

– The Collect-And-Create-Rule, similar to the
Collect-And-Initiate-Rule with the lowest pri-
ority, collects all number restrictions for each
individual in state1 . Furthermore, it calls the
arithmetic reasoner which returns the first so-
lution it finds and generates successors of in-
dividuals in state2 based on this solution.

– For a detailed description of the Build-in-
Sibling-Rule, assume an individual x in state1

that has a set of number restrictions accord-
ing to which the Collect-And-Create-Rule has
created a set of successors y1, y2, . . . , yn in
state2 . We call state1 the generating state of
the yi. All of the rules may modify labels of
the yi in the succeeding states. For instance,
if y1 ends up with a clash in all the paths of
states starting from state2 , the reasoner can
conclude that y1 caused a clashed state and
therefore the corresponding solution in state1

is not valid and cannot survive. The Build-in-
Sibling-Rule is applicable to the clashed states
that are closed (i.e., cannot be expanded in
another way according to the Or-Rule). When
this rule finds an individual such as y1 in
a clashed state, it determines its generating
state which is state1 in this case. Furthermore,
it calls the arithmetic reasoner in state1 and
sets the variable related to y1 to zero and gets

a new solution. Since all the paths from state2
will end up with a clash and no rule is applica-
ble to it, state2 will be automatically closed.
Afterwards, this rule will generate new suc-
cessors of x in a new child state of state1 (if
any solution exists).

The Completion Rule Strategy component im-
poses an order on the rules and they are priori-
tized by their order as in the following. In other
words, the logical reasoner, before applying a rule
in state1 , ensures that no rule with a higher prior-
ity is applicable.

1. The For-All-Rule (∀-Rule).
2. The For-All-Subtract-Rule (∀\-Rule).
3. The And-Rule (u-Rule).
4. The Or-Rule (t-Rule).
5. The Build-Arithmetic-Results-Rule or the

Build-in-Sibling-Rule.
6. The Collect-And-Initiate-Rule or the Collect-

And-Create-Rule.

For example, assume we have x, y as two indi-
viduals and we have {C1 t C2 t C3} ⊆ L(x) and
{D1 tD2} ⊆ L(y) in state1 . If none of the first
three rules is applicable to any of the individuals
in the state1 , the Or-Rule checks if C1, C2, and
C3 are not in L(x) (or similarly if D1 and D2 are
not in L(y)). Therefore, the Or-Rule is applicable
to state1 and creates 6 states as children of state1

such that in each of them one of the Cis and one
of the Djs is selected. In other words, in one ap-
plication of the Or-Rule, 6 new states are created.

The structure of the For-All-Rule, the For-All-
Subtract-Rule, the And-Rule, and the Or-Rule is
similar to their relevant tableau rule. However, the
functioning of the last two rules is slightly differ-
ent from their corresponding tableau rule. Con-
sider the case when we have simple backtracking
enabled and the logical module uses the Build-
in-Sibling-Rule and the Collect-And-Create-Rule.
For example, if {≥ 2R, ≤ 4S, ≥ 3T} ⊆ L(x) in
state1 and x has no successors, the Collect-And-
Create-Rule passes the set {≥2R, ≤4S, ≥3T} to
the arithmetic reasoner and receives either “no so-
lution” which means that state1 contains a clash
or the first non-negative integer solution that the
arithmetic reasoner finds. Assume the first solu-
tion found by the arithmetic reasoner is of the
form v1 = 2, v2 = 1 such that α(v1) = {R,S, T}
and α(v2) = {T, S} (see Figure 10).

24 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

Fig. 10. Illustration of the rules application when backtrack-

ing.

Afterwards, the Collect-And-Create-Rule cre-
ates a new state state2 as a child of state1 . In
state2 , it generates two new individuals x1 and x2.
It asserts R and S in the label of the role from x
to x1 and similarly R, S, and T in the label of the
role from x to x2. Also, it sets card(x1) = 2 and
card(x2) = 1. Notice that all information in state1

will be copied to state2 before generating any new
individual.

Later on, assume the individual x1 ends up with
a clash in statei+1 and all other possible states
(such as in statei). Therefore, the Build-in-Sibling-
Rule will be invoked for statei+1 . This Rule sets
v1 = 0 and calls the arithmetic reasoner for an-
other solution which will be generated in another
child of state1 , state3 . Whenever the arithmetic
reasoner cannot find another solution for the list
of numerical restrictions for x, the state1 will clash
and the logical reasoner must search in another
branch for a closed and clash-free state which
therefore contains a complete and clash-free graph.
Figure 10 illustrates the functioning of these two
rules in this example.

Fig. 11. Detailed architecture of the arithmetic module.

Another component in the logical module is the
Clash Strategy Component which triggers a clash
for an individual x whenever (i) {A,¬A} ⊆ L(x)
for a concept name A, or (ii) an arithmetic clash is
detected in the arithmetic component. The logical
module returns the first non-clashed and closed
state it finds as a complete and clash-free graph.
Otherwise it will return “unsatisfiable”.

5.2. Arithmetic Module

The major function of the arithmetic module is
to find a non-negative integer solution for a set
of unqualified number restrictions. Notice that the
implemented arithmetic module is slightly differ-
ent from the arithmetic reasoner proposed in Sec-
tion 3. Firstly, in addition to an inequation solver,
it implements the ch-Rule. Moreover, it contains
a few heuristics to guide the search for a non-
negative integer solution. In the following we de-
scribe the architecture of the arithmetic module
which is illustrated in Figure 11. Furthermore, we
describe the functionality of each component in
more detail using pseudo code snippets.

5.2.1. Integer Linear Programming
A Linear Programming (LP) problem is the

study of determining the maximum or minimum
value of a linear function f(x1, x2, . . . , xn) sub-

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 25

ject to a set of constraints. This set of constraints
consists of linear inequations involving variables
x1, x2, . . . , xn. We call f the objective (goal) func-
tion which must be either minimized or maxi-
mized. If all variables are required to have integer
values, the problem is called Integer Programming
(IP) or Integer Linear Programming (ILP).

Definition 26 (Integer Programming) Integer Pro-
gramming (IP) is the problem of optimizing an
objective (function) f(x1, x2, . . . , xn) = c1x1 +
c2x2 + · · · + cnxn + d subject to a set of m lin-
ear constraints which can be formulated as: max-
imize (minimize) CTX subject to AX ≤ b where
the xi can only have integer values and XT =
[x1 x2 · · · xn], C is the matrix of coefficients in the
goal function, Am×n is the matrix of coefficients
in the constraints, and bT = [b1 b2 · · · bm] contains
the limit values in the inequations.

Simplex: It was proven by Leonid Khachiyan in
1979 that LP can be solved in polynomial time.
However, the algorithm he introduced for this
proof is impractical due to the high degree of the
polynomial in its running time. The most widely
used and shown to be practical algorithm is the
Simplex method, proposed by George Dantzig in
1947.13 The Simplex method constructs a polyhe-
dron based on the constraints and objective func-
tion and then walks along the edges of the polyhe-
dron to vertices with successively higher (or lower)
values of the objective function until the optimum
is reached [5]. Although LP is known to be solv-
able in polynomial time, the Simplex method can
behave exponentially for certain problems.

Integer Solution: Solving the linear programming
problem may not yield an integer solution. There-
fore, an additional method is required to guaran-
tee that the variables take only integer values in
the solution. There exists two general methods to
achieve an integer solution.

