The Toot Suite Project: Predicting and classifying membrane and transport proteins to study host-microbiome interactions

Gregory Butler

Department of Computer Science & Software Engineering Centre for Structural and Functional Genomics Concordia University, Montréal, Canada

October 2019

Malaysia

Outline

Context

TooT Suite Project

EPRCS Methodology

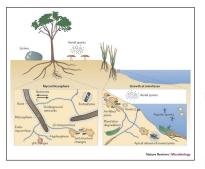
Conclusion

Outline

Context

- ► Context Bioinformatics
- ► Context Network Reconstruction
- ► Context Host-Microbiome Interactions
- ► Context Feeding the World

Fungi



Symbiosis

- plant roots
- lichen
- "noble rot"
- microbiome

Pathogens

- Plant blight, smut, mould red pine beetle
- ► Human aspergillosis, C. albicans
- Bacteria, insects, frogs, animal

Food

- yeast
- edible mushrooms

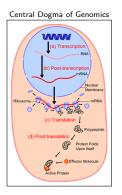
Degradation

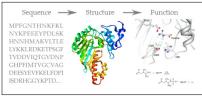
- plant litter
- polyphenols

Microbiomes

- cattle rumen, elk, deer, muskoxen, etc
- termite gut

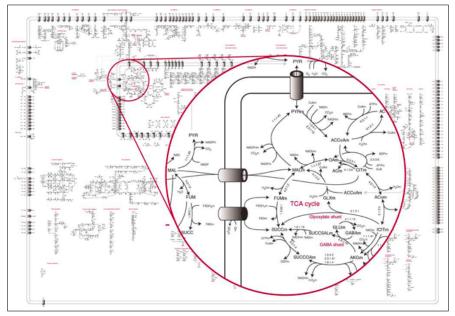
Bioinformatics in a Nutshell — Algorithmics



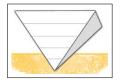


- Assembly from DNA reads to chromosomes from RNA reads to transcripts
- Structural Annotation: find genes
- Functional Annotation describe roles of genes (GO)
 - biological process (BP)
 - molecular function (MF)
 - cellular component (CC)
- Analysis of "-omics" expression data
 - transcriptomics
 - proteomics
 - metabolomics
- Systems Biology *holistic* perspective
 - metabolism
 - transport
 - regulation
 - signaling

Example of Metabolism and Transport



Foundation Data: Basis of Annotation



Sequenced org.: <1% genes annotated Well-studied org.: $\sim10\%$ genes annotated Model organisms: $\sim40\%$ genes annotated

Annotation is ... Propogation of annotation by Annotation transfer by homology (ATH) Guilt-by-association (GBA) Must track provenance

 and ... Catching systematic errors by rule-based post-processing
Errors often due to phylogenetic differences, or confusion of orthologs, paralogs, xenologs

Issues with Predicting Transport

State of the art for transporter prediction is poor

Similarity works as well as any other technique but limited to known transporters

De novo transporter prediction is poor

coverage of known transporters is low often vastly overpredicts

Need improvements

in examples of characterized transporters in prediction of transmembrane segments (TMS) in prediction of localization in harmonizing classification schemes

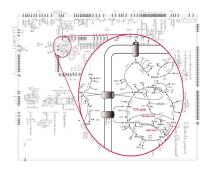
Need to predict the specific substrate that is transported

Previous Work on Transport Prediction

Solution	Organism	Size	Substrates	Features	Classifier	Performance*
Schaadt	Specific	61	amino acid,	AAC,	Euclidean	Accuracy of
et	(Arabidopsis		oligopeptides,	PAAC,	distance	90%
al. [70]	thaliana)		phosphate	PseAAC,		
			and hexose	MSA-AAC		
Chen et	General	651	electron,	AAC,	Neural	Accuracy of
al. [71]			protein/	PAAC,	network	about 80%
			$\mathrm{mRNA}, \mathrm{ion}$	AAindex,		
			and others	PSSM		
Schaadt	Specific	61	amino acid,	AAC with	Euclidean	Accuracy of
et	(Arabidopsis		oligopeptides,	separating	distance	80%
al. [73]	thaliana)		phosphate	TM-		
			and hexose	segments		
Barghash	Specific	246	amino acids,	BLAST,	N/A	F-measure
et	(Escherichia		metal ions,	HMMER,		around
al. [74]	coli,		phosphates	MEME		40-75%
	Saccharomyce	s	and sugars			
	cerevisiae,					
	Arabidopsis					
	thaliana)					
Mishra	General	780	amino	AAC,	SVM	Overall MCC
et			acid, anion,	PAAC,		of 0.41 and
al. [77]			cation,	PseAAC,		accuracy of
			electron,	AAindex,		78%
			protein/	PSSM		
			mRNA,			
			sugar and			
			others			