1. Branch-and-bound: Whenever a fractional
value appears in the solution set, this method
splits the search into two branches. For exam-
ple, if x3 = 2.4, the algorithm splits the cur-
rent problem in two different problems such
that in one of them the new constraint x3 ≤ 2
is added to A and in the other one x3 ≥ 3 is

13In fact, Leonid Kantorovich, a Russian mathematician
used a similar technique in economics before Dantzig.

added to A. The optimized solution is there-
fore, the maximum (minimum) value of these
two branches.
Moreover, the algorithm prunes all fruitless
branches. In other words, whenever a branch
cannot obtain a value better than the opti-
mum value yet found, the algorithm discards
it.

2. Branch-and-cut: Whenever the optimum so-
lution is not integer, the algorithm finds a
linear constraint which does not violate the
current set of constraints but eliminates the
current non-integer solution from the feasible
region (search space). This linear inequation
which discards fractional region of the search
space is called cutting plane.
By adding cutting planes to A, the algorithm
tries to yield an integer solution. However,
the algorithm may reach a point where it can-
not find a cutting plane. Therefore, in order
to complete the search for an optimum inte-
ger solution it starts branch-and-bound.

In the implementation of our research proto-
type we decided to use branch-and-bound when-
ever Simplex obtains a non-integer solution. Since
the limits (matrix b) are integer values in our case,
and the algorithm hardly ends up with a non-
integer solution, we decided to avoid the high com-
plexity of the branch-and-cut method.

Atomic Decomposition: Let UNR be the set of
input unqualified number restrictions. After read-
ing UNR, the arithmetic module determines the
number of different number restrictions which will
later be the number of inequations. In the fol-
lowing we assume that the size of UNR is equal
to n. Therefore, the arithmetic module implicitly
considers 2n − 1 variables such that for UNR =
〈R1, R2, . . . , Rn〉 we will have Ri ∈ α(vm) if in
the binary coding of m, the ith digit is equal to
1. For example, if n = 4 we can conclude that
α(v101) = {R1, R3} and α(v1110) = {R2, R3, R4}.
To retrieve the role names related to a variable, the
arithmetic module uses the getRelatedRoles func-
tion which has the same output as α.

5.2.2. Preprocessing
Before starting the application of the ch-Rule to

search for an arithmetic solution, the arithmetic
module classifies the variables according to the val-
ues that they can take. We define the type of a
variable (v type) such that:

26 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

Algorithm 5 find-don’t-care-variables(UNR)
for i = 1 to n do

if UNR[i] is an at-least restriction then
for all j = 1 to 2n−1 such that its ith digit
in binary coding = 1 do

for k = 1 to n do
if (kth digit of j) = 1 ∧ UNR[k] is not
an at-most restriction then
v type(vj) = −1

if v type(vj) 6= −1 ∧ v type(vj) 6= 2 then
add vj to satisfyingVariablesList

– v type(v) = 2 if v must be zero due to logical
reasons and cannot take any value other than
zero,

– v type(v) = 0 if v is decided to be zero by
the ch-Rule which can be changed later by the
ch-Rule,

– v type(v) = 1 if v is decided to be greater or
equal to 1 by the ch-Rule, and

– v type(v) = −1 if v is a don’t care variable and
can be greater or equal zero. In other words,
it can get any value except in the case that
logical reasons impose a type of 2.

The following tasks are performed by Algorithm
5 before starting the branching.

Find don’t care variables: We define don’t care
variables as the variables that occur in an at-least
restriction but in no at-most restriction. Therefore,
they are not bounded by any limitations due to the
at-most restrictions and can take any value greater
or equal zero. Although logical restrictions may
force them to be zero, the arithmetic restrictions
do not impose any restrictions on them.

Find satisfying variables: In order to find an
arithmetic solution for the input UNR list, the
arithmetic module constructs a set of variables,
called the satisfying variables on which it will ap-
ply the ch-Rule. In fact, these are the variables
occurring in an at-least restriction which are not
necessarily zero according to the logical reasons
nor the don’t care variables. The find-don’t-care-
variables function presented in Algorithm 5 re-
trieves don’t care variables and sets their type to
-1. Moreover, whenever a variable v is neither don’t
care nor v type(v) = 2, this function adds it to the
satisfying variable list.

Remark It is worth noticing that the order
in which the variables are added to the satisfy-

ing variables list can significantly affect the per-
formance of the arithmetic reasoner. In fact, by
choosing the variables first that are least probable
to fail (either arithmetically or logically), the rea-
soner can speed up the procedure of searching for
a complete and clash-free graph.

Therefore, it seems that the variables which lead
to the individuals that are less restricted (by the
universal restrictions created by the unQ func-
tion), may be a better choice to be close to the
head of the list. However, by means of the following
example we will demonstrate why it is not trivial
to find an optimal ordering of the variables.

Assume we have 4 UNRs in the input, three of
which are at-least restrictions. Therefore, we will
have the following general inequations:
v0001 +v0011 +v0101 +v0111 +v1001 +v1011 +v1101 +
v1111 ≥ n1

v0010 +v0011 +v0110 +v0111 +v1010 +v1011 +v1110 +
v1111 ≥ n2

v0100 +v0101 +v0110 +v0111 +v1100 +v1101 +v1110 +
v1111 ≥ n1

v1000 +v1001 +v1010 +v1011 +v1100 +v1101 +v1110 +
v1111 ≤ m

In the set of variables from v1 to v1111, the vari-
ables with the 1st digit (from right) equal to 1 are
restricted by the universal restriction related to
UNR[1] (similarly for the 2nd and the 3rd restric-
tion). Likewise, the variables with the 4th digit
equal to 0 are restricted by the universal restric-
tion related to UNR[4]14.

In this example, we can conclude that the least
restricted variable is v1000. Nevertheless, not oc-
curring in any at-least restriction, this variable is
not even in the satisfying variables list. Another
choice could be the case when variables have only
one at-least restriction such as v1001, v1010 and
v1100 (see the underlined variables above). But this
case is exactly similar to the standard tableau al-
gorithms presented in Section 4.1.1. Although they
seem to be logically less restricted, by not shar-
ing any individuals between the at-least restric-
tions, they are highly probable to fail arithmeti-
cally (simply when n1 + n2 + n3 > m).

14For every qualified at-least restriction (≥ nR.C), we
will have ≥ nR′ u ∀R′.C. Thus, the existence of R′ and
therefore, appearance of 1 in its related digit will invoke the
universal restriction ∀R′.C. However, in case of at-most re-

strictions, we will replace ≤mR.C by ≤mR′ u∀R\R′.¬C.
Therefore, the absence of R′ and accordingly, the appear-
ance of 0 in its related digit will invoke the universal re-

striction ∀R\R′.C

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 27

Algorithm 6 fix-role-hierarchy(R)
for all R v S ∈ R do

for all v such that R related to v and S not
related to v do

set v type(v) = 2

Another strategy could be starting from vari-
ables that occur in many at-least restrictions (in
this example v1111) which is the case for the imple-
mented arithmetic module. Therefore, (i) we ob-
tain a faster arithmetic solution, (ii) we can en-
sure a minimum number of successors model prop-
erty15, (iii) although the probability of a logical
clash may be high due to many restrictions, by
choosing a highly restricted variable and after hav-
ing detected a clash, we can set many more vari-
ables to zero to improve backtracking.

Fix role hierarchy: By means of the fix-role-
hierarchy function (see Algorithm 6), the arith-
metic module sets the type of the variables that
cannot be satisfied due to the role hierarchy to
2. More precisely, if R v S and R ∈ α(v) but
S /∈ α(v) Algorithm 6 sets v type(v) = 2. This al-
gorithm implements the hierarchy-Rule.

Backtracking results: In the case of simple back-
tracking (see Section 4.3 for both backtracking
types), the arithmetic module only needs to set
the type of the variable related to the clashed in-
dividual to 2. In the case of complex backtracking,
if the logical module discovers that the existence
(absence) of two or more role names in a variable
may cause a clash, the arithmetic reasoner, before
searching for an arithmetic solution, sets the type
of all similar variables to 2.

Heuristics: In the case where we have no at-most
restrictions or the numbers occurring in the at-
most restrictions are so high that they cannot be
violated by any at-least restriction, there exists a
trivial solution. In this case, similar to standard
tableau algorithms, we can generate successors ac-
cording to the at-least restrictions. More precisely,
for each at-least restriction ≥ nR we create n R-
successors and we can be sure that this model will
not fail due to number restrictions for these suc-
cessors.

15A model has the minimum number of successors prop-
erty iff for all of its individuals one cannot reduce the num-

ber of successors without causing a clash.

Algorithm 7 Heuristics(UNR)
{Assume N UNRs such that UNR[1] to UNR[M]
are at-least restrictions}
for i = 1 to M do

sumOfLimits ← sumOfLimits + UNR[i].limit
MinAtMost ←∞
for i = M to N do

if UNR[i].limit < MinAtMost then
MinAtMost ← UNR[i].limit

if sumOfLimits ≤ MinAtMost then
for i = 1 to M do

value(v2 i)← UNR[i].limit

Assuming N UNRs, M of which are at-least re-
strictions, the procedure presented in Algorithm 7
in fact has the same effect as the standard algo-
rithms. For every at-least restriction ≥ nR, this
algorithm assigns n as the value of v for which we
have α(v) = {R}. It is worth noticing that in this
case the algorithm violates the property of creat-
ing a model with a minimal number of successors.

5.2.3. Branching
After finalizing the satisfying variables list, the

main function starts the application of the ch-
Rule. As presented in Algorithm 8, the branching
function starts assigning the type of 1 (i.e., being
greater or equal 1) to the satisfying variables. If
there exist k variables in the satisfying variables
list, in order to be complete, the algorithm must
try all the 2k cases regarding the type of the vari-
ables. In the case of disabled backtracking, the
branching function tries all 2k cases and returns all
non-negative integer solutions found by the integer
programming component.

However, when benefiting from backtracking,
the algorithm returns to the logical module the
first non-negative integer solution it finds. If the
found solution logically fails, at least for one vari-
able v, v type(v) = 1 changes to v type(v) = 2
which later will result in a totally different solution
and the algorithm cannot compute the same solu-
tion again and falling in a cycle. If branching does
not return any solution, the arithmetic module re-
turns an arithmetic clash. The branching function
in Algorithm 8 assumes the use of backtracking.
Note that different backtracking strategies will re-
sult in different values for the satisfyingVL list as
input for the branching algorithm.

28 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

Algorithm 8 branching(satisfyingVL)
{Branch over the list of satisfying variables
(satisfyingVL) based on the ch-Rule}
if satisfyingVL = ∅ then

return null
else

inequations ← build inequations(satisfyingVL)
result ← IntegerProgramming(inequations)
if result 6= null then

return result
else

branchingVariable ← remove last element
of satisfyingVL
v type(branchingVariable)← 1
result ← branching(satisfyingVL)
if result 6= null then

return result
else

v type(branchingVariable)← 0
return branching(satisfyingVL)

5.2.4. Integer Programming
The integer programming or the equation-solver

component gets a set of linear inequations as input.
The goal function is always to minimize the sum
of all variables, while all variables must be greater
or equal zero. The set of constraints imposed by
the type of the variables will also be part of the
input in form of inequations. In other words, if
v type(v) = 1 for a variable, we will have v ≥ 1 as
a part of the input. Notice that in the cases where
v type(v) = 0 or v type(v) = 2 the variable v never
appears in the set of input inequations.

The integer programming component is com-
posed of a linear programming algorithm ac-
cording to the Simplex method presented in [5]
and branch-and-bound to obtain integer solutions
when the linear solution contains fractional values.

6. Evaluation

In this section we present the empirical results
obtained from an implemented prototype as de-
scribed in the previous section. Before presenting a
set of test cases and the results, we briefly discuss
the issue of benchmarking in OWL and description
logics. Afterwards, we identify different parame-
ters that may affect the complexity of reasoning
with number restrictions. Consequently, based on
these parameters we build a set of benchmarks for
which we evaluate the hybrid reasoner.

6.1. Benchmarking

One major problem with benchmarking in OWL
is due to the fact that there exist not many com-
prehensive real-world OWL ontologies to utilize
as benchmarks. In fact, as stated in [37], the cur-
rent well-known benchmarks are not well suited
to address typical real-world needs. On the other
hand, qualified number restrictions are expressive
constructs added to the forthcoming OWL 2 [31].
Therefore, the current well-known benchmarks do
not contain qualified number restrictions. In fact,
to the best of our knowledge there is no real-world
SHQ benchmark available which contains non-
trivial qualified number restrictions. Furthermore,
our prototype reasoner does not implement any
optimization technique except the one introduced
above targeting reasoning with the Q-component
of SHQ. So, any SHQ knowledge base requiring
other optimization techniques than the one imple-
mented in our reasoner would not demonstrate any
improvements, especially if the difficulty is due to
the missing optimizations techniques and not due
to the occurring number restrictions. Accordingly,
we needed to build a set of synthetic test cases to
empirically evaluate the hybrid reasoner. Although
they are synthetic and did not emerge (yet) from
real-world ontologies, we claim that they reflect
patterns that are very likely to be encountered in
forthcoming OWL 2 ontologies.

For these reasons we focus our evaluation on
concept expressions only containing qualified num-
ber restrictions. We identify the following param-
eters that may affect the complexity of reasoning
with number restrictions:

1. The size of numbers occurring in number re-
strictions. Namely, n and m in the restric-
tions of the form ≤nR.C and ≥mR.C.

2. The number of qualified number restrictions.
3. The ratio of the number of at-least restric-

tions to the number of at-most restrictions.
4. Satisfiability versus unsatisfiability of the in-

put concept expression.

6.2. Evaluation Results

In this section we briefly examine the perfor-
mance of the hybrid reasoner with respect to the
parameters identified above. Moreover, we present
an evaluation to examine the effectiveness of the
two proposed backtracking techniques.

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 29

Tableau reasoning in expressive DLs is known to
be a very time and memory-consuming procedure.
Therefore, in order to remain practical, most of
the reasoners benefit from numerous optimization
techniques. A list of more than 70 optimization
techniques which are widely used in DL reasoners
is given in [4].

Well-known reasoners that support qualified
number restrictions such as Racer [14], FaCT++
[34] or Pellet [33] implement numerous optimiza-
tion techniques. Therefore, their performance is
not fairly comparable to this prototype. Accord-
ingly, we base our evaluations only partially on
a comparison with one of the existing reasoners
and focus on the study of the behavior of the
hybrid reasoner. Moreover, it is well-known that
benchmarks can only compare systems but not al-
gorithms because benchmark results are often af-
fected by factors (e.g., index structures, heuristics,
etc) that do not reveal any insight in comparing
the efficiency of algorithms, e.g., the standard vs.
hybrid algorithm for number restrictions.