9/34

Manual Network Model of Andersen (2008)



Aspergillus niger CBS 513.88 14,156 ORFS

986 metabolic reactions 871 GPR associations 131 (3.14%) holes

205 transport reactions 202 (98.54%) holes

extracellular to cytosol: 151 transport reactions cytosol to mitochondrion: 54 transport reactions

MR Andersen et al, Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Molecular Systems Biology, 4(1), 2008.

Results from Pathway Tools on Case Study

Metabolic Reactions

332 pathways, 1868 metabolic reactions, 1580 GPR associations 335 (31%) gaps

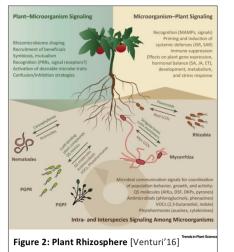
Transport Reactions Predicted

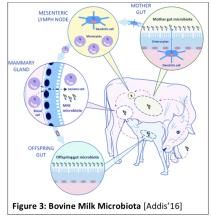
$$\begin{array}{ll} (1) \ \mathsf{NADP}^+ + \mathsf{NADH} + \mathsf{H}^+_{[out]} \longleftrightarrow \mathsf{NAD}^+ + \mathsf{NADPH} + \mathsf{H}^+_{[in]} \\ (2) \ \mathsf{UDP} - \alpha - \mathsf{D} - \mathsf{glucosyl} + \mathsf{glucosyl} - \mathsf{glycogenin}_{[in]} \longrightarrow \\ 1, 4 - \alpha - \mathsf{D} - \mathsf{glucosylglycogenin} + \mathsf{UDP} + \mathsf{H}^+_{[out]} \\ (3) \ \mathsf{phospolipid}_{[in]} + \mathsf{ATP} + \mathsf{H}_2\mathsf{O} \longleftrightarrow \mathsf{phospolipid}_{[out]} + \mathsf{ADP} + \mathsf{phosphate} + \mathsf{H}^+ \\ (4) \ \mathsf{Cu}^{2+}_{[in]} + \mathsf{ATP} + \mathsf{H}_2\mathsf{O} \longrightarrow \mathsf{Cu}^{2+}_{[out]} + \mathsf{ADP} + \mathsf{phosphate} + \mathsf{H}^+ \\ (5) \ \mathsf{ATP} + \mathsf{H}^+_{[in]} + \mathsf{H}_2\mathsf{O} \longleftrightarrow \mathsf{ADP} + \mathsf{phosphate} + \mathsf{H}^+_{[out]} \\ (6) \ \mathsf{Ca}^{2+}_{[out]} + \mathsf{ATP} + \mathsf{H}_2\mathsf{O} \longleftrightarrow \mathsf{Ca}^{2+}_{[in]} + \mathsf{ADP} + \mathsf{phosphate} + \mathsf{H}^+ \\ (7) \ \mathsf{ATP} + 3 \mathsf{H}^+_{[in]} + \mathsf{H}_2\mathsf{O} \longleftrightarrow \mathsf{ADP} + \mathsf{phosphate} + 4 \mathsf{H}^+_{[out]} \\ (8) \ \mathsf{oligopeptide}_{[out]} + \mathsf{ATP} + \mathsf{H}_2\mathsf{O} \longleftrightarrow \mathsf{oligopeptide}_{[in]} + \mathsf{ADP} + \mathsf{phosphate} \\ (9) \ \mathsf{xenobiotic}_{[in]} + \mathsf{ATP} + \mathsf{H}_2\mathsf{O} \longleftrightarrow \mathsf{xenobiotic}_{[out]} + \mathsf{ADP} + \mathsf{phosphate} \\ (10) \ \mathsf{4H}^+_{[in]} \longrightarrow \mathsf{4H}^+_{[out]} \end{array}$$