The following experiments were performed un-
der Windows XP Professional (32-bit) on a stan-
dard PC with an Intel Core 2 Duo E6400 proces-
sor and 3 GB of physical memory. To improve the
precision, every test was executed in five indepen-
dent runs and the average of these runs is pre-
sented. Furthermore, we set the timeout limit to
1000 seconds.

6.2.1. Increasing Values of Numbers
The major advantage of benefiting from an

arithmetic method is the fact that reasoning is
unaffected by the size of numbers. In fact, it
translates the number restrictions to a set of in-
equations. For example, for the concept expres-
sion ≥ 3 hasChild .Female the size of the num-
ber is three which is relatively small. However,
when expressing the concept (≥141 hasCredit u ≤
45 hasCredit .ComputerScience) to model a uni-
versity undergraduate engineering program or (≥
1200 hasSeat u ≤600 hasSeat .(ArenatGrandCircle))
to model the structure of a theater, larger numbers
come into play.

In order to observe this major advantage which
is the scalability of the hybrid algorithm with re-
spect to the size of the numbers, we decided to
compare its performance with Pellet. The reasons
that we chose Pellet16 as a representative imple-
mentation of the standard algorithm are:

16We used Pellet 2.0 RC7 from June 11, 2009.

– it is a free open-source reasoner that handles
(qualified) number restrictions,

– similar to our prototype it is a Java-based im-
plementation, and

– in contrast to FaCT++ which sometimes
turned out to be unsound when dealing with
number restrictions, Pellet returned correct
answers in all our experiments.

Furthermore, to the best of our knowledge Pel-
let as well as FaCT++ have no specific optimiza-
tion technique for dealing with qualified number
restrictions. Therefore, since the goal is to com-
pare implementations of the hybrid and standard
algorithm, we considered Pellet’s implementation
of the standard algorithm as a adequate represen-
tative for a state-of-the-art DL reasoner.

Test case description: The concept expressions
for which we executed the concept satisfiability
test are as follows (with respect to a role hierar-
chy {R v T, S v T,RS v R,RS v S} where i
is a number incremented for each benchmark). We
abbreviate the first concept expression with CSAT

and the second expression with CUNSAT .

(≥2i RS.(A tB)) u (≤ i S.A) u (≤ i R.B)u
(≤(i−1)T.(¬A)) t (≤ i T.(¬B)) (CSAT)
(≥2i RS.(A tB)) u (≤ i S.A) u (≤ i R.B)u
(≤(i−1)T.(¬A)) t (≤(i−1)T.(¬B)) (CUNSAT)

The concept expression CSAT is a satisfiable
concept where for an assertion x :CSAT , the in-
dividual x has (2 × i) RS-successors in (A t B),
i of which must be in ¬A and i must be in ¬B
(according to the at-most restrictions (≤ i S.A)
and (≤ i R.B)). Therefore, it can be concluded
that i of them are in (¬A u B) and the other
i successors are in (¬B u A). The disjunction
(≤ (i− 1)T.(¬A)) t (≤ i T.(¬B)) can be satisfied
when choosing (≤ i T.(¬B)) which is not violated
due to the fact that x has exactly i successors in
¬B. According to a similar explanation, since none
of the disjuncts can be satisfied, CUNSAT is an un-
satisfiable concept.

In fact, CSAT is not trivially satisfiable, neither
by the hybrid nor the standard algorithm. In the
hybrid algorithm, the set of inequations is only
satisfied in the case where all variables are zero
except v, v′ ≥ 1 and α(v) = {RS′, S′, T ′} and
α(v′) = {RS′, R′}.17 The standard algorithm in

17Assume R′, S′, RS′, and T ′ are new sub-roles of
R,S,RS, and T respectively.

30 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

5

10
2

2

5

10
3

2

5

10
4

2

5

10
5

2

5

10
6

R
u
n
ti
m
e
(m
s)

2 3 4 5 6 7 8 9 10

in concept expression

Effect of the Size of Numbers: Hybrid vs. Pellet

. . .
.
.
. . . .

Hybrid-Sat

Hybrid-Unsat. Pellet-Sat

Pellet-Unsat

i C

Fig. 12. Comparing the hybrid with the standard algorithm:

Effect of increasing the value of numbers.

order to examine the satisfiability of CSAT creates
(2 × i) RS-successors for x in (A t B) and ac-
cording to the three at-most restrictions it opens
8 new branches for each successor. However, since
(2× i) is much larger than i or i− 1, the reasoner
must start merging the extra successors when an
at-most restriction is violated which happens in all
branches in this test case.

As illustrated in Figure 12, the linear growth
of i from 2 to 10 has almost no effect on the hy-
brid reasoner while it dramatically increases the
runtime of the standard algorithm for numbers as
small as 6 and 7.18 Moreover, we can observe that
for i = 6 the satisfiability of CSAT is decided in
about 40s while for CUNSAT , which is only slightly
different to CSAT , the time increases to more than
1000s. This sudden jump reveals that by decreas-
ing i to i− 1 in just one at-most restriction, which
leads to unsatisfiability, the practical complexity
of the problem increases tremendously. In Figure
13 we zoom into the hybrid part of the Figure 12
to present the behavior of the hybrid reasoner in
more detail.

In contrast to the standard reasoner, the perfor-
mance of the hybrid reasoner is unaffected by the
value of the numbers. In Figure 14 we illustrate
the linear behavior of the hybrid algorithm with
respect to a linear growth of the size of the num-
bers in the qualified number restrictions. Further-
more, to assure that this independence will be pre-
served also with respect to an exponential growth

18Note that Figure 12 is a log-linear plot and time values
are in logarithmic scale. In Figure 13 one can observe the

behavior of the hybrid reasoner in a linear plot.

0

50

100

150

200

250

R
u
n
ti
m
e
(m
s)

2 3 4 5 6 7 8 9 10

in concept expression

Effect of the Size of Numbers in the Hybrid Approach

Hybrid-Sat

Hybrid-Unsat

i C

Fig. 13. Hybrid reasoner: Effect of increasing the value of
numbers.

0

20

40

60

80

100

120

140

160

R
u
n
ti
m
e
(m
s)

0 10 20 30 40 50 60 70 80 90 100

in concept expression

Effect of Linear Growth of

......

Hybrid-Sat. Hybrid-Unsat

i C

i

Fig. 14. Hybrid reasoner: Effect of linear growth of i.

of i, in Figure 15 we present the performance of
the hybrid reasoner for i = 10n, n ∈ 1..6.

6.2.2. Backtracking
One of the major well-known optimization tech-

niques addressing complexity of the reasoning with
number restrictions is dependency-directed back-
tracking or backjumping. In this experiment we
observe the effect of backtracking on the perfor-
mance of the hybrid reasoner. In three settings,
we first turn off backtracking, second enable sim-
ple backtracking, and finally enable complex back-
tracking (see Section 4.3).

In order to observe the impact of backtrack-
ing, we tested an unsatisfiable concept DUNSAT

which follows the pattern where Dj uDk = ⊥ for
1 ≤ j, k ≤ i, j 6= k with respect to a role hierarchy
R v T : (≥3R.D1)u. . .u(≥3R.Di)u(≤(3i−1)T).

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 31

0

10

20

30

40

50

60

70

80

90

100

R
u
n
ti
m
e
(m
s)

1 2 3 4 5 6

in concept expression

Effect of Exponential Growth of

.

Hybrid-Sat. Hybrid-Unsat

log10 i C

i

Fig. 15. Hybrid reasoner: Effect of exponential growth of i.

2

5

10
2

2

5

10
3

2

5

10
4

2

5

10
5

2

5

10
6

R
u
n
ti
m
e
(m
s)

2 3 4 5 6 7 8 9 10 11

Number of Restrictions

Effect of Backtracking

. . .
. . .
. .
. .

No-Backtracking

Simple. Complex

Fig. 16. Effect of backtracking at different levels.

The assertion x :DUNSAT implies that x has 3
R-successors in D1, . . . , and 3 R-successors in Di.
Since these 3i successors are instances of mutually
disjoint concepts we can conclude that x has 3i
distinct (not mergeable) successors. Therefore, the
at-most restriction in DUNSAT cannot be satisfied.

In this experiment in each step we increase i
which results in more number restrictions and
therefore a larger number of variables. As the
log-linear plot in Figure 16 suggests, the double-
exponential nature of the hybrid algorithm and in
general the high nondeterminism of the ch-Rule
makes it inevitable to utilize at least simple back-
tracking. Moreover, we can conclude that by using
complex backtracking we can improve the perfor-
mance of the reasoning significantly. For example,
in Figure 16 we can observe that for i = 6 rea-
soning without backtracking results in a timeout
while benefiting from simple backtracking the rea-

0

50

100

150

200

N
u
m
b
er
o
f
C
la
sh
es

2 3 4 5 6 7 8 9

Number of Restrictions

Effect of Backtracking

.

.
Simple. Complex

Fig. 17. Effect of backtracking at different levels: Number

of clashes.

soner concludes unsatisfiability in about 41s and
for complex backtracking the reasoning time is re-
duced to 206ms.

In fact, a better method of backtracking can
prune a larger number of branches in the search
space. In other words, the unsatisfiability of a con-
cept can be concluded earlier after facing a smaller
number of clashes. In Figure 17, by observing the
number of logical clashes each method produces
before returning the result, we can compare their
success in pruning the search space.

6.2.3. Satisfiable vs. Unsatisfiable Concepts
In this experiment the test cases are con-

cepts containing four qualified at-least restric-
tions and one unqualified at-most restriction ac-
cording to the following pattern. We abbreviate
these concepts with Ei where R v T for i =
1, 20, 40, . . . , 220, 240:

≥30R.(B u C) u ≥30R.(B u ¬C)u
≥30R.(¬B u C) u ≥30R.(¬B u ¬C) u ≤ i T

Since the concept fillers of the four at-least re-
strictions are mutually disjoint, assuming the as-
sertion x :Ei, we can conclude that x must have
120 nonmergeable R-successors. According to the
role hierarchy R v T , every R-successor is also a
T -successor. Therefore, the concept Ei is satisfi-
able for i ≥ 120 and unsatisfiable for i < 120.

As illustrated in Figure 18, the standard algo-
rithm can easily infer for i ∈ 1..29 that Ei is un-
satisfiable since x has at least 30 distinguished
successors. However, from E30 to E120 it becomes
very time-consuming for the standard algorithm to
merge all 120 successors into i individuals. More-
over, Figure 18 shows that no matter which value

32 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

0

2000

4000

6000

8000

10000

12000

14000

16000

R
u
n
ti
m
e
(m
s)

0 20 40 60 80 100 120 140 160 180 200 220 240

in the concept expression

Satisfiable vs. Unsatisfiable: Standard and Hybrid Algorithms

...

.........

.............

Hybrid. Pellet

i Ei

Fig. 18. Standard and Hybrid algorithm: Effect of
(un)satisfiability for Ei.

i takes between 30 and 119, the standard algo-
rithm performs similarly. In other words, we can
conclude that it tries the same number of possi-
ble ways of merging which is all the possibilities
to merge 4 sets of mutually distinguished individ-
uals. As soon as i becomes greater or equal 120,
since the at-most restriction is not violated, the
standard algorithm simply ignores it and reason-
ing becomes trivial for the standard algorithm.

Furthermore, we can conclude from Figure 18
that for the hybrid algorithm i = 1 is a trivial
case since not more than one variable can have the
type of v ≥ 1 which is the case that easily leads to
unsatisfiability for E1. However, it becomes more
difficult as i grows and reaches its maximum for
i = 30 and starts to decrease gradually until i = 70
and remains unchanged until i = 120. In fact, this
unexpected behavior did not correspond to the for-
mal analysis of the hybrid algorithm and needed to
be analyzed more comprehensively and precisely.

Therefore, we extended our analysis by observ-
ing the time spent on arithmetic reasoning and
logical reasoning as well as the number of differ-
ent clashes. The reason that i = 30 is a breaking
point is the fact that for i < 30 no arithmetic so-
lution exists for the set of inequations. Therefore,
it seems to be very difficult for the arithmetic rea-
soner to realize that a set of inequations has no
solution. Moreover, as i grows from 30 to 120, the
arithmetic reasoner finds more solutions for the set
of inequations which will fail due to logical clashes.
In other words, the backtracking in the logical rea-
soner seems to be much stronger than in the arith-
metic reasoner. Whenever more logical clashes ex-
ist, the hybrid reasoner can accomplish the reason-
ing faster.

0

50

100

150

200

250

300

350

400

450

500

R
u
n
ti
m
e
(m
s)

0 20 40 60 80 100 120 140 160 180 200 220 240

in

Satisfiable vs. Unsatisfiable: Hybrid Algorithm

Hybrid

i ≤i T.D

Fig. 19. Hybrid algorithm: Effect of (un)satisfiability for Fi.

In order to verify this hypothesis, we built an-
other pattern which is slightly different from Ei

and we abbreviate it with Fi where R v T for
i = 1, 20, 40, . . . , 220, 240:

≥30R.(B u C uD) u ≥30R.(B u ¬C uD)u
≥30R.(¬B u C uD)u ≥30R.(¬B u ¬C uD)u
≤ i T.D

The major difference between Ei and Fi is the
fact that in Fi the at-most restriction is also a
qualified restriction and concept D is added to
the fillers of at-least restrictions. Therefore, the set
of inequations always has an arithmetic solution,
however, for i < 120 it will logically fail. In other
words, dependency-directed backtracking discov-
ers the unsatisfiability of the concept. Since the
clashes and therefore backtracking results are in-
dependent from the arithmetic nature of the prob-
lem, as presented in Figure 19, the performance
of the hybrid reasoner stays almost constant for
1 ≤ i ≤ 240. It is worth noticing that the behavior
of the standard algorithm for Fi remains exactly
similar to Ei (not shown here).

6.2.4. Number of Qualified Number Restrictions
According to the complexity analysis of the hy-

brid algorithm in Section 4.1.2 one can conclude
that the number of qualified number restrictions
significantly influences the complexity of reason-
ing. More specifically, the complexity of the hybrid
algorithm seems to be characterized by a double-
exponential function of the number of number re-
strictions in the worst case.