Toot Suite — Motivation

Help understand host-microbiome interaction

by predicting transporter proteins and their substrates





Outline

TooT Suite Project

- ► TooT Suite Introduction
- ► TooT Suite Overview
- ► TooT Suite EPRCS
- ► TooT Suite F.A.I.R.
- ► TooT Suite Infrastructure

The Toot Suite Project Genome Canada BCB 2017 Competition

TooT Suite: Predication and classification of membrane transport proteins, Gregory Butler and Tristan Glatard, 2018–2021

Bioinformatics and Machine Learning

Develop predictors for transporter proteins and membrane proteins

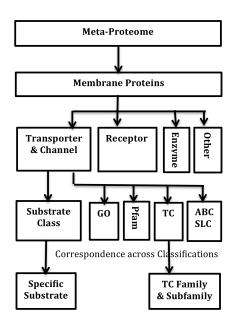
Open Science

tools — open source platform for experiments — Boutiques + bfx tools + ML tools reproducible experiments

Scale to microbiomes

Motivation Improve agricultural productivity provide tools to help understand microbiome-host interaction

Toot Suite - Prediction Overview



Predictors

Toot-SC — substrate *Toot-TC* — TC info *Toot-All* — all classifications

Toot-Proteome predict classification for membrane protein in a proteome, or meta-proteome

Toot-SS specific substrate for transport protein

Experimental Platform

Experiments

TooT Suite Project 24 Substrate Classes

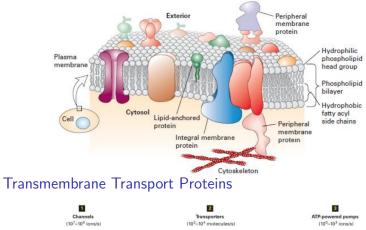
Table 5: Substrate Classes
Non-selective ions
Cations
Anions
Electrons
Water
Sugar and polyols
Monocarboxylates
Di- and tri-carboxylates
Organo-anions
Aromatic compounds
Amino acids and
conjugates
Amines, amides,
polyamines, and organo-
cations
Siderophores, siderophore-
Fe complexes
Substrate co-factors
Multiple drugs
Specific drugs
Other hydrophobic
substrates
Nucleobases
Nucleosides
Polysaccharides
Proteins
Lipids
Nucleic acids
Unknown

Transport Proteins

Biomembrane

Closed

Gate



Symporter

в

Uniporter

А

Exterior

Cytosol

Antiporter

С

ATP ADP + P

Membrane Proteins

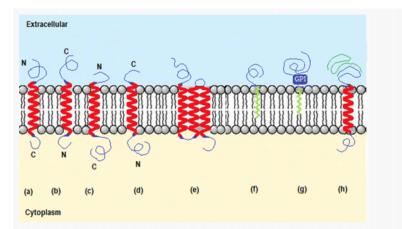


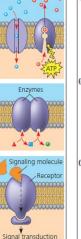
Fig. 2

Eight types of membrane protein with extracellular and intracellular activities. *a* Singlepass Type I. *b* Type II. *c* Type III. *d* Type IV. *e* Multi-pass transmembrane. *f* Lipidanchored. *g* GPI-anchored. *h* Peripheral membrane proteins

Membrane Proteins

- (a) Transport. Left: A protein that spans the membrane may provide a hydrophilic channel across the membrane that is selective for a particular solute. Right: Other transport proteins shuttle a substance from one side to the other by changing shape (see Figure 7.17). Some of these proteins hydrolyza ATP as an energy source to actively pump substances across the membrane.
- (b) Enzymatic activity. A protein bullt into the membrane may be an enzyme with its active site exposed to substances in the adjacent solution. In some cases, several enzymes in a membrane are organized as a team that carries out sequential steps of a metabolic pathway.
- (c) Signal transduction. A membrane protein (receptor) may have a binding site with a specific shape that fits the shape of a chemical messenger, such as a hormone. The external messenger (signaling molecule) may cause the protein to change shape, allowing it to relay the message to the inside of the cell, usually by binding to a cytoplasmic protein to cell figure 11.6).

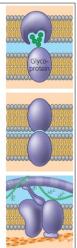
Campbell et al, Biology; 2009.