In this experiment we built a concept containing
one at-least restriction and extend it gradually. In
order to keep the ratio between the number of at-
least and at-most restrictions fixed, in each step

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 33

0

100

200

300

400

500

600

700

800

Ru
nt
im
e
(m
s)

2 4 6 8 10 12 14 16 18
Number of Qualified Number Restrictions

.

.

Fig. 20. Effect of increasing the number of qualified number

restrictions.

we added one qualified at-least restriction and one
qualified at-most restriction. In step i the concept
which we abbreviate with Gi is of the following
form with respect to the role hierarchy {RS v R}:

≥20RS u ≥10R.C1 u · · · u ≥10R.Ci u
≥5R.(¬C2 t ¬C3) u · · · u ≥5R.(¬Ci t ¬Ci+1) u
≤5R.(¬C1 t ¬C2)

Therefore, in each concept Gi we have 2i + 1
number restrictions. It is essential for this prob-
lem that the roles participating in these number
restrictions share the same role hierarchy. Other-
wise, one could partition different role names from
different role hierarchies and deal with each parti-
tion separately. Note that the hybrid algorithm en-
counters no clashes when deciding satisfiability of
Gi. As presented in Figure 20, the maximum num-
ber of qualified number restrictions that the hybrid
prototype currently can handle (in less than 1000s)
is 17 although these concepts are easily satisfiable.
The Pellet reasoner could decide the satisfiability
of each concept Gi with a runtime well below one
second. It is currently unclear whether this per-
formance degradation of the hybrid reasoner is in-
evitable or could be avoided by an improved imple-
mentation. For instance, Algorithm 5, which finds
don’t-care-variables, still requires O(2n) steps for
n at-least restrictions. This dependency might be
improved by better indexing techniques and might
become linear to n with a smarter implementation.

6.2.5. Number of At-least vs. At-most
Restrictions

In the following we denote the ratio between the
number of at-least restrictions and at-most restric-
tions by RMin/Max. In addition to the pure num-

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

R
u
n
ti
m
e
(m
s)

2-12 3-11 4-10 5-9 6-8 7-7 8-6 9-5 10-4 11-3 12-2

at-least - #at-most

Effect of the Ratio

Fig. 21. Effect of the ratio between the number of at-least
and at-most restrictions.

ber of number restrictions, the ratio RMin/Max

seems to also affect the complexity of reasoning.
Therefore, in this experiment, for a fixed total
number of restrictions, we evaluate the perfor-
mance of the hybrid prototype with respect to this
ratio. The structure of the concept expression is
similar to Gi for which no clashes occur during the
reasoning, i.e., the concept expressions are easily
satisfiable.

From Figure 21 we can conclude that the growth
of RMin/Max increases the complexity of the rea-
soning for the hybrid reasoner while the Pellet rea-
soner could decide the satisfiability of these con-
cept with a runtime well below one second. In fact,
the hybrid reasoner tries to satisfy at-least restric-
tions while not violating any at-most restriction.
Therefore, the length of the satisfying variables
list, which is the list of variables for which the ch-
Rule is applied, depends on the number of at-least
restrictions.19 Therefore, the more at-least restric-
tions exist in Gi, the harder it becomes for the
arithmetic reasoner to find a solution for the set of
inequations.

Note that the at-most restrictions are not the
only source of complexity. The fact that the arith-
metic reasoner always computes a minimal solu-
tion, significantly affects the complexity of the rea-
soning even when no at-most restriction exists. For
example, in Table 2, when Gi has 14 at-least re-
strictions and no at-most restrictions, the hybrid
prototype accomplished the reasoning process in
about 235 seconds. By ignoring the minimal num-
ber of successors property, this problem is trivial
in the absence of at-most restrictions (see Section
5.2.2 where we presented a solution for this ineffi-

19In fact, it contains the variables participating in at least
one at-least restriction.

34 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

Table 2

Effect of number of at-least restrictions vs. number of at-
most restrictions.

≥ − ≤ 0-14 1-13 2-12 3-11 4-10 5-9 6-8 7-7 8-6 9-5 10-4 11-3 12-2 13-1 14-0

Time (s) 0.17 0.59 1.3 2 2.9 3.7 4.4 5.1 5.9 6.5 7.1 9 16.5 53 235

ciency, which is not yet implemented in our proto-
type).

7. Discussion and Future Work

Based on the evaluation results presented in Sec-
tion 6 and the complexity analysis in Section 4
we identify the following advantages of the hy-
brid algorithm in comparison with the standard
approaches:

– Insensitivity to the value of numbers: Accord-
ing to the nature of linear integer program-
ming, the value of numbers do not affect the
hybrid algorithm. More precisely, larger num-
bers for the same variable only affect the car-
dinality of its relevant proxy individual.

– Comprehensive reasoning: Since the hybrid al-
gorithm collects all number restrictions be-
fore expanding the completion graph, its so-
lution is more comprehensive and therefore
more probable to survive. In other words, in
contrast with standard algorithms it never
creates extra successors which later need to
be merged.

– Structured search space: By means of the
atomic decomposition and the variables asso-
ciated with partitions, the hybrid approach
searches for a model in a very structured and
well-organized search space. As a result, when
encountering a clash, it can efficiently back-
track to the source of the clash and optimally
prune the branches which lead to the same
clash (see Section 4.3).

– Minimal number of successors: According to
the fact that the goal function in the arith-
metic reasoner is to minimize the sum of vari-
ables, the number of successors generated for
an individual is always minimized. In fact, as
mentioned in Section 6.2.5, one major source
of inefficiency in the hybrid reasoning is that it
not only searches for a model but also always
for a model with a minimal number of suc-
cessors. This feature of the hybrid algorithm

could be of interest for a set of problems where
the number of successors affects the quality
of the solution. For example, in configuration
problems, not only a consistent and sound
model is of interest, but also a model which
requires less elements and therefore costs less
is of great importance.

The following disadvantages of the hybrid algo-
rithm can be observed:

– Exponential number of variables: According
to the nature of the atomic decomposition,
in order to have mutually disjoint sets, the
hybrid algorithm introduces an exponential
number of variables. Considering the nonde-
terministic ch-Rule, the search for a model
can become expensive for the algorithm when-
ever large numbers of cardinality restrictions
occur in the label of an individual.

– Long initialization time: The hybrid algo-
rithm needs to perform a preprocessing step
before starting the algorithm. Moreover, it
collects all number restrictions before gener-
ating any successor for an individual. This de-
lay is due to the fact that the hybrid algo-
rithm spends some time on choosing an effi-
cient branch to proceed. However, this initial-
ization time is unnecessary for trivially satis-
fiable or unsatisfiable concepts.

Considering the advantages and disadvantages
of the hybrid algorithm, one can conclude that this
approach is inevitable whenever large numbers oc-
cur in numbers restrictions. This is also strongly
supported by the results in [7] about a worst-case
optimal tableau algorithm for SHIQ using alge-
braic reasoning and global caching. Moreover, the
hybrid algorithm builds a well-structured search
space which makes it well-suited for non-trivial
concepts. However, in the case of trivially sat-
isfiable concepts the current prototype performs
slower than the standard algorithms. In other
words, we can conclude that the overhead in the
hybrid algorithm w.r.t. the current implementa-
tion is too high for trivial situations. Moreover, the

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 35

fact that the number of the successors is minimized
takes a possibly unnecessary extra effort.