(d) Cell-cell recognition. Some glycoproteins serve as identification tags that are specifically recognized by membrane proteins of other cells. This type of cell-cell binding is usually short-lived compared to that shown in (e).

- (e) Intercellular joining. Membrane proteins of adjacent cells may hook together in various kinds of junctions, such as gap junctions or tight junctions (see Figure 6.32). This type of binding is more long-lasting than that shown in (d).
- (f) Attachment to the cytoskeleton and extracellular matrix (ECM).

Microfilaments or other elements of the cytoskeleton may be noncovalently bound to membrane proteins, a function that helps maintain cell shape and stabilizes the location of certain membrane proteins. Proteins that can bind to ECM molecules can coordinate extracellular and intracellular changes (see Figure 5.30).



Toot Suite — Scale

Membrane proteins

Proteome

Meta-proteome

Machine Learning Experiments

EPRCS Methodology

- Evolutionary information
- Positional information
- Regional information
- Compositional information
- Sequential information

Experiments

What is the

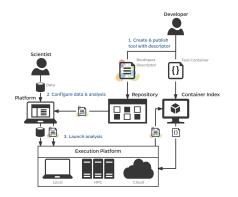
best combination of

E P R C S tools

for prediction

Toot Suite — Experimental Infrastructure

Boutiques using Docker

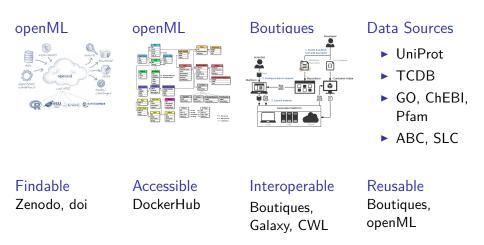


Compute Canada e.g. MP2 cluster

1632 nodes 12 core/node 32-512 GB memory/node

FAIR for Open Science Findable Accessible Interoperable Reusable

T Glatard et al, Boutiques: a flexible framework to integrate command-line applications in computing platforms. Gigascience. 2018 May 1;7(5) Toot Suite — F.A.I.R.



MD Wilkinson et al, The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016

Outline

EPRCS Methodology

- EPRCS Evolution
- EPRCS Position
- ► EPRCS Region
- ► EPRCS Composition
- ► EPRCS Sequence
- ► EPRCS Example TranCEP

EPRCS Methodology for Protein Sequence Analysis Evolution [E]

Classical blastp, PSI-blast MSA, TMS-aware MSA Position **[P]**

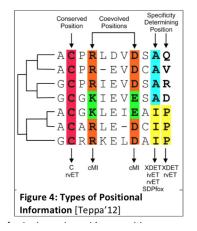
Focus on important sites classical PSSM Region **[R]**

Split sequence into regions eg C-terminus, Rest, N-terminus eg TMS and non-TMS

Composition [C]

Classical amino acid composition AAC, PAAC, PseAAC (Chou), split Sequence **[S]**

HMM capture patterns along sequence



TranCEP — Predicting transport proteins

Algorithm

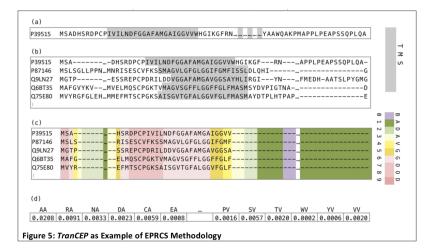
Construct vector v(s) for protein sequence s

- ▶ [E] Form set S of similar sequences to s in DB using blastp
- ▶ [E] Form MSA *M* from *S* using TM-Coffee
- ▶ [P] Find informative positions P in M using TCS
- ▶ [P] Filter uninformative positions in *M* to form *m*
- [C] Compute PAAC composition vector v(s) from m

TranCEP builds 21 SVMs discriminating 1-vs-1 for each pair of the 7 classes

Munira Alballa, Faizah Aplop, Gregory Butler, *TranCEP: Predicting transmembrane transport proteins using composition, evolutionary, and positional information*, bioXriv, 2018. doi: https://doi.org/10.1101/293159