As mentioned in the introduction, the signature
calculus [13] was designed to address the problem
of large numbers in number restrictions. However,
it still has two highly nondeterministic rules (to
split and merge proxy individuals) and does not
process all at-most restrictions in one step. The al-
gebraic method proposed in [30] cannot be consid-
ered as a calculus. It neither handles TBoxes with
arbitrary axioms or terminological cycles nor di-
rectly deals with disjunctions and full negation. It
is unclear how this methodology could be extended
to handle more expressive description logics.

Although the early work presented in [15] and
implemented in Racer [14] deals with SHQ, it is
based on a recursive procedure not suited for for-
mal proofs. Furthermore, it needs to examine the
satisfiability of all partitions before initializing the
Simplex component and does not support Aboxes.
Whenever the number of qualified numbers restric-
tions grows and respectively the number of par-
titions exponentially grows, Racer becomes very
inefficient.

We strongly believe that the current inefficiency
of our implemented prototype w.r.t. the number
of number restrictions should not be used to come
to the premature conclusion that the hybrid algo-
rithm is inefficient or even unusable for problems
with many number restrictions. The inefficiency
is due to the exponential growth of the variables
in the inequations and the straight-forward imple-
mentation of the algebraic module which contains
some algorithmic parts that still exhibit a best-
case exponential behavior. A more advanced im-
plementation could use standard techniques from
linear programming such as (delayed) column gen-
eration (e.g., see [6]) that depends on the insight
to consider only variables which have the poten-
tial to improve the objective function (in our case
minimization of the sum of all variables occurring
in the inequations of a given node in the comple-
tion forest). We conjecture that such an optimiza-
tion technique would greatly improve the efficiency
of the algebraic reasoner in the average case and
would make the algorithmic parts obsolete that are
currently best-case exponential.

We plan to address the following other topics in
our future work.

– Turning off minimality: Since the minimal
number of successor property is unnecessary

in many cases, we could provide a switch
to turn this property on and off. Therefore,
whenever it is switched off, we can consider
the least restricted variables first in order to
find a solution faster. For example, if no at-
most restriction is violated, similar to the
standard algorithm, we can create n succes-
sors for every at-least restriction ≥nR.C.

– Optimizing the arithmetic reasoner: In Sec-
tion 6.2.3 we learned that one major source of
inefficiency is due to the non-optimized arith-
metic reasoner:

∗ To optimize the arithmetic reasoner we
could support incremental arithmetic rea-
soning, i.e., whenever a solution fails due to
logical reasons and the arithmetic module
modifies its knowledge about the variables,
it does not restart the Simplex procedure.
In fact, the Simplex module can continue
its search for an integer solution, incremen-
tally considering the newly discovered con-
straints on the variables.

∗ One other possibility to improve the perfor-
mance of the arithmetic reasoner is caching
arithmetic solutions or clashes to avoid
solving the same set of inequations more
than once.

∗ As explained in Section 5, one important
factor which affects the performance of the
arithmetic module significantly, is the or-
der of variables in the satisfying-variables
list. Modifying this list according to the
input concept expression and also the re-
sults gained during backtracking can help
the arithmetic module find a surviving so-
lution faster.

– Extending to more expressive languages: There
are two well-known constructors which in-
crease the expressiveness of the language:
Nominals (O) and inverse roles (I). In the
presence of nominals, implied numerical re-
strictions due to nominals affect all individ-
uals. A hybrid calculus for ALCOQ is pre-
sented in [9,10]. In the presence of inverse roles
the labels of individuals may be modified at
any time. Therefore, a hybrid algorithm han-
dling SHIQ will need to deal with incremen-
tal updates of labels of individuals due to the
backpropagation of knowledge.

36 Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions

In general, one cannot expect that the algebraic
tableau approach will work best for all possible
input, especially since concept and Abox satis-
fiability are known to be ExpTime-complete for
SHQ. In Section 4.1 we illustrated that the worst-
case complexity of the hybrid tableau is a func-
tion of the number of variables and, thus, of the
number of at-least and at-most restrictions, while
the complexity of the standard tableau is a func-
tion of the size of the numbers used in qualified
number restrictions and the number of at-most re-
strictions. Given this analysis, in the future, after
having improved the performance of the algebraic
tableau approach, it seems to be promising to ex-
plore a combination with an alternative calculus
for number restrictions such as the signature cal-
culus [13], which pioneered the use of proxy indi-
viduals and can be considered as an improvement
over standard tableau for dealing with number re-
strictions. A heuristic could be devised that de-
cides whether the algebraic tableau or the signa-
ture calculus should be applied to a given problem.

A calculus equipped with the ability of informed
arithmetic reasoning could be a motivation for in-
troducing more complex numerical DL construc-
tors. As proposed in [30], one possible extension
could be used to restrict the ratio of cardinalities
of fillers of two different roles. For example, in a
taxonomy describing the structure of a theater, the
concept expression 50 × |hasRoom.WashRoom| ≥
|hasSeat .>| could express the restriction that there
must exist at least one washroom for every 50
seats. Similarly, a percentage restriction such as
≤ 20% hasCredit .Business could describe a con-
cept where at most 20% of the hasCredit fillers are
instances of the concept Business.

Since qualified number restrictions can be trans-
lated to inequations, such expressions can be trans-
formed to linear inequations. However, the de-
cidability of a DL extended by such constructors
needs to be investigated.

Acknowledgements

We express our gratitude to our colleagues
Jocelyne Faddoul and Ralf Möller for their valu-
able advice during this investigation. We are also
very thankful for the very detailed and thoughtful
reviews by the anonymous reviewers that greatly
helped to improve this article.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,

and P. Patel-Schneider. The Description Logic Hand-
book, 2nd edition. Cambridge University Press, 2007.

[2] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and

H. Profitlich. An empirical analysis of optimization
techniques for terminological representation systems

or: Making KRIS get a move on. Applied Artificial In-

telligence. Special Issue on Knowledge Base Manage-
ment, 4:109–132, 1994.

[3] F. Baader and U. Sattler. An overview of tableau al-

gorithms for description logics. Studia Logica, 69:5–40,
2001.

[4] S. Bechhofer. DIG optimisation techniques, March

2006. http://dl.kr.org/dig/optimisations.html

(last visited July 2009).

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms, Second Edition.

The MIT Press, September 2001.

[6] G. Desaulniers, J. Desrosiers, and M. M. Solomon, ed-

itors. Column Generation. Mathematics of Decision

Making. Springer-Verlag, 2005.

[7] Y. Ding. Tableau-based Reasoning for Description

Logics with Inverse Roles and Number Restrictions.

PhD thesis, Department of Computer Science and
Software Engineering, Concordia University, April

2008. Available at http://users.encs.concordia.ca/

~haarslev/students/Yu_Ding.pdf.

[8] J. Faddoul, N. Farsinia, V. Haarslev, and R. Möller.

A hybrid tableau algorithm for ALCQ. In Proceedings

of the 18th European Conference on Artificial Intelli-
gence (ECAI 2008), Patras, Greece, July 21-25, pages

725–726, 2008. An extended version appeared in Pro-

ceedings of the 2008 International Workshop on De-
scription Logics (DL-2008), Dresden, Germany, May

13-16, 2008.

[9] J. Faddoul, V. Haarslev, and R. Möller. Hybrid rea-
soning for description logics with nominals and qual-
ified number restrictions. Technical report, Institute

for Software Systems (STS), Hamburg University of
Technology, 29 pages, 2008. See also http://www.sts.

tu-harburg.de/tech-reports/papers.html.

[10] J. Faddoul, V. Haarslev, and R. Möller. Algebraic
tableau algorithm for ALCOQ. In Proceedings of

the 2009 International Workshop on Description Log-
ics (DL-2009), Oxford, United Kingdom, July 27–30,
2009.

[11] N. Farsiniamarj. Combining integer programming
and tableau-based reasoning: A hybrid calculus
for the description logic SHQ. Master’s thesis,

Concordia University, Department of Computer

Science and Software Engineering, 2008. Available
at http://users.encs.concordia.ca/~haarslev/

students/Nasim_Farsinia.pdf.

[12] J. Gaschnig. Performance Measurement and Analysis
of Certain Search Algorithms. PhD thesis, Carnegie-

Mellon University, Pittsburgh, PA, 1979.

Farsiniamarj and Haarslev / Practical Reasoning with Qualified Number Restrictions 37

[13] V. Haarslev and R. Möller. Optimizing reasoning in

description logics with qualified number restriction.

In Proceedings of the International Workshop on De-
scription Logics (DL’2001), Aug. 1-3, 2001, Stanford,

CA, USA, pages 142–151, August 2001.

[14] V. Haarslev and R. Möller. RACER system descrip-

tion. In R. Goré, A. Leitsch, and T. Nipkow, edi-
tors, Proceedings of the International Joint Conference

on Automated Reasoning, IJCAR’2001, June 18-23,
2001, Siena, Italy, Lecture Notes in Computer Science,

pages 701–705. Springer-Verlag, June 2001.

[15] V. Haarslev, M. Timmann, and R. Möller. Com-

bining tableaux and algebraic methods for reasoning
with qualified number restrictions. In Proceedings

of the International Workshop on Description Logics

(DL’2001), Aug. 1-3, Stanford, USA, pages 152–161,
2001.

[16] B. Hollunder and F. Baader. Qualifying number re-

strictions in concept languages. In J. Allen, R. Fikes,

and E. Sandewall, editors, Second International Con-
ference on Principles of Knowledge Representation,

Cambridge, Mass., April 22-25, 1991, pages 335–346,

April 1991.

[17] M. Horridge, S. Bechhofer, and O. Noppens. Igniting
the OWL 1.1 touch paper: The OWL API. In Proceed-

ings of the OWLED 2007 Workshop on OWL: Experi-

ences and Directions, volume 258, Innsbruck, Austria,
June 2007.

[18] I. Horrocks. Backtracking and qualified number re-

strictions: Some preliminary results. In In Proc. of the

2002 Description Logic Workshop (DL 2002), pages
99–106, 2002.

[19] I. Horrocks. Implementation and optimization tech-

niques. In Baader et al. [1], chapter 9.

[20] I. Horrocks, O. Kutz, and U. Sattler. The even more

irresistible SROIQ. In Proc. of the 10th Int. Conf.
on Principles of Knowledge Representation and Rea-

soning (KR 2006), pages 57–67. AAAI Press, 2006.

[21] I. Horrocks and U. Sattler. A tableau decision proce-

dure for SHOIQ. JAR, 39(3):249–276, 2007.

[22] I. Horrocks, U. Sattler, and S. Tobies. Practical reason-
ing for expressive description logics. In H. Ganzinger,
D. McAllester, and A. Voronkov, editors, Proceed-

ings of the 6th International Conference on Logic for
Programming and Automated Reasoning (LPAR’99),

number 1705 in Lecture Notes in Artificial Intelligence,

pages 161–180. Springer-Verlag, September 1999.

[23] I. Horrocks, U. Sattler, and S. Tobies. Practical reason-
ing for very expressive description logics. Logic Journal
of the IGPL, 8(3):239–264, 2000.

[24] I. Horrocks, U. Sattler, and S. Tobies. Reason-

ing with individuals for the description logic SHIQ.
In D. MacAllester, editor, Proceedings of the 17th

International Conference on Automated Deduction
(CADE-17), Lecture Notes in Computer Science,
pages 482–496, Germany, 2000. Springer Verlag.

[25] I. Horrocks and S. Tobies. Reasoning with axioms:

Theory and practice. In A. Cohn, F. Giunchiglia, and

B. Selman, editors, Proceedings of Seventh Interna-

tional Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR’2000), Breckenridge,

Colorado, USA, April 11-15, 2000, pages 285–296,
April 2000.

[26] Y. Kazakov, U. Sattler, and E. Zolin. How many legs

do I have? Non-simple roles in number restrictions re-

visited. In Proceedings of the 14th International Con-
ference on Logic for Programming, Artificial Intelli-

gence, and Reasoning, LPAR 2007, Yerevan, Arme-

nia, Oct. 15-19, volume 4790 of LNAI, pages 303–317.
Springer-Verlag, 2007.

[27] H. Lenstra. Integer programming with a fixed num-

ber of variables. Mathematics of Operations Research,

8(4):538–548, November 1983.

[28] E. N. Marieb, K. Hoehn, P. B. Wilhelm, and

N. Zanetti. Human Anatomy & Physiology: Interna-
tional Edition with Human Anatomy and Physiology

Atlas, 7/E. Pearson Higher Education, 7 edition, 2006.

[29] H. Ohlbach and J. Koehler. Role hierarchies and num-

ber restrictions. In Proceedings of the International
Workshop on Description Logics (DL-97), Sept. 27 -

29, Gif sur Yvette (Paris), France, 1997.

[30] H. Ohlbach and J. Köhler. Modal logics, description

logics and arithmetic reasoning. Artificial Intelligence,
109(1-2):1–31, 1999.

[31] OWL 2 Web Ontology Language: Structural Speci-
fication and Functional-Style Syntax, W3C Working

Draft, 02 December 2008, October 2008. http://www.

w3.org/TR/owl2-syntax/ (last visited July 2009).

[32] P. Prosser. Hybrid algorithms for the constraint
satisfaction problem. Computational Intelligence,

9(3):268–299, 1993.

[33] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and

Y. Katz. Pellet: a practical OWL-DL reasoner. Journal
of Web Semantics, 5(2):51–53, 2005.

[34] D. Tsarkov and I. Horrocks. FaCT++ description logic
reasoner: System description. In Proc. of the Int. Joint

Conf. on Automated Reasoning (IJCAR 2006), vol-

ume 4130 of Lecture Notes in Artificial Intelligence,
pages 292–297. Springer, 2006.

[35] F. van Harmelen, J. Hendler, I. Horrocks, D. L.

McGuinness, P. F. Patel-Schneider, and L. A. Stein.

OWL web ontology language reference, 2003. http:

//www.w3.org/TR/owl-guide/ (last visited July 2009).

[36] M. Y. Vardi. Why is modal logic so robustly decid-

able? In N. Immerman and P. G. Kolaitis, editors,

Descriptive Complexity and Finite Models, volume 31
of DIMACS Series in Discrete Mathematics and The-

oretical Computer Science, pages 149–184. American
Mathematical Society, 1996.

[37] T. Weithöner, T. Liebig, M. Luther, S. Böhm, F. von
Henke, and O. Noppens. Real-world reasoning with
OWL. In Proceedings of 4th European Semantic Web

Conference, ESWC 2007, Innsbruck, Austria, June 3-
7, 2007, LNCS 4519, pages 296–310. Springer-Verlag,
2007.