TranCEP — Predicting transport proteins



TranCEP — Predicting transport proteins

Performance of TranCEP using TM-Coffee and TCS and PAAC

Class	Specificity		Sensitivity		Accuracy		MCC	
	TrSSP	TranCEP	TrSSP	TranCEP	TrSSP	TranCEP	TrSSP	TranCEP
Amino acid	82.42	98.10	93.33	60.00	83.33	91.75	0.49	0.66
Anion	69.05	96.30	75.00	58.33	69.44	90.82	0.23	0.56
Cation	74.31	89.29	75.00	94.44	74.44	89.00	0.41	0.78
Electron	91.78	99.05	80.00	80.00	91.11	97.80	0.50	0.88
Protein	82.42	99.07	93.33	66.67	83.33	93.68	0.49	0.75
Sugar	76.79	99.07	91.67	66.67	77.78	94.68	0.38	0.74
Other	73.13	86.00	60.00	65.00	71.67	80.91	0.23	0.44
Overall					78.88	74.17	0.41	0.69

Table 3: Comparison of TranCEP and TrSSP

TportHMM is MUSCLE plus Xdet plus hmmer MCC of 0.72 on Mishra's dataset

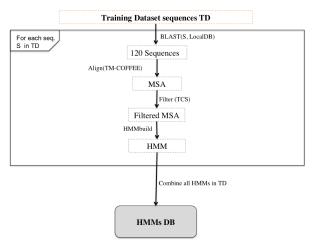


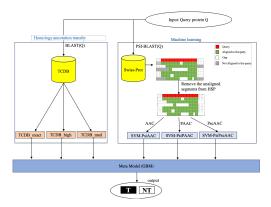
Figure 5: Filtered-HMM-Profile database building process

TooT-SC: TM-Coffee+PAAC+SVM on 11 classes MCC 0.79

	Classs name	ChEBI-ID	#instances	Main decentents
1	nonselective inorganic molecule	(CHEBI:36914 - inorganic ion) and (CHEBI:24431 - chemical entity)	26	
2	water	CHEBI:15377 - water	26	
3	inorganic cation	CHEBI:36915 - inorganic cation	601	
4	inorganic anion	CHEBI:24834 - inorganic anion	102	
5	organic anion	CHEBI:25696 - organic anion	107	
6	organooxogyn	CHEBI:36963 - organooxygen compound	174	
				CHEBI:35381;CHEBI:63367 - monosacch
				CHEBI:50699; CHEBI:63563 - oligosacch
				CHEBI:18154; CHEBI:65212 -polysacchari
				CHEBI:25384 -monocarboxylic acid -
				CHEBI:35692 -dicarboxylic acid
				CHEBI:27093 -tricarboxylic acid
7	amino acid and derivatives	(CHEBI:33709 - amino acid) and (CHEBI:83821 - amino acid derivative)	157	
8	other organonitrogen compound		160	
				CHEBI:16670 - peptide
				CHEBI:32952 - amine
				CHEBI:88061 - polyamine
				CHEBI:36080 - protein
				CHEBI:50047 - organic amino compound
9	nucleotide	CHEBI:36976 - nucleotide	24	
10	organic heterocyclic		37	
				CHEBI:18282 - nucleobase
				CHEBI:33838 - nucleoside
				CHEBI:33696 - nucleic acid
11	miscellaneous		110	
				CHEBI:26191 - polyol
				CHEBI:25703 - organic phosphate
				CHEBI:32988 - amide
				CHEBI:50860 - organic molecular entity
				CHEBI:25697 - organic cation

TooT-T : Discrimination of transport proteins from non-transport proteins

Munira Alballa^{1*} and Gregory Butler^{1,2}



Conclusion: The proposed model outperforms all of the state-of-the-art methods that rely on the protein sequence alone, with respect to accuracy and MCC. TooT-T achieved an overall accuracy of 90.07 % and 92.22% and an MCC 0.80 and 0.82 with the training and independent datasets, respectively.

Outline

Conclusion

Conclusion — Challenges

Sharing our ML experiments

openML excellent for sharing ML experiments automated parameter tuning and hyperparameter tuning

openML handles tabular data, not sequence data issues with categorical data (from python scikit-learn) big issue with heirarchical categorical data

Performance of Classification Step

MSA and SDS may be time-consuming Need to classify 10M proteins for microbiomes

Predicting transport of specific substrates

are there enough examples known multi-class vs multi-label learning

Thank You!

Questions, Please?